1
|
Hoshina Y, Yamamoto T, Uemura S. Wire-tracking of bent electric cable using X-ray CT and deep active learning. Microscopy (Oxf) 2024; 73:499-510. [PMID: 38795058 DOI: 10.1093/jmicro/dfae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/20/2024] [Accepted: 05/24/2024] [Indexed: 05/27/2024] Open
Abstract
We have demonstrated a quantification of all component wires in a bent electric cable, which is necessary for discussion of cable products in actual use cases. Quantification became possible for the first time because of our new technologies for image analysis of bent cables. In this paper, various image analysis techniques to detect all wire tracks in a bent cable are demonstrated. Unique cross-sectional image construction and deep active learning schemes are the most important items in this study. These methods allow us to know the actual state of cables under external loads, which makes it possible to elucidate the mechanisms of various phenomena related to cables in the field and further improve the quality of cable products.
Collapse
Affiliation(s)
- Yutaka Hoshina
- Analysis Technology Research Center R&D Unit, Sumitomo Electric Industries, Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka 554-0024, Japan
| | - Takuma Yamamoto
- Analysis Technology Research Center R&D Unit, Sumitomo Electric Industries, Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka 554-0024, Japan
| | - Shigeaki Uemura
- Analysis Technology Research Center R&D Unit, Sumitomo Electric Industries, Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka 554-0024, Japan
| |
Collapse
|
2
|
Xiao Y, Adegoke M, Leung CS, Leung KW. Robust noise-aware algorithm for randomized neural network and its convergence properties. Neural Netw 2024; 173:106202. [PMID: 38422835 DOI: 10.1016/j.neunet.2024.106202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/19/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The concept of randomized neural networks (RNNs), such as the random vector functional link network (RVFL) and extreme learning machine (ELM), is a widely accepted and efficient network method for constructing single-hidden layer feedforward networks (SLFNs). Due to its exceptional approximation capabilities, RNN is being extensively used in various fields. While the RNN concept has shown great promise, its performance can be unpredictable in imperfect conditions, such as weight noises and outliers. Thus, there is a need to develop more reliable and robust RNN algorithms. To address this issue, this paper proposes a new objective function that addresses the combined effect of weight noise and training data outliers for RVFL networks. Based on the half-quadratic optimization method, we then propose a novel algorithm, named noise-aware RNN (NARNN), to optimize the proposed objective function. The convergence of the NARNN is also theoretically validated. We also discuss the way to use the NARNN for ensemble deep RVFL (edRVFL) networks. Finally, we present an extension of the NARNN to concurrently address weight noise, stuck-at-fault, and outliers. The experimental results demonstrate that the proposed algorithm outperforms a number of state-of-the-art robust RNN algorithms.
Collapse
Affiliation(s)
- Yuqi Xiao
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, HKSAR, China; State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, HKSAR, China; Shenzhen Key Laboratory of Millimeter Wave and Wideband Wireless Communications, CityU Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Muideen Adegoke
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, HKSAR, China.
| | - Chi-Sing Leung
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, HKSAR, China.
| | - Kwok Wa Leung
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, HKSAR, China; State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, HKSAR, China; Shenzhen Key Laboratory of Millimeter Wave and Wideband Wireless Communications, CityU Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Yang J, Du B, Xu Y, Zhang L. Can Spectral Information Work While Extracting Spatial Distribution?-An Online Spectral Information Compensation Network for HSI Classification. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:2360-2373. [PMID: 37027546 DOI: 10.1109/tip.2023.3244414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In the past few years, deep learning-based methods have shown commendable performance for hyperspectral image (HSI) classification. Many works focus on designing independent spectral and spatial branches and then fusing the output features from two branches for category prediction. In this way, the correlation that exists between spectral and spatial information is not completely explored, and spectral information extracted from one branch is always not sufficient. Some studies also try to directly extract spectral-spatial features using 3D convolutions but are accompanied by the severe over-smoothing phenomenon and poor representation ability of spectral signatures. Unlike the above-mentioned approaches, in this paper, we propose a novel online spectral information compensation network (OSICN) for HSI classification, which consists of a candidate spectral vector mechanism, progressive filling process, and multi-branch network. To the best of our knowledge, this paper is the first to online supplement spectral information into the network when spatial features are extracted. The proposed OSICN makes the spectral information participate in network learning in advance to guide spatial information extraction, which truly processes spectral and spatial features in HSI as a whole. Accordingly, OSICN is more reasonable and more effective for complex HSI data. Experimental results on three benchmark datasets demonstrate that the proposed approach has more outstanding classification performance compared with the state-of-the-art methods, even with a limited number of training samples.
