1
|
Wang L, Wang Q, Wang X, Ma Y, Zhang L, Liu M. Triplet-constrained deep hashing for chest X-ray image retrieval in COVID-19 assessment. Neural Netw 2024; 173:106182. [PMID: 38387203 DOI: 10.1016/j.neunet.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Radiology images of the chest, such as computer tomography scans and X-rays, have been prominently used in computer-aided COVID-19 analysis. Learning-based radiology image retrieval has attracted increasing attention recently, which generally involves image feature extraction and finding matches in extensive image databases based on query images. Many deep hashing methods have been developed for chest radiology image search due to the high efficiency of retrieval using hash codes. However, they often overlook the complex triple associations between images; that is, images belonging to the same category tend to share similar characteristics and vice versa. To this end, we develop a triplet-constrained deep hashing (TCDH) framework for chest radiology image retrieval to facilitate automated analysis of COVID-19. The TCDH consists of two phases, including (a) feature extraction and (b) image retrieval. For feature extraction, we have introduced a triplet constraint and an image reconstruction task to enhance discriminative ability of learned features, and these features are then converted into binary hash codes to capture semantic information. Specifically, the triplet constraint is designed to pull closer samples within the same category and push apart samples from different categories. Additionally, an auxiliary image reconstruction task is employed during feature extraction to help effectively capture anatomical structures of images. For image retrieval, we utilize learned hash codes to conduct searches for medical images. Extensive experiments on 30,386 chest X-ray images demonstrate the superiority of the proposed method over several state-of-the-art approaches in automated image search. The code is now available online.
Collapse
Affiliation(s)
- Linmin Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Qianqian Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaochuan Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Yunling Ma
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Limei Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Xu J, Xie Q, Li J, Ma Y, Liu Y. Mixture of Experts Residual Learning for Hamming Hashing. Neural Process Lett 2023. [DOI: 10.1007/s11063-023-11251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
3
|
Peng L, Qian J, Xu Z, Xin Y, Guo L. Multi-Label Hashing for Dependency Relations Among Multiple Objectives. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:1759-1773. [PMID: 37028054 DOI: 10.1109/tip.2023.3251028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Learning hash functions have been widely applied for large-scale image retrieval. Existing methods usually use CNNs to process an entire image at once, which is efficient for single-label images but not for multi-label images. First, these methods cannot fully exploit independent features of different objects in one image, resulting in some small object features with important information being ignored. Second, the methods cannot capture different semantic information from dependency relations among objects. Third, the existing methods ignore the impacts of imbalance between hard and easy training pairs, resulting in suboptimal hash codes. To address these issues, we propose a novel deep hashing method, termed multi-label hashing for dependency relations among multiple objectives (DRMH). We first utilize an object detection network to extract object feature representations to avoid ignoring small object features and then fuse object visual features with position features and further capture dependency relations among objects using a self-attention mechanism. In addition, we design a weighted pairwise hash loss to solve the imbalance problem between hard and easy training pairs. Extensive experiments are conducted on multi-label datasets and zero-shot datasets, and the proposed DRMH outperforms many state-of-the-art hashing methods with respect to different evaluation metrics.
Collapse
|
4
|
Chen Y, Tang Y, Huang J, Xiong S. Multi-scale Triplet Hashing for Medical Image Retrieval. Comput Biol Med 2023; 155:106633. [PMID: 36827786 DOI: 10.1016/j.compbiomed.2023.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/12/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
For medical image retrieval task, deep hashing algorithms are widely applied in large-scale datasets for auxiliary diagnosis due to the retrieval efficiency advantage of hash codes. Most of which focus on features learning, whilst neglecting the discriminate area of medical images and hierarchical similarity for deep features and hash codes. In this paper, we tackle these dilemmas with a new Multi-scale Triplet Hashing (MTH) algorithm, which can leverage multi-scale information, convolutional self-attention and hierarchical similarity to learn effective hash codes simultaneously. The MTH algorithm first designs multi-scale DenseBlock module to learn multi-scale information of medical images. Meanwhile, a convolutional self-attention mechanism is developed to perform information interaction of the channel domain, which can capture the discriminate area of medical images effectively. On top of the two paths, a novel loss function is proposed to not only conserve the category-level information of deep features and the semantic information of hash codes in the learning process, but also capture the hierarchical similarity for deep features and hash codes. Extensive experiments on the Curated X-ray Dataset, Skin Cancer MNIST Dataset and COVID-19 Radiography Dataset illustrate that the MTH algorithm can further enhance the effect of medical retrieval compared to other state-of-the-art medical image retrieval algorithms.
