1
|
Zhang P, Gao C, Zhang Z, Yuan Z, Zhang Q, Zhang P, Du S, Zhou W, Li Y, Li S. Systematic inference of super-resolution cell spatial profiles from histology images. Nat Commun 2025; 16:1838. [PMID: 39984438 PMCID: PMC11845739 DOI: 10.1038/s41467-025-57072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Inferring cell spatial profiles from histology images is critical for cancer diagnosis and treatment in clinical settings. In this study, we report a weakly-supervised deep-learning method, HistoCell, to directly infer super-resolution cell spatial profiles consisting of cell types, cell states and their spatial network from histology images at the single-nucleus-level. Benchmark analysis demonstrates that HistoCell robustly achieves state-of-the-art performance in terms of cell type/states prediction solely from histology images across multiple cancer tissues. HistoCell can significantly enhance the deconvolution accuracy for the spatial transcriptomics data and enable accurate annotation of subtle cancer tissue architectures. Moreover, HistoCell is applied to de novo discovery of clinically relevant spatial organization indicators, including prognosis and drug response biomarkers, across diverse cancer types. HistoCell also enable image-based screening of cell populations that drives phenotype of interest, and is applied to discover the cell population and corresponding spatial organization indicators associated with gastric malignant transformation risk. Overall, HistoCell emerges as a powerful and versatile tool for cancer studies in histology image-only cohorts.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China
| | - Chaofei Gao
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China
| | - Zhuoyu Zhang
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China
| | - Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qian Zhang
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shao Li
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Building hierarchical class structures for extreme multi-class learning. INT J MACH LEARN CYB 2023. [DOI: 10.1007/s13042-023-01783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Uncertainty instructed multi-granularity decision for large-scale hierarchical classification. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2021.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Zhao H, Guo S, Lin Y. Hierarchical classification of data with long-tailed distributions via global and local granulation. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.09.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Wu Z, Liu S, Ding C, Ren Z, Xie S. Learning Graph Similarity With Large Spectral Gap. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 2021; 51:1590-1600. [DOI: 10.1109/tsmc.2019.2899398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Affiliation(s)
- Zongze Wu
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Sihui Liu
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Chris Ding
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Zhigang Ren
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Shengli Xie
- School of Automation, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Zheng Y, Chen Q, Fan J, Gao X. Hierarchical convolutional neural network via hierarchical cluster validity based visual tree learning. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.05.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Guo S, Zhao H. Hierarchical classification with multi-path selection based on granular computing. Artif Intell Rev 2020. [DOI: 10.1007/s10462-020-09899-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Zheng Y, Fan J, Zhang J, Gao X. Discriminative Fast Hierarchical Learning for Multiclass Image Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:2779-2790. [PMID: 31751253 DOI: 10.1109/tnnls.2019.2948881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, a discriminative fast hierarchical learning algorithm is developed for supporting multiclass image classification, where a visual tree is seamlessly integrated with multitask learning to achieve fast training of the tree classifier hierarchically (i.e., a set of structural node classifiers over the visual tree). By partitioning a large number of categories hierarchically in a coarse-to-fine fashion, a visual tree is first constructed and further used to handle data imbalance and identify the interrelated learning tasks automatically (e.g., the tasks for learning the node classifiers for the sibling child nodes under the same parent node are strongly interrelated), and a multitask SVM classifier is trained for each nonleaf node to achieve more effective separation of its sibling child nodes at the next level of the visual tree. Both the internode visual similarities and the interlevel visual correlations are utilized to train more discriminative multitask SVM classifiers and control the interlevel error propagation effectively, and a stochastic gradient descent (SGD) algorithm is developed for learning such multitask SVM classifiers with higher efficiency. Our experimental results have demonstrated that our fast hierarchical learning algorithm can achieve very competitive results on both the classification accuracy rates and the computational efficiency.
Collapse
|
10
|
|
11
|
|
12
|
Zheng Y, Fan J, Zhang J, Gao X. Exploiting Related and Unrelated Tasks for Hierarchical Metric Learning and Image Classification. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 29:883-896. [PMID: 31502971 DOI: 10.1109/tip.2019.2938321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In multi-task learning, multiple interrelated tasks are jointly learned to achieve better performance. In many cases, if we can identify which tasks are related, we can also clearly identify which tasks are unrelated. In the past, most researchers emphasized exploiting correlations among interrelated tasks while completely ignoring the unrelated tasks that may provide valuable prior knowledge for multi-task learning. In this paper, a new approach is developed to hierarchically learn a tree of multi-task metrics by leveraging prior knowledge about both the related tasks and unrelated tasks. First, a visual tree is constructed to hierarchically organize large numbers of image categories in a coarse-to-fine fashion. Over the visual tree, a multi-task metric classifier is learned for each node by exploiting both the related and unrelated tasks, where the learning tasks for training the classifiers for the sibling child nodes under the same parent node are treated as the interrelated tasks, and the others are treated as the unrelated tasks. In addition, the node-specific metric for the parent node is propagated to its sibling child nodes to control inter-level error propagation. Our experimental results demonstrate that our hierarchical metric learning algorithm achieves better results than other state-of-the-art algorithms.
Collapse
|
13
|
|
14
|
Zhang C, Cheng J, Tian Q. Semantically Modeling of Object and Context for Categorization. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:1013-1024. [PMID: 30106698 DOI: 10.1109/tnnls.2018.2856096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Object-centric-based categorization methods have been proven more effective than hard partitions of images (e.g., spatial pyramid matching). However, how to determine the locations of objects is still an open problem. Besides, modeling of context areas is often mixed with the background. Moreover, the semantic information is often ignored by these methods that only use visual representations for classification. In this paper, we propose an object categorization method by semantically modeling the object and context information (SOC). We first select a number of candidate regions with high confidence scores and semantically represent these regions by measuring correlations of each region with prelearned classifiers (e.g., local feature-based classifiers and deep convolutional-neural-network-based classifiers). These regions are clustered for object selections. The other selected areas are then viewed as context areas. We treat other areas beyond the object and context areas within one image as the background. The visually and semantically represented objects and contexts are then used along with the background area for object representations and categorizations. Experimental results on several public data sets well demonstrate the effectiveness of the proposed object categorization method by semantically modeling the object and context information.
Collapse
|