1
|
Liu L, Chen CLP, Wang Y. Modal Regression-Based Graph Representation for Noise Robust Face Hallucination. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:2490-2502. [PMID: 34487500 DOI: 10.1109/tnnls.2021.3106773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Manifold learning-based face hallucination technologies have been widely developed during the past decades. However, the conventional learning methods always become ineffective in noise environment due to the least-square regression, which usually generates distorted representations for noisy inputs they employed for error modeling. To solve this problem, in this article, we propose a modal regression-based graph representation (MRGR) model for noisy face hallucination. In MRGR, the modal regression-based function is incorporated into graph learning framework to improve the resolution of noisy face images. Specifically, the modal regression-induced metric is used instead of the least-square metric to regularize the encoding errors, which admits the MRGR to robust against noise with uncertain distribution. Moreover, a graph representation is learned from feature space to exploit the inherent typological structure of patch manifold for data representation, resulting in more accurate reconstruction coefficients. Besides, for noisy color face hallucination, the MRGR is extended into quaternion (MRGR-Q) space, where the abundant correlations among different color channels can be well preserved. Experimental results on both the grayscale and color face images demonstrate the superiority of MRGR and MRGR-Q compared with several state-of-the-art methods.
Collapse
|
2
|
Liu L, Feng Q, Chen CLP, Wang Y. Noise Robust Face Hallucination Based on Smooth Correntropy Representation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:5953-5965. [PMID: 33886477 DOI: 10.1109/tnnls.2021.3071982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Face hallucination technologies have been widely developed during the past decades, among which the sparse manifold learning (SML)-based approaches have become the popular ones and achieved promising performance. However, these SML methods always failed in handling noisy images due to the least-square regression (LSR) they used for error approximation. To this end, we propose, in this article, a smooth correntropy representation (SCR) model for noisy face hallucination. In SCR, the correntropy regularization and smooth constraint are combined into one unified framework to improve the resolution of noisy face images. Specifically, we introduce the correntropy induced metric (CIM) rather than the LSR to regularize the encoding errors, which admits the proposed method robust to noise with uncertain distributions. Besides, the fused LASSO penalty is added into the feature space to ensure similar training samples holding similar representation coefficients. This encourages the SCR not only robust to noise but also can well exploit the inherent typological structure of patch manifold, resulting in more accurate representations in noise environment. Comparison experiments against several state-of-the-art methods demonstrate the superiority of SCR in super-resolving noisy low-resolution (LR) face images.
Collapse
|
3
|
Tang S, Shu Z. Mixed noise face hallucination via adaptive weighted residual and nuclear-norm regularization. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Gaussian noise robust face hallucination via average filtering based data fidelity and locality regularization. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Jiang K, Wang Z, Yi P, Lu T, Jiang J, Xiong Z. Dual-Path Deep Fusion Network for Face Image Hallucination. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:378-391. [PMID: 33074829 DOI: 10.1109/tnnls.2020.3027849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Along with the performance improvement of deep-learning-based face hallucination methods, various face priors (facial shape, facial landmark heatmaps, or parsing maps) have been used to describe holistic and partial facial features, making the cost of generating super-resolved face images expensive and laborious. To deal with this problem, we present a simple yet effective dual-path deep fusion network (DPDFN) for face image super-resolution (SR) without requiring additional face prior, which learns the global facial shape and local facial components through two individual branches. The proposed DPDFN is composed of three components: a global memory subnetwork (GMN), a local reinforcement subnetwork (LRN), and a fusion and reconstruction module (FRM). In particular, GMN characterize the holistic facial shape by employing recurrent dense residual learning to excavate wide-range context across spatial series. Meanwhile, LRN is committed to learning local facial components, which focuses on the patch-wise mapping relations between low-resolution (LR) and high-resolution (HR) space on local regions rather than the entire image. Furthermore, by aggregating the global and local facial information from the preceding dual-path subnetworks, FRM can generate the corresponding high-quality face image. Experimental results of face hallucination on public face data sets and face recognition on real-world data sets (VGGface and SCFace) show the superiority both on visual effect and objective indicators over the previous state-of-the-art methods.