Collapse
|
4
|
Mahapatra D, Poellinger A, Reyes M. Graph Node Based Interpretability Guided Sample Selection for Active Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:661-673. [PMID: 36240033 DOI: 10.1109/tmi.2022.3215017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While supervised learning techniques have demonstrated state-of-the-art performance in many medical image analysis tasks, the role of sample selection is important. Selecting the most informative samples contributes to the system attaining optimum performance with minimum labeled samples, which translates to fewer expert interventions and cost. Active Learning (AL) methods for informative sample selection are effective in boosting performance of computer aided diagnosis systems when limited labels are available. Conventional approaches to AL have mostly focused on the single label setting where a sample has only one disease label from the set of possible labels. These approaches do not perform optimally in the multi-label setting where a sample can have multiple disease labels (e.g. in chest X-ray images). In this paper we propose a novel sample selection approach based on graph analysis to identify informative samples in a multi-label setting. For every analyzed sample, each class label is denoted as a separate node of a graph. Building on findings from interpretability of deep learning models, edge interactions in this graph characterize similarity between corresponding interpretability saliency map model encodings. We explore different types of graph aggregation to identify informative samples for active learning. We apply our method to public chest X-ray and medical image datasets, and report improved results over state-of-the-art AL techniques in terms of model performance, learning rates, and robustness.
Collapse
|
5
|
Si X, Yin Q, Zhao X, Yao L. Robust deep multi-view subspace clustering networks with a correntropy-induced metric. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Attribute and label distribution driven multi-label active learning. APPL INTELL 2022. [DOI: 10.1007/s10489-021-03086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Zhao J, Qiu Z, Sun S. Multi-view multi-label active learning with conditional Bernoulli mixtures. INT J MACH LEARN CYB 2022. [DOI: 10.1007/s13042-021-01467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Robust active representation via ℓ2,p-norm constraints. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2021.107639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
|
10
|
Xing L, Chen B, Du S, Gu Y, Zheng N. Correntropy-Based Multiview Subspace Clustering. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:3298-3311. [PMID: 31794416 DOI: 10.1109/tcyb.2019.2952398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multiview subspace clustering, which aims to cluster the given data points with information from multiple sources or features into their underlying subspaces, has a wide range of applications in the communities of data mining and pattern recognition. Compared with the single-view subspace clustering, it is challenging to efficiently learn the structure of the representation matrix from each view and make use of the extra information embedded in multiple views. To address the two problems, a novel correntropy-based multiview subspace clustering (CMVSC) method is proposed in this article. The objective function of our model mainly includes two parts. The first part utilizes the Frobenius norm to efficiently estimate the dense connections between the points lying in the same subspace instead of following the standard compressive sensing approach. In the second part, the correntropy-induced metric (CIM) is introduced to characterize the noise in each view and utilize the information embedded in different views from an information-theoretic perspective. Furthermore, an efficient iterative algorithm based on the half-quadratic technique (HQ) and the alternating direction method of multipliers (ADMM) is developed to optimize the proposed joint learning problem, and extensive experimental results on six real-world multiview benchmarks demonstrate that the proposed methods can outperform several state-of-the-art multiview subspace clustering methods.
