1
|
Deka J, Laskar S, Baklial B. Automated Freshwater Fish Species Classification using Deep CNN. JOURNAL OF THE INSTITUTION OF ENGINEERS (INDIA): SERIES B 2023; 104:603-621. [PMCID: PMC10119539 DOI: 10.1007/s40031-023-00883-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/08/2023] [Indexed: 11/15/2023]
Abstract
Freshwater fish is considered a poor man’s protein supplement as they are easily available in lakes, rivers, natural ponds, paddy fields, beels, and fisheries. There are various freshwater fish species that resemble each other, making it difficult to classify them by their external appearance. Manual fish species identification always needs expertise and so, is erroneous. Recently, computer vision along with deep learning plays a significant role in underwater species classification research where the number of species under investigation is always limited to a maximum of eight (8). In this article, we choose deep-learning architectures, AlexNet and Resnet-50, to classify 20 indigenous fresh-water fish species from the North-Eastern parts of India. The two models are fine-tuned for training and validation of the collected fish data. The performance of these networks is evaluated based on overall accuracy, precision, and recall rate. This paper reports the best overall classification accuracy, precision, and recall rate of 100% at a learning rate of 0.001 by the Resnet-50 model on our own dataset and benchmark Fish-Pak dataset. Comprehensive empirical analysis has proved that with an increasing Weight and Bias learning rate, the validation loss incurred by the classifier also increases.
Collapse
Affiliation(s)
- Jayashree Deka
- Electrical and Electronics Engineering, Assam Don Bosco University, Guwahati, Assam 781017 India
| | - Shakuntala Laskar
- Electrical and Electronics Engineering, Assam Don Bosco University, Guwahati, Assam 781017 India
| | | |
Collapse
|
2
|
YoloXT: A object detection algorithm for marine benthos. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Model-Based Underwater Image Simulation and Learning-Based Underwater Image Enhancement Method. INFORMATION 2022. [DOI: 10.3390/info13040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Due to the absorption and scattering effects of light in water bodies and the non-uniformity and insufficiency of artificial illumination, underwater images often present various degradation problems, impacting their utility in underwater applications. In this paper, we propose a model-based underwater image simulation and learning-based underwater image enhancement method for coping with various degradation problems in underwater images. We first derive a simplified model for describing various degradation problems in underwater images, then propose a model-based image simulation method that can generate images with a wide range of parameter values. The proposed image simulation method also comes with an image-selection part, which helps to prune the simulation dataset so that it can serve as a training set for learning to enhance the targeted underwater images. Afterwards, we propose a convolutional neural network based on the encoder-decoder backbone to learn to enhance various underwater images from the simulated images. Experiments on simulated and real underwater images with different degradation problems demonstrate the effectiveness of the proposed underwater image simulation and enhancement method, and reveal the advantages of the proposed method in comparison with many state-of-the-art methods.
Collapse
|
4
|
Zhao Z, Liu Y, Sun X, Liu J, Yang X, Zhou C. Composited FishNet: Fish Detection and Species Recognition From Low-Quality Underwater Videos. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:4719-4734. [PMID: 33905330 DOI: 10.1109/tip.2021.3074738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The automatic detection and identification of fish from underwater videos is of great significance for fishery resource assessment and ecological environment monitoring. However, due to the poor quality of underwater images and unconstrained fish movement, traditional hand-designed feature extraction methods or convolutional neural network (CNN)-based object detection algorithms cannot meet the detection requirements in real underwater scenes. Therefore, to realize fish recognition and localization in a complex underwater environment, this paper proposes a novel composite fish detection framework based on a composite backbone and an enhanced path aggregation network called Composited FishNet. By improving the residual network (ResNet), a new composite backbone network (CBresnet) is designed to learn the scene change information (source domain style), which is caused by the differences in the image brightness, fish orientation, seabed structure, aquatic plant movement, fish species shape and texture differences. Thus, the interference of underwater environmental information on the object characteristics is reduced, and the output of the main network to the object information is strengthened. In addition, to better integrate the high and low feature information output from CBresnet, the enhanced path aggregation network (EPANet) is also designed to solve the insufficient utilization of semantic information caused by linear upsampling. The experimental results show that the average precision (AP)0.5:0.95, AP50 and average recall (AR)max=10 of the proposed Composited FishNet are 75.2%, 92.8% and 81.1%, respectively. The composite backbone network enhances the characteristic information output of the detected object and improves the utilization of characteristic information. This method can be used for fish detection and identification in complex underwater environments such as oceans and aquaculture.