Collapse
Affiliation(s)
- Yaxiong Chen
- School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China; Wuhan University of Technology Chongqing Research Institute, Chongqing 401120, China
| | - Yibo Tang
- School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China
| | - Jinghao Huang
- School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China
| | - Shengwu Xiong
- School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China.
| |
Collapse
|
5
|
Wang X, Zeng X. Deep consistency-preserving hash auto-encoders for neuroimage cross-modal retrieval. Sci Rep 2023; 13:2316. [PMID: 36759692 PMCID: PMC9911775 DOI: 10.1038/s41598-023-29320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Cross-modal hashing is an efficient method to embed high-dimensional heterogeneous modal feature descriptors into a consistency-preserving Hamming space with low-dimensional. Most existing cross-modal hashing methods have been able to bridge the heterogeneous modality gap, but there are still two challenges resulting in limited retrieval accuracy: (1) ignoring the continuous similarity of samples on manifold; (2) lack of discriminability of hash codes with the same semantics. To cope with these problems, we propose a Deep Consistency-Preserving Hash Auto-encoders model, called DCPHA, based on the multi-manifold property of the feature distribution. Specifically, DCPHA consists of a pair of asymmetric auto-encoders and two semantics-preserving attention branches working in the encoding and decoding stages, respectively. When the number of input medical image modalities is greater than 2, the encoder is a multiple pseudo-Siamese network designed to extract specific modality features of different medical image modalities. In addition, we define the continuous similarity of heterogeneous and homogeneous samples on Riemann manifold from the perspective of multiple sub-manifolds, respectively, and the two constraints, i.e., multi-semantic consistency and multi-manifold similarity-preserving, are embedded in the learning of hash codes to obtain high-quality hash codes with consistency-preserving. The extensive experiments show that the proposed DCPHA has the most stable and state-of-the-art performance. We make code and models publicly available: https://github.com/Socrates023/DCPHA .
Collapse
Affiliation(s)
- Xinyu Wang
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Xianhua Zeng
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| |
Collapse
|
6
|
Shi Y, You X, Zhao Y, Xu J, Ou W, Zheng F, Peng Q. PSIDP: Unsupervised deep hashing with pretrained semantic information distillation and preservation. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Yang W, Wang L, Cheng S. Deep parameter-free attention hashing for image retrieval. Sci Rep 2022; 12:7082. [PMID: 35490175 PMCID: PMC9056524 DOI: 10.1038/s41598-022-11217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
Deep hashing method is widely applied in the field of image retrieval because of its advantages of low storage consumption and fast retrieval speed. There is a defect of insufficiency feature extraction when existing deep hashing method uses the convolutional neural network (CNN) to extract images semantic features. Some studies propose to add channel-based or spatial-based attention modules. However, embedding these modules into the network can increase the complexity of model and lead to over fitting in the training process. In this study, a novel deep parameter-free attention hashing (DPFAH) is proposed to solve these problems, that designs a parameter-free attention (PFA) module in ResNet18 network. PFA is a lightweight module that defines an energy function to measure the importance of each neuron and infers 3-D attention weights for feature map in a layer. A fast closed-form solution for this energy function proves that the PFA module does not add any parameters to the network. Otherwise, this paper designs a novel hashing framework that includes the hash codes learning branch and the classification branch to explore more label information. The like-binary codes are constrained by a regulation term to reduce the quantization error in the continuous relaxation. Experiments on CIFAR-10, NUS-WIDE and Imagenet-100 show that DPFAH method achieves better performance.