Collapse
|
11
|
Matiz S, Barner KE. Conformal prediction based active learning by linear regression optimization. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
|
13
|
|
14
|
|
15
|
Joint correntropy metric weighting and block diagonal regularizer for robust multiple kernel subspace clustering. Inf Sci (N Y) 2019. [DOI: 10.1016/j.ins.2019.05.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Dong Q, Wang H. Latent-Smoothness Nonrigid Structure From Motion by Revisiting Multilinear Factorization. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:3557-3570. [PMID: 30004896 DOI: 10.1109/tcyb.2018.2849146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
How to implement an effective factorization for nonrigid structure from motion (NRSFM) has attracted much attention in recent years. A straightforward factorization scheme is to multilinearly solve NRSFM in an alternating manner, where each of the unknown variables in NRSFM is updated by fixing the others at each iteration. However, recent works show that most existing multilinear factorization (MLF) methods achieve poorer performances than some state-of-the-art sequential factorization methods. In this paper, we reinvestigate the MLF scheme for improving factorization accuracy, and first propose an MLF method with the only low-rank prior for NRSFM in the presence of missing data. Then, for further improving the performances of such MLF methods, a latent "smoothness" characteristic on unknown 3-D deformable shapes is investigated, which is independent of temporal relations among deformable shapes. Accordingly, a latent-smoothness prior for solving NRSFM is derived from the latent smoothness characteristic, and it is able to effectively recover 3-D deformable shapes from unordered data, which is hard for the traditional temporal-smoothness prior to handle. Finally, a regularized factorization method is proposed by integrating MLF with the explored latent-smoothness prior for further pursuing better performances. Extensive experimental results show the effectiveness of our methods in comparison to eight existing multilinear/sequential methods.
Collapse
|
17
|
Xiao Y, Li J, Du B, Wu J, Li X, Chang J, Zhou Y. Robust correlation filter tracking with multi-scale spatial view. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
|
19
|
Du B, Xinyao T, Wang Z, Zhang L, Tao D. Robust Graph-Based Semisupervised Learning for Noisy Labeled Data via Maximum Correntropy Criterion. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:1440-1453. [PMID: 29994595 DOI: 10.1109/tcyb.2018.2804326] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Semisupervised learning (SSL) methods have been proved to be effective at solving the labeled samples shortage problem by using a large number of unlabeled samples together with a small number of labeled samples. However, many traditional SSL methods may not be robust with too much labeling noisy data. To address this issue, in this paper, we propose a robust graph-based SSL method based on maximum correntropy criterion to learn a robust and strong generalization model. In detail, the graph-based SSL framework is improved by imposing supervised information on the regularizer, which can strengthen the constraint on labels, thus ensuring that the predicted labels of each cluster are close to the true labels. Furthermore, the maximum correntropy criterion is introduced into the graph-based SSL framework to suppress labeling noise. Extensive image classification experiments prove the generalization and robustness of the proposed SSL method.
Collapse
|
20
|
Structure preservation and distribution alignment in discriminative transfer subspace learning. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.01.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Wang G, Hwang JN, Rose C, Wallace F. Uncertainty-Based Active Learning via Sparse Modeling for Image Classification. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 28:316-329. [PMID: 30176591 DOI: 10.1109/tip.2018.2867913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Uncertainty sampling-based active learning has been well studied for selecting informative samples to improve the performance of a classifier. In batch-mode active learning, a batch of samples are selected for a query at the same time. The samples with top uncertainty are encouraged to be selected. However, this selection strategy ignores the relations among the samples, because the selected samples may have much redundant information with each other. This paper addresses this problem by proposing a novel method that combines uncertainty, diversity, and density via sparse modeling in the sample selection. We use sparse linear combination to represent the uncertainty of unlabeled pool data with Gaussian kernels, in which the diversity and density are well incorporated. The selective sampling method is proposed before optimization to reduce the representation error. To deal with ${l}_{0}$ norm constraint in the sparse problem, two approximated approaches are adopted for efficient optimization. Four image classification data sets are used for evaluation. Extensive experiments related to batch size, feature space, seed size, significant analysis, data transform, and time efficiency demonstrate the advantages of the proposed method.