Collapse
|
5
|
Abstract
Underwater survey and inspection are tasks of paramount relevance for a variety of applications. They are usually performed through the employment of optical and acoustic sensors installed aboard underwater vehicles, in order to capture details of the surrounding environment. The informative properties of the data are systematically affected by a number of disturbing factors, such as the signal energy absorbed by the propagation medium or diverse noise categories contaminating the resulting imagery. Restoring the signal properties in order to exploit the carried information is typically a tough challenge. Visual saliency refers to the computational modeling of the preliminary perceptual stages of human vision, where the presence of conspicuous targets within a surveyed scene activates neurons of the visual cortex, specifically sensitive to meaningful visual variations. In relatively recent years, visual saliency has been exploited in the field of automated underwater exploration. This work provides a comprehensive overview of the computational methods implemented and applied in underwater computer vision tasks, based on the extraction of visual saliency-related features.
Collapse
|
6
|
Video Image Enhancement and Machine Learning Pipeline for Underwater Animal Detection and Classification at Cabled Observatories. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20030726. [PMID: 32012976 PMCID: PMC7038495 DOI: 10.3390/s20030726] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 01/21/2023]
Abstract
An understanding of marine ecosystems and their biodiversity is relevant to sustainable use of the goods and services they offer. Since marine areas host complex ecosystems, it is important to develop spatially widespread monitoring networks capable of providing large amounts of multiparametric information, encompassing both biotic and abiotic variables, and describing the ecological dynamics of the observed species. In this context, imaging devices are valuable tools that complement other biological and oceanographic monitoring devices. Nevertheless, large amounts of images or movies cannot all be manually processed, and autonomous routines for recognizing the relevant content, classification, and tagging are urgently needed. In this work, we propose a pipeline for the analysis of visual data that integrates video/image annotation tools for defining, training, and validation of datasets with video/image enhancement and machine and deep learning approaches. Such a pipeline is required to achieve good performance in the recognition and classification tasks of mobile and sessile megafauna, in order to obtain integrated information on spatial distribution and temporal dynamics. A prototype implementation of the analysis pipeline is provided in the context of deep-sea videos taken by one of the fixed cameras at the LoVe Ocean Observatory network of Lofoten Islands (Norway) at 260 m depth, in the Barents Sea, which has shown good classification results on an independent test dataset with an accuracy value of 76.18% and an area under the curve (AUC) value of 87.59%.
Collapse
|
7
|
An Underwater Image Enhancement Method for Different Illumination Conditions Based on Color Tone Correction and Fusion-Based Descattering. SENSORS 2019; 19:s19245567. [PMID: 31888303 PMCID: PMC6960566 DOI: 10.3390/s19245567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
In the shallow-water environment, underwater images often present problems like color deviation and low contrast due to light absorption and scattering in the water body, but for deep-sea images, additional problems like uneven brightness and regional color shift can also exist, due to the use of chromatic and inhomogeneous artificial lighting devices. Since the latter situation is rarely studied in the field of underwater image enhancement, we propose a new model to include it in the analysis of underwater image degradation. Based on the theoretical study of the new model, a comprehensive method for enhancing underwater images under different illumination conditions is proposed in this paper. The proposed method is composed of two modules: color-tone correction and fusion-based descattering. In the first module, the regional or full-extent color deviation caused by different types of incident light is corrected via frequency-based color-tone estimation. And in the second module, the residual low contrast and pixel-wise color shift problems are handled by combining the descattering results under the assumption of different states of the image. The proposed method is experimented on laboratory and open-water images of different depths and illumination states. Qualitative and quantitative evaluation results demonstrate that the proposed method outperforms many other methods in enhancing the quality of different types of underwater images, and is especially effective in improving the color accuracy and information content in badly-illuminated regions of underwater images with non-uniform illumination, such as deep-sea images.