Collapse
Affiliation(s)
- Wenjing Yang
- College of Software, Xinjiang University, Urumqi, 830046, China
| | - Liejun Wang
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.
| | - Shuli Cheng
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
8
|
|
9
|
Yu Z, Wu S, Dou Z, Bakker EM. Deep hashing with self-supervised asymmetric semantic excavation and margin-scalable constraint. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.01.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Shi Y, Nie X, Liu X, Zou L, Yin Y. Supervised Adaptive Similarity Matrix Hashing. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:2755-2766. [PMID: 35320101 DOI: 10.1109/tip.2022.3158092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Compact hash codes can facilitate large-scale multimedia retrieval, significantly reducing storage and computation. Most hashing methods learn hash functions based on the data similarity matrix, which is predefined by supervised labels or a distance metric type. However, this predefined similarity matrix cannot accurately reflect the real similarity relationship among images, which results in poor retrieval performance of hashing methods, especially in multi-label datasets and zero-shot datasets that are highly dependent on similarity relationships. Toward this end, this study proposes a new supervised hashing method called supervised adaptive similarity matrix hashing (SASH) via feature-label space consistency. SASH not only learns the similarity matrix adaptively, but also extracts the label correlations by maintaining consistency between the feature and the label space. This correlation information is then used to optimize the similarity matrix. The experiments on three large normal benchmark datasets (including two multi-label datasets) and three large zero-shot benchmark datasets show that SASH has an excellent performance compared with several state-of-the-art techniques.
Collapse
|
11
|
|
12
|
Chen ZD, Luo X, Wang Y, Guo S, Xu XS. Fine-Grained Hashing With Double Filtering. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:1671-1683. [PMID: 35085079 DOI: 10.1109/tip.2022.3145159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fine-grained hashing is a new topic in the field of hashing-based retrieval and has not been well explored up to now. In this paper, we raise three key issues that fine-grained hashing should address simultaneously, i.e., fine-grained feature extraction, feature refinement as well as a well-designed loss function. In order to address these issues, we propose a novel Fine-graIned haSHing method with a double-filtering mechanism and a proxy-based loss function, FISH for short. Specifically, the double-filtering mechanism consists of two modules, i.e., Space Filtering module and Feature Filtering module, which address the fine-grained feature extraction and feature refinement issues, respectively. Thereinto, the Space Filtering module is designed to highlight the critical regions in images and help the model to capture more subtle and discriminative details; the Feature Filtering module is the key of FISH and aims to further refine extracted features by supervised re- weighting and enhancing. Moreover, the proxy-based loss is adopted to train the model by preserving similarity relationships between data instances and proxy-vectors of each class rather than other data instances, further making FISH much efficient and effective. Experimental results demonstrate that FISH achieves much better retrieval performance compared with state-of-the-art fine-grained hashing methods, and converges very fast. The source code is publicly available: https://github.com/chenzhenduo/FISH.
Collapse
|
13
|
Boundary-Aware Hashing for Hamming Space Retrieval. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hamming space retrieval is a hot area of research in deep hashing because it is effective for large-scale image retrieval. Existing hashing algorithms have not fully used the absolute boundary to discriminate the data inside and outside the Hamming ball, and the performance is not satisfying. In this paper, a boundary-aware contrastive loss is designed. It involves an exponential function with absolute boundary (i.e., Hamming radius) information for dissimilar pairs and a logarithmic function to encourage small distance for similar pairs. It achieves a push that is bigger than the pull inside the Hamming ball, and the pull is bigger than the push outside the ball. Furthermore, a novel Boundary-Aware Hashing (BAH) architecture is proposed. It discriminatively penalizes the dissimilar data inside and outside the Hamming ball. BAH enables the influence of extremely imbalanced data to be reduced without up-weight to similar pairs or other optimization strategies because its exponential function rapidly converges outside the absolute boundary, making a huge contrast difference between the gradients of the logarithmic and exponential functions. Extensive experiments conducted on four benchmark datasets show that the proposed BAH obtains higher performance for different code lengths, and it has the advantage of handling extremely imbalanced data.