Collapse
|
22
|
Feng Y, Zhou P, Wu D, Hu Y. Accurate Content Push for Content-Centric Social Networks: A Big Data Support Online Learning Approach. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2018. [DOI: 10.1109/tetci.2018.2804335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
|
24
|
|
25
|
Sharma A, Rani R. BE-DTI': Ensemble framework for drug target interaction prediction using dimensionality reduction and active learning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 165:151-162. [PMID: 30337070 DOI: 10.1016/j.cmpb.2018.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Drug-target interaction prediction plays an intrinsic role in the drug discovery process. Prediction of novel drugs and targets helps in identifying optimal drug therapies for various stringent diseases. Computational prediction of drug-target interactions can help to identify potential drug-target pairs and speed-up the process of drug repositioning. In our present, work we have focused on machine learning algorithms for predicting drug-target interactions from the pool of existing drug-target data. The key idea is to train the classifier using existing DTI so as to predict new or unknown DTI. However, there are various challenges such as class imbalance and high dimensional nature of data that need to be addressed before developing optimal drug-target interaction model. METHODS In this paper, we propose a bagging based ensemble framework named BE-DTI' for drug-target interaction prediction using dimensionality reduction and active learning to deal with class-imbalanced data. Active learning helps to improve under-sampling bagging based ensembles. Dimensionality reduction is used to deal with high dimensional data. RESULTS Results show that the proposed technique outperforms the other five competing methods in 10-fold cross-validation experiments in terms of AUC=0.927, Sensitivity=0.886, Specificity=0.864, and G-mean=0.874. CONCLUSION Missing interactions and new interactions are predicted using the proposed framework. Some of the known interactions are removed from the original dataset and their interactions are recalculated to check the accuracy of the proposed framework. Moreover, validation of the proposed approach is performed using the external dataset. All these results show that structurally similar drugs tend to interact with similar targets.
Collapse
Affiliation(s)
- Aman Sharma
- Computer Science and Engineering Department, Thapar Institute of Engineering & Technology, Punjab, Patiala, India.
| | - Rinkle Rani
- Computer Science and Engineering Department, Thapar Institute of Engineering & Technology, Punjab, Patiala, India.
| |
Collapse
|
26
|
Zhao H, Guo H, Jin X, Shen J, Mao X, Liu J. Parallel and efficient approximate nearest patch matching for image editing applications. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.03.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Zhao T, Zhang B, He M, Zhanga W, Zhou N, Yu J, Fan J. Embedding Visual Hierarchy with Deep Networks for Large-Scale Visual Recognition. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2018; 27:4740-4755. [PMID: 29994211 DOI: 10.1109/tip.2018.2845118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a layer-wise mixture model (LMM) is developed to support hierarchical visual recognition, where a Bayesian approach is used to automatically adapt the visual hierarchy to the progressive improvements of the deep network along the time. Our LMM algorithm can provide an end-to-end approach for jointly learning: (a) the deep network for achieving more discriminative deep representations for object classes and their inter-class visual similarities; (b) the tree classifier for recognizing large numbers of object classes hierarchically; and (c) the visual hierarchy adaptation for achieving more accurate assignment and organization of large numbers of object classes. By learning the tree classifier, the deep network and the visual hierarchy adaptation jointly in an end-to-end manner, our LMM algorithm can achieve higher accuracy rates on hierarchical visual recognition. Our experiments are carried on ImageNet1K and ImageNet10K image sets, which have demonstrated that our LMM algorithm can achieve very competitive results on the accuracy rates as compared with the baseline methods.
Collapse
|