Collapse
|
6
|
Liu L, Chen CLP, Li S. Hallucinating Color Face Image by Learning Graph Representation in Quaternion Space. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:265-277. [PMID: 32224475 DOI: 10.1109/tcyb.2020.2979320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, learning-based representation techniques have been well exploited for grayscale face image hallucination. For color images, the previous methods only handle the luminance component or each color channel individually, without considering the abundant correlations among different channels as well as the inherent geometrical structure of data manifold. In this article, we propose a learning-based model in quaternion space with graph representation for color face hallucination. Instead of the spatial domain, the color image is represented in the quaternion domain to preserve correlations among different color channels. Moreover, a quaternion graph is learned to smooth the quaternion feature space, which helps to not only stabilize the linear system but also enclose the inherent topology structure of quaternion patch manifold. Besides, considering that single low-resolution (LR) image patch can just provide limited informative information in representation, we propose to simultaneously encode the query smaller LR patch as well as a larger patch containing the surrounding pixels seated at the same position in the objective. The larger patch with rich patterns is used to compensate the lost information in the query LR patch, which further enhances the manifold consistency assumption between the LR and HR patch spaces. The experimental results demonstrated the efficiency of the proposed method in hallucinating color face images.
Collapse
|
7
|
Chen L, Pan J, Jiang J, Zhang J, Han Z, Bao L. Multi-Stage Degradation Homogenization for Super-Resolution of Face Images With Extreme Degradations. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:5600-5612. [PMID: 34110993 DOI: 10.1109/tip.2021.3086595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Face Super-Resolution (FSR) aims to infer High-Resolution (HR) face images from the captured Low-Resolution (LR) face image with the assistance of external information. Existing FSR methods are less effective for the LR face images captured with serious low-quality since the huge imaging/degradation gap caused by the different imaging scenarios (i.e., the complex practical imaging scenario that generates test LR images, the simple manual imaging degradation that generates the training LR images) is not considered in these algorithms. In this paper, we propose an image homogenization strategy via re-expression to solve this problem. In contrast to existing methods, we propose a homogenization projection in LR space and HR space as compensation for the classical LR/HR projection to formulate the FSR in a multi-stage framework. We then develop a re-expression process to bridge the gap between the complex degradation and the simple degradation, which can remove the heterogeneous factors such as serious noise and blur. To further improve the accuracy of the homogenization, we extract the image patch set that is invariant to degradation changes as Robust Neighbor Resources (RNR), with which these two homogenization projections re-express the input LR images and the initial inferred HR images successively. Both quantitative and qualitative results on the public datasets demonstrate the effectiveness of the proposed algorithm against the state-of-the-art methods.
Collapse
|
8
|
Yu X, Fernando B, Hartley R, Porikli F. Semantic Face Hallucination: Super-Resolving Very Low-Resolution Face Images with Supplementary Attributes. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2020; 42:2926-2943. [PMID: 31095477 DOI: 10.1109/tpami.2019.2916881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Given a tiny face image, existing face hallucination methods aim at super-resolving its high-resolution (HR) counterpart by learning a mapping from an exemplary dataset. Since a low-resolution (LR) input patch may correspond to many HR candidate patches, this ambiguity may lead to distorted HR facial details and wrong attributes such as gender reversal and rejuvenation. An LR input contains low-frequency facial components of its HR version while its residual face image, defined as the difference between the HR ground-truth and interpolated LR images, contains the missing high-frequency facial details. We demonstrate that supplementing residual images or feature maps with additional facial attribute information can significantly reduce the ambiguity in face super-resolution. To explore this idea, we develop an attribute-embedded upsampling network, which consists of an upsampling network and a discriminative network. The upsampling network is composed of an autoencoder with skip-connections, which incorporates facial attribute vectors into the residual features of LR inputs at the bottleneck of the autoencoder, and deconvolutional layers used for upsampling. The discriminative network is designed to examine whether super-resolved faces contain the desired attributes or not and then its loss is used for updating the upsampling network. In this manner, we can super-resolve tiny (16×16 pixels) unaligned face images with a large upscaling factor of 8× while reducing the uncertainty of one-to-many mappings remarkably. By conducting extensive evaluations on a large-scale dataset, we demonstrate that our method achieves superior face hallucination results and outperforms the state-of-the-art.
