1
|
Xie X, Wang X, Liang Y, Yang J, Wu Y, Li L, Sun X, Bing P, He B, Tian G, Shi X. Evaluating Cancer-Related Biomarkers Based on Pathological Images: A Systematic Review. Front Oncol 2021; 11:763527. [PMID: 34900711 PMCID: PMC8660076 DOI: 10.3389/fonc.2021.763527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Many diseases are accompanied by changes in certain biochemical indicators called biomarkers in cells or tissues. A variety of biomarkers, including proteins, nucleic acids, antibodies, and peptides, have been identified. Tumor biomarkers have been widely used in cancer risk assessment, early screening, diagnosis, prognosis, treatment, and progression monitoring. For example, the number of circulating tumor cell (CTC) is a prognostic indicator of breast cancer overall survival, and tumor mutation burden (TMB) can be used to predict the efficacy of immune checkpoint inhibitors. Currently, clinical methods such as polymerase chain reaction (PCR) and next generation sequencing (NGS) are mainly adopted to evaluate these biomarkers, which are time-consuming and expansive. Pathological image analysis is an essential tool in medical research, disease diagnosis and treatment, functioning by extracting important physiological and pathological information or knowledge from medical images. Recently, deep learning-based analysis on pathological images and morphology to predict tumor biomarkers has attracted great attention from both medical image and machine learning communities, as this combination not only reduces the burden on pathologists but also saves high costs and time. Therefore, it is necessary to summarize the current process of processing pathological images and key steps and methods used in each process, including: (1) pre-processing of pathological images, (2) image segmentation, (3) feature extraction, and (4) feature model construction. This will help people choose better and more appropriate medical image processing methods when predicting tumor biomarkers.
Collapse
Affiliation(s)
- Xiaoliang Xie
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China.,College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xulin Wang
- Department of Oncology Surgery, Central Hospital of Jia Mu Si City, Jia Mu Si, China
| | - Yuebin Liang
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Jingya Yang
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China.,School of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan, China
| | - Yan Wu
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Li Li
- Beijing Shanghe Jiye Biotech Co., Ltd., Bejing, China
| | - Xin Sun
- Department of Medical Affairs, Central Hospital of Jia Mu Si City, Jia Mu Si, China
| | - Pingping Bing
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China.,IBMC-BGI Center, T`he Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaoli Shi
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| |
Collapse
|
3
|
Yu X, Lin X, Dai Y, Zhu K. Image edge detection based tool condition monitoring with morphological component analysis. ISA TRANSACTIONS 2017; 69:315-322. [PMID: 28390654 DOI: 10.1016/j.isatra.2017.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/19/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
The measurement and monitoring of tool condition are keys to the product precision in the automated manufacturing. To meet the need, this study proposes a novel tool wear monitoring approach based on the monitored image edge detection. Image edge detection has been a fundamental tool to obtain features of images. This approach extracts the tool edge with morphological component analysis. Through the decomposition of original tool wear image, the approach reduces the influence of texture and noise for edge measurement. Based on the target image sparse representation and edge detection, the approach could accurately extract the tool wear edge with continuous and complete contour, and is convenient in charactering tool conditions. Compared to the celebrated algorithms developed in the literature, this approach improves the integrity and connectivity of edges, and the results have shown that it achieves better geometry accuracy and lower error rate in the estimation of tool conditions.
Collapse
Affiliation(s)
- Xiaolong Yu
- Department of Automation, University of Science and Technology of China, Hefei 230026, China; Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Huihong Building, Changwu Middle Road 801, Changzhou 213164, Jiangsu, China
| | - Xin Lin
- Department of Automation, University of Science and Technology of China, Hefei 230026, China; Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Huihong Building, Changwu Middle Road 801, Changzhou 213164, Jiangsu, China
| | - Yiquan Dai
- Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Huihong Building, Changwu Middle Road 801, Changzhou 213164, Jiangsu, China
| | - Kunpeng Zhu
- Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Huihong Building, Changwu Middle Road 801, Changzhou 213164, Jiangsu, China; School of Logistics Engineering, Wuhan University of Technology, Heping Road 1178#, Wuhan, 430063 Hubei, China..
| |
Collapse
|