Collapse
|
8
|
RGB-D Object Recognition Using Multi-Modal Deep Neural Network and DS Evidence Theory. SENSORS 2019; 19:s19030529. [PMID: 30691239 PMCID: PMC6387151 DOI: 10.3390/s19030529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 11/30/2022]
Abstract
With the development of low-cost RGB-D (Red Green Blue-Depth) sensors, RGB-D object recognition has attracted more and more researchers’ attention in recent years. The deep learning technique has become popular in the field of image analysis and has achieved competitive results. To make full use of the effective identification information in the RGB and depth images, we propose a multi-modal deep neural network and a DS (Dempster Shafer) evidence theory based RGB-D object recognition method. First, the RGB and depth images are preprocessed and two convolutional neural networks are trained, respectively. Next, we perform multi-modal feature learning using the proposed quadruplet samples based objective function to fine-tune the network parameters. Then, two probability classification results are obtained using two sigmoid SVMs (Support Vector Machines) with the learned RGB and depth features. Finally, the DS evidence theory based decision fusion method is used for integrating the two classification results. Compared with other RGB-D object recognition methods, our proposed method adopts two fusion strategies: Multi-modal feature learning and DS decision fusion. Both the discriminative information of each modality and the correlation information between the two modalities are exploited. Extensive experimental results have validated the effectiveness of the proposed method.
Collapse
|
9
|
Abstract
Marine cabled video-observatories allow the non-destructive sampling of species at frequencies and durations that have never been attained before. Nevertheless, the lack of appropriate methods to automatically process video imagery limits this technology for the purposes of ecosystem monitoring. Automation is a prerequisite to deal with the huge quantities of video footage captured by cameras, which can then transform these devices into true autonomous sensors. In this study, we have developed a novel methodology that is based on genetic programming for content-based image analysis. Our aim was to capture the temporal dynamics of fish abundance. We processed more than 20,000 images that were acquired in a challenging real-world coastal scenario at the OBSEA-EMSO testing-site. The images were collected at 30-min. frequency, continuously for two years, over day and night. The highly variable environmental conditions allowed us to test the effectiveness of our approach under changing light radiation, water turbidity, background confusion, and bio-fouling growth on the camera housing. The automated recognition results were highly correlated with the manual counts and they were highly reliable when used to track fish variations at different hourly, daily, and monthly time scales. In addition, our methodology could be easily transferred to other cabled video-observatories.
Collapse
|
10
|
Underwater Object Segmentation Based on Optical Features. SENSORS 2018; 18:s18010196. [PMID: 29329245 PMCID: PMC5795476 DOI: 10.3390/s18010196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
Abstract
Underwater optical environments are seriously affected by various optical inputs, such as artificial light, sky light, and ambient scattered light. The latter two can block underwater object segmentation tasks, since they inhibit the emergence of objects of interest and distort image information, while artificial light can contribute to segmentation. Artificial light often focuses on the object of interest, and, therefore, we can initially identify the region of target objects if the collimation of artificial light is recognized. Based on this concept, we propose an optical feature extraction, calculation, and decision method to identify the collimated region of artificial light as a candidate object region. Then, the second phase employs a level set method to segment the objects of interest within the candidate region. This two-phase structure largely removes background noise and highlights the outline of underwater objects. We test the performance of the method with diverse underwater datasets, demonstrating that it outperforms previous methods.
Collapse
|
11
|
Chen Z, Zhang Z, Dai F, Bu Y, Wang H. Monocular Vision-Based Underwater Object Detection. SENSORS 2017; 17:s17081784. [PMID: 28771194 PMCID: PMC5580077 DOI: 10.3390/s17081784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022]
Abstract
In this paper, we propose an underwater object detection method using monocular vision sensors. In addition to commonly used visual features such as color and intensity, we investigate the potential of underwater object detection using light transmission information. The global contrast of various features is used to initially identify the region of interest (ROI), which is then filtered by the image segmentation method, producing the final underwater object detection results. We test the performance of our method with diverse underwater datasets. Samples of the datasets are acquired by a monocular camera with different qualities (such as resolution and focal length) and setups (viewing distance, viewing angle, and optical environment). It is demonstrated that our ROI detection method is necessary and can largely remove the background noise and significantly increase the accuracy of our underwater object detection method.
Collapse
Affiliation(s)
- Zhe Chen
- College of Computer and Information, Hohai University, Nanjing 211100, Jiangsu, China.
- Key Laboratory of Trusted Cloud Computing and Big Data Analysis, Nanjing Xiaozhuang University, Nanjing 211100, Jiangsu, China.
| | - Zhen Zhang
- College of Computer and Information, Hohai University, Nanjing 211100, Jiangsu, China.
| | - Fengzhao Dai
- Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China.
| | - Yang Bu
- Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China.
| | - Huibin Wang
- College of Computer and Information, Hohai University, Nanjing 211100, Jiangsu, China.
| |
Collapse
|