Collapse
|
9
|
Chen L, Pan J, Jiang J, Zhang J, Wu Y. Robust Face Super-Resolution via Position Relation Model Based on Global Face Context. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; PP:9002-9016. [PMID: 32941134 DOI: 10.1109/tip.2020.3023580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because Face Super-Resolution (FSR) tends to infer High-Resolution (HR) face image by breaking the given Low- Resolution (LR) image into individual patches and inferring the HR correspondence one patch by one separately, Super- Resolution (SR) of face images with serious degradation, especially with occlusion, is still a challenging problem of the computer vision field. To address this problem, we propose a patch-level face model for FSR, which we called the position relation model. This model consists of the mapping relationships in every face position to the rest of the face positions based on similarity. In other words, we build a constraint for each patch position via the relationship in this model from the global range of face. Once an individual input LR image patch is seriously deteriorated, the substitute patch in whole face range can be sought according to the relationship of the model at this position as the provider of the LR information. In this way, the lost facial structures can be compensated by knowledge located in remote pixels or structure information which leads to better high-resolution face images. The LR images with degradations, not only the serious low-quality degradation, e.g. noise, blur, but also the occlusions, can be effectively hallucinated into HR ones. Quantitative and qualitative evaluations on the public datasets demonstrate that the proposed algorithm performs favorably against state-of-theart methods.
Collapse
|
10
|
|
11
|
|
12
|
A New Integrated Approach Based on the Iterative Super-Resolution Algorithm and Expectation Maximization for Face Hallucination. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper proposed and verified a new integrated approach based on the iterative super-resolution algorithm and expectation-maximization for face hallucination, which is a process of converting a low-resolution face image to a high-resolution image. The current sparse representation for super resolving generic image patches is not suitable for global face images due to its lower accuracy and time-consumption. To solve this, in the new method, training global face sparse representation was used to reconstruct images with misalignment variations after the local geometric co-occurrence matrix. In the testing phase, we proposed a hybrid method, which is a combination of the sparse global representation and the local linear regression using the Expectation Maximization (EM) algorithm. Therefore, this work recovered the high-resolution image of a corresponding low-resolution image. Experimental validation suggested improvement of the overall accuracy of the proposed method with fast identification of high-resolution face images without misalignment.
Collapse
|
13
|
Shao WZ, Xu JJ, Chen L, Ge Q, Wang LQ, Bao BK, Li HB. On potentials of regularized Wasserstein generative adversarial networks for realistic hallucination of tiny faces. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.07.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
|
15
|
Jiang J, Yu Y, Tang S, Ma J, Aizawa A, Aizawa K. Context-Patch Face Hallucination Based on Thresholding Locality-Constrained Representation and Reproducing Learning. IEEE TRANSACTIONS ON CYBERNETICS 2018; 50:324-337. [PMID: 30334810 DOI: 10.1109/tcyb.2018.2868891] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Face hallucination is a technique that reconstructs high-resolution (HR) faces from low-resolution (LR) faces, by using the prior knowledge learned from HR/LR face pairs. Most state-of-the-arts leverage position-patch prior knowledge of the human face to estimate the optimal representation coefficients for each image patch. However, they focus only the position information and usually ignore the context information of the image patch. In addition, when they are confronted with misalignment or the small sample size (SSS) problem, the hallucination performance is very poor. To this end, this paper incorporates the contextual information of the image patch and proposes a powerful and efficient context-patch-based face hallucination approach, namely, thresholding locality-constrained representation and reproducing learning (TLcR-RL). Under the context-patch-based framework, we advance a thresholding-based representation method to enhance the reconstruction accuracy and reduce the computational complexity. To further improve the performance of the proposed algorithm, we propose a promotion strategy called reproducing learning. By adding the estimated HR face to the training set, which can simulate the case that the HR version of the input LR face is present in the training set, it thus iteratively enhances the final hallucination result. Experiments demonstrate that the proposed TLcR-RL method achieves a substantial increase in the hallucinated results, both subjectively and objectively. In addition, the proposed framework is more robust to face misalignment and the SSS problem, and its hallucinated HR face is still very good when the LR test face is from the real world. The MATLAB source code is available at https://github.com/junjun-jiang/TLcR-RL.
Collapse
|