1
|
Wen J, An Y, Shao L, Yin L, Peng Z, Liu Y, Tian J, Du Y. Dual-channel end-to-end network with prior knowledge embedding for improving spatial resolution of magnetic particle imaging. Comput Biol Med 2024; 178:108783. [PMID: 38909446 DOI: 10.1016/j.compbiomed.2024.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/21/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Magnetic particle imaging (MPI) is an emerging non-invasive medical imaging tomography technology based on magnetic particles, with excellent imaging depth penetration, high sensitivity and contrast. Spatial resolution and signal-to-noise ratio (SNR) are key performance metrics for evaluating MPI, which are directly influenced by the gradient of the selection field (SF). Increasing the SF gradient can improve the spatial resolution of MPI, but will lead to a decrease in SNR. Deep learning (DL) methods may enable obtaining high-resolution images from low-resolution images to improve the MPI resolution under low gradient conditions. However, existing DL methods overlook the physical procedures contributing to the blurring of MPI images, resulting in low interpretability and hindering breakthroughs in resolution. To address this issue, we propose a dual-channel end-to-end network with prior knowledge embedding for MPI (DENPK-MPI) to effectively establish a latent mapping between low-gradient and high-gradient images, thus improving MPI resolution without compromising SNR. By seamlessly integrating MPI PSF with DL paradigm, DENPK-MPI leads to a significant improvement in spatial resolution performance. Simulation, phantom, and in vivo MPI experiments have collectively confirmed that our method can improve the resolution of low-gradient MPI images without sacrificing SNR, resulting in a decrease in full width at half maximum by 14.8%-23.8 %, and the accuracy of image reconstruction is 18.2 %-27.3 % higher than other DL methods. In conclusion, we propose a DL method that incorporates MPI prior knowledge, which can improve the spatial resolution of MPI without compromising SNR and possess improved biomedical application.
Collapse
Affiliation(s)
- Jiaxuan Wen
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; School of Artificial Intelligence, The University of Chinese Academy of Sciences, Beijing, China
| | - Yu An
- School of Engineering Medicine, Beihang University, Beijing, China; The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Lizhi Shao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; School of Artificial Intelligence, The University of Chinese Academy of Sciences, Beijing, China
| | - Lin Yin
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; School of Artificial Intelligence, The University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyao Peng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; School of Artificial Intelligence, The University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Liu
- School of Engineering Medicine, Beihang University, Beijing, China; The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; School of Engineering Medicine, Beihang University, Beijing, China; The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; School of Artificial Intelligence, The University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Zhao N, Basarab A, Kouame D, Tourneret JY. Joint Segmentation and Deconvolution of Ultrasound Images Using a Hierarchical Bayesian Model Based on Generalized Gaussian Priors. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2016; 25:3736-3750. [PMID: 27187959 DOI: 10.1109/tip.2016.2567074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper proposes a joint segmentation and deconvolution Bayesian method for medical ultrasound (US) images. Contrary to piecewise homogeneous images, US images exhibit heavy characteristic speckle patterns correlated with the tissue structures. The generalized Gaussian distribution (GGD) has been shown to be one of the most relevant distributions for characterizing the speckle in US images. Thus, we propose a GGD-Potts model defined by a label map coupling US image segmentation and deconvolution. The Bayesian estimators of the unknown model parameters, including the US image, the label map, and all the hyperparameters are difficult to be expressed in a closed form. Thus, we investigate a Gibbs sampler to generate samples distributed according to the posterior of interest. These generated samples are finally used to compute the Bayesian estimators of the unknown parameters. The performance of the proposed Bayesian model is compared with the existing approaches via several experiments conducted on realistic synthetic data and in vivo US images.
Collapse
|
5
|
Liu N, Zheng X, Sun H, Tan X. Two-dimensional bar code out-of-focus deblurring via the Increment Constrained Least Squares filter. Pattern Recognit Lett 2013. [DOI: 10.1016/j.patrec.2012.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Gutiérrez O, de la Rosa I, Villa J, González E, Escalante N. Semi-Huber potential function for image segmentation. OPTICS EXPRESS 2012; 20:6542-6554. [PMID: 22418537 DOI: 10.1364/oe.20.006542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this work, a novel model of Markov Random Field (MRF) is introduced. Such a model is based on a proposed Semi-Huber potential function and it is applied successfully to image segmentation in presence of noise. The main difference with respect to other half-quadratic models that have been taken as a reference is, that the number of parameters to be tuned in the proposed model is smaller and simpler. The idea is then, to choose adequate parameter values heuristically for a good segmentation of the image. In that sense, some experimental results show that the proposed model allows an easier parameter adjustment with reasonable computation times.