Collapse
|
14
|
Chen Y, Lu X. Deep Category-Level and Regularized Hashing With Global Semantic Similarity Learning. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:6240-6252. [PMID: 32112686 DOI: 10.1109/tcyb.2020.2964993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hashing technique has been extensively used in large-scale image retrieval applications due to its low storage and fast computing speed. Most existing deep hashing approaches cannot fully consider the global semantic similarity and category-level semantic information, which result in the insufficient utilization of the global semantic similarity for hash codes learning and the semantic information loss of hash codes. To tackle these issues, we propose a novel deep hashing approach with triplet labels, namely, deep category-level and regularized hashing (DCRH), to leverage the global semantic similarity of deep feature and category-level semantic information to enhance the semantic similarity of hash codes. There are four contributions in this article. First, we design a novel global semantic similarity constraint about the deep feature to make the anchor deep feature more similar to the positive deep feature than to the negative deep feature. Second, we leverage label information to enhance category-level semantics of hash codes for hash codes learning. Third, we develop a new triplet construction module to select good image triplets for effective hash functions learning. Finally, we propose a new triplet regularized loss (Reg-L) term, which can force binary-like codes to approximate binary codes and eventually minimize the information loss between binary-like codes and binary codes. Extensive experimental results in three image retrieval benchmark datasets show that the proposed DCRH approach achieves superior performance over other state-of-the-art hashing approaches.
Collapse
|
15
|
Yang Z, Yang L, Huang W, Sun L, Long J. Enhanced Deep Discrete Hashing with semantic-visual similarity for image retrieval. Inf Process Manag 2021. [DOI: 10.1016/j.ipm.2021.102648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Abstract
Recently, deep learning to hash has extensively been applied to image retrieval, due to its low storage cost and fast query speed. However, there is a defect of insufficiency and imbalance when existing hashing methods utilize the convolutional neural network (CNN) to extract image semantic features and the extracted features do not include contextual information and lack relevance among features. Furthermore, the process of the relaxation hash code can lead to an inevitable quantization error. In order to solve these problems, this paper proposes deep hash with improved dual attention for image retrieval (DHIDA), which chiefly has the following contents: (1) this paper introduces the improved dual attention mechanism (IDA) based on the ResNet18 pre-trained module to extract the feature information of the image, which consists of the position attention module and the channel attention module; (2) when calculating the spatial attention matrix and channel attention matrix, the average value and maximum value of the column of the feature map matrix are integrated in order to promote the feature representation ability and fully leverage the features of each position; and (3) to reduce quantization error, this study designs a new piecewise function to directly guide the discrete binary code. Experiments on CIFAR-10, NUS-WIDE and ImageNet-100 show that the DHIDA algorithm achieves better performance.
Collapse
|
17
|
Ma L, Li X, Shi Y, Huang L, Huang Z, Wu J. Learning discrete class-specific prototypes for deep semantic hashing. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.02.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Gui J, Cao Y, Qi H, Li K, Ye J, Liu C, Xu X. Fast kNN Search in Weighted Hamming Space With Multiple Tables. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:3985-3994. [PMID: 33780338 DOI: 10.1109/tip.2021.3066907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hashing methods have been widely used in Approximate Nearest Neighbor (ANN) search for big data due to low storage requirements and high search efficiency. These methods usually map the ANN search for big data into the k -Nearest Neighbor ( k NN) search problem in Hamming space. However, Hamming distance calculation ignores the bit-level distinction, leading to confusing ranking. In order to further increase search accuracy, various bit-level weights have been proposed to rank hash codes in weighted Hamming space. Nevertheless, existing ranking methods in weighted Hamming space are almost based on exhaustive linear scan, which is time consuming and not suitable for large datasets. Although Multi-Index hashing that is a sub-linear search method has been proposed, it relies on Hamming distance rather than weighted Hamming distance. To address this issue, we propose an exact k NN search approach with Multiple Tables in Weighted Hamming space named WHMT, in which the distribution of bit-level weights is incorporated into the multi-index building. By WHMT, we can get the optimal candidate set for exact k NN search in weighted Hamming space without exhaustive linear scan. Experimental results show that WHMT can achieve dramatic speedup up to 69.8 times over linear scan baseline without losing accuracy in weighted Hamming space.