Collapse
Affiliation(s)
- Osvaldo Gutiérrez
- Unidad Academica de Ingenieriıa Electrica, Universidad Autonoma de Zacatecas, Av. Lopez Velarde 801, Col. Centro, C. P. 98000, Zacatecas, Zacatecas, Mexico.
| | | | | | | | | |
Collapse
|
7
|
Yildirim I, Ansari R, Wanek J, Yetik IS, Shahidi M. Regularized Estimation of Retinal Vascular Oxygen Tension From Phosphorescence Images. IEEE Trans Biomed Eng 2009; 56:1989-95. [DOI: 10.1109/tbme.2009.2020505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Plonka G, Ma J. Nonlinear regularized reaction-diffusion filters for denoising of images with textures. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2008; 17:1283-1294. [PMID: 18632339 DOI: 10.1109/tip.2008.925305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Denoising is always a challenging problem in natural imaging and geophysical data processing. In this paper, we consider the denoising of texture images using a nonlinear reaction-diffusion equation and directional wavelet frames. In our model, a curvelet shrinkage is used for regularization of the diffusion process to preserve important features in the diffusion smoothing and a wave atom shrinkage is used as the reaction in order to preserve and enhance interesting oriented textures. We derive a digital reaction-diffusion filter that lives on graphs and show convergence of the corresponding iteration process. Experimental results and comparisons show very good performance of the proposed model for texture-preserving denoising.
Collapse
Affiliation(s)
- Gerlind Plonka
- Department of Mathematics, University of Duisburg-Essen, Campus Duisburg, Duisburg, Germany.
| | | |
Collapse
|
10
|
Jodoin PM, Mignotte M, Rosenberger C. Segmentation framework based on label field fusion. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2007; 16:2535-2550. [PMID: 17926935 DOI: 10.1109/tip.2007.903841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this paper, we put forward a novel fusion framework that mixes together label fields instead of observation data as is usually the case. Our framework takes as input two label fields: a quickly estimated and to-be-refined segmentation map and a spatial region map that exhibits the shape of the main objects of the scene. These two label fields are fused together with a global energy function that is minimized with a deterministic iterative conditional mode algorithm. As explained in the paper, the energy function may implement a pure fusion strategy or a fusion-reaction function. In the latter case, a data-related term is used to make the optimization problem well posed. We believe that the conceptual simplicity, the small number of parameters, the use of a simple and fast deterministic optimizer that admits a natural implementation on a parallel architecture are among the main advantages of our approach. Our fusion framework is adapted to various computer vision applications among which are motion segmentation, motion estimation and occlusion detection.
Collapse
Affiliation(s)
- Pierre-Marc Jodoin
- Département d'informatique, Université de Sherbrooke, Sherbrooke QC J1K 2R1, Canada.
| | | | | |
Collapse
|
11
|
Mignotte M. Image denoising by averaging of piecewise constant simulations of image partitions. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2007; 16:523-33. [PMID: 17269644 DOI: 10.1109/tip.2006.887729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This paper investigates the problem of image denoising when the image is corrupted by additive white Gaussian noise. We herein propose a spatial adaptive denoising method which is based on an averaging process performed on a set of Markov Chain Monte-Carlo simulations of region partition maps constrained to be spatially piecewise uniform (i.e., constant in grey level value sense) for each estimated constant-value regions. For the estimation of these region partition maps, we have adopted the unsupervised Markovian framework in which parameters are automatically estimated in the least square sense. This sequential averaging allows to obtain, under our image model, an approximation of the image to be recovered in the minimal mean square sense error. The experiments reported in this paper demonstrate that the discussed method performs competitively and sometimes better than the best existing state-of-the-art wavelet-based denoising methods in benchmark tests.
Collapse
Affiliation(s)
- Max Mignotte
- Département d'Informatique et de Recherche Opérationnelle (DIRO), Université de Montréal, Canada.
| |
Collapse
|