Collapse
|
19
|
Yang Z, Yang L, Raymond OI, Zhu L, Huang W, Liao Z, Long J. NSDH: A Nonlinear Supervised Discrete Hashing framework for large-scale cross-modal retrieval. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.106818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Fang Y, Li B, Li X, Ren Y. Unsupervised cross-modal similarity via Latent Structure Discrete Hashing Factorization. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.106857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
|
22
|
Feng H, Wang N, Tang J, Chen J, Chen F. Multi-granularity feature learning network for deep hashing. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Scalable deep asymmetric hashing via unequal-dimensional embeddings for image similarity search. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Liu H, Wang R, Shan S, Chen X. Learning Multifunctional Binary Codes for Personalized Image Retrieval. Int J Comput Vis 2020. [DOI: 10.1007/s11263-020-01315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
|
26
|
Lu X, Chen Y, Li X. Siamese Dilated Inception Hashing With Intra-Group Correlation Enhancement for Image Retrieval. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:3032-3046. [PMID: 31514159 DOI: 10.1109/tnnls.2019.2935118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For large-scale image retrieval, hashing has been extensively explored in approximate nearest neighbor search methods due to its low storage and high computational efficiency. With the development of deep learning, deep hashing methods have made great progress in image retrieval. Most existing deep hashing methods cannot fully consider the intra-group correlation of hash codes, which leads to the correlation decrease problem of similar hash codes and ultimately affects the retrieval results. In this article, we propose an end-to-end siamese dilated inception hashing (SDIH) method that takes full advantage of multi-scale contextual information and category-level semantics to enhance the intra-group correlation of hash codes for hash codes learning. First, a novel siamese inception dilated network architecture is presented to generate hash codes with the intra-group correlation enhancement by exploiting multi-scale contextual information and category-level semantics simultaneously. Second, we propose a new regularized term, which can force the continuous values to approximate discrete values in hash codes learning and eventually reduces the discrepancy between the Hamming distance and the Euclidean distance. Finally, experimental results in five public data sets demonstrate that SDIH can outperform other state-of-the-art hashing algorithms.
Collapse
|
27
|
Ng WWY, Jiang X, Tian X, Pelillo M, Wang H, Kwong S. Incremental hashing with sample selection using dominant sets. INT J MACH LEARN CYB 2020. [DOI: 10.1007/s13042-020-01145-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Li Z, Tang J, Zhang L, Yang J. Weakly-supervised Semantic Guided Hashing for Social Image Retrieval. Int J Comput Vis 2020. [DOI: 10.1007/s11263-020-01331-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
|
30
|
|
31
|
Abstract
With the development of multimedia technology, the secure image retrieval scheme has become a hot research topic. However, how to further improve algorithm performance in the ciphertext needs to be further explored. In this paper, we propose a secure image retrieval scheme based on a deep hash algorithm for index encryption and an improved 4-Dimensional(4-D)hyperchaotic system. The main contributions of this paper are as follows: (1) A novel secure retrieval scheme is proposed to control data transmission. (2) An improved 4-D hyperchaotic system is proposed to preserve privacy. (3) We propose an improved deep pairwise-supervised hashing (DPSH) algorithm and secure kNN to perform index encryption and propose an improved loss function to train the network model. (4) A secure access control scheme is shown, which aims to achieve secure access for users. The experimental results show that the proposed scheme has better retrieval efficiency and better security.
Collapse
|