1
|
Gao Y, Cai Z, Xie X, Deng J, Dou Z, Ma X. Sparse representation for restoring images by exploiting topological structure of graph of patches. IET IMAGE PROCESSING 2025; 19. [DOI: 10.1049/ipr2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/16/2025] [Indexed: 03/02/2025]
Abstract
AbstractImage restoration poses a significant challenge, aiming to accurately recover damaged images by delving into their inherent characteristics. Various models and algorithms have been explored by researchers to address different types of image distortions, including sparse representation, grouped sparse representation, and low‐rank self‐representation. The grouped sparse representation algorithm leverages the prior knowledge of non‐local self‐similarity and imposes sparsity constraints to maintain texture information within images. To further exploit the intrinsic properties of images, this study proposes a novel low‐rank representation‐guided grouped sparse representation image restoration algorithm. This algorithm integrates self‐representation models and trace optimization techniques to effectively preserve the original image structure, thereby enhancing image restoration performance while retaining the original texture and structural information. The proposed method was evaluated on image denoising and deblocking tasks across several datasets, demonstrating promising results.
Collapse
Affiliation(s)
- Yaxian Gao
- School of Information Engineering Shaanxi Xueqian Normal University Xi'an Shaanxi China
| | - Zhaoyuan Cai
- School of Computer Science and Technology Xidian University Xi'an Shaanxi China
| | - Xianghua Xie
- Department of Computer Science Swansea University Swansea UK
| | - Jingjing Deng
- Department of Computer Science Durham University Durham UK
| | - Zengfa Dou
- School of Information Engineering Shaanxi Xueqian Normal University Xi'an Shaanxi China
| | - Xiaoke Ma
- School of Computer Science and Technology Xidian University Xi'an Shaanxi China
| |
Collapse
|
2
|
Cai Z, Xie X, Deng J, Dou Z, Tong B, Ma X. Image restoration with group sparse representation and low‐rank group residual learning. IET IMAGE PROCESSING 2024; 18:741-760. [DOI: 10.1049/ipr2.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/01/2023] [Indexed: 01/11/2025]
Abstract
AbstractImage restoration, as a fundamental research topic of image processing, is to reconstruct the original image from degraded signal using the prior knowledge of image. Group sparse representation (GSR) is powerful for image restoration; it however often leads to undesirable sparse solutions in practice. In order to improve the quality of image restoration based on GSR, the sparsity residual model expects the representation learned from degraded images to be as close as possible to the true representation. In this article, a group residual learning based on low‐rank self‐representation is proposed to automatically estimate the true group sparse representation. It makes full use of the relation among patches and explores the subgroup structures within the same group, which makes the sparse residual model have better interpretation furthermore, results in high‐quality restored images. Extensive experimental results on two typical image restoration tasks (image denoising and deblocking) demonstrate that the proposed algorithm outperforms many other popular or state‐of‐the‐art image restoration methods.
Collapse
Affiliation(s)
- Zhaoyuan Cai
- School of Computer Science and Technology Xidian University Xi'an Shaanxi China
| | - Xianghua Xie
- Department of Computer Science Swansea University Swansea UK
| | - Jingjing Deng
- Department of Computer Science Durham University Durham UK
| | - Zengfa Dou
- 20th Research Institute China Electronic Science and Technology Group Co., Ltd Xi'an Shaanxi China
| | - Bo Tong
- Xi'an Thermal Power Research Institute Co., Ltd Xi'an China
| | - Xiaoke Ma
- School of Computer Science and Technology Xidian University Xi'an Shaanxi China
| |
Collapse
|
3
|
Zha Z, Yuan X, Wen B, Zhang J, Zhu C. Nonconvex Structural Sparsity Residual Constraint for Image Restoration. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:12440-12453. [PMID: 34161250 DOI: 10.1109/tcyb.2021.3084931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article proposes a novel nonconvex structural sparsity residual constraint (NSSRC) model for image restoration, which integrates structural sparse representation (SSR) with nonconvex sparsity residual constraint (NC-SRC). Although SSR itself is powerful for image restoration by combining the local sparsity and nonlocal self-similarity in natural images, in this work, we explicitly incorporate the novel NC-SRC prior into SSR. Our proposed approach provides more effective sparse modeling for natural images by applying a more flexible sparse representation scheme, leading to high-quality restored images. Moreover, an alternating minimizing framework is developed to solve the proposed NSSRC-based image restoration problems. Extensive experimental results on image denoising and image deblocking validate that the proposed NSSRC achieves better results than many popular or state-of-the-art methods over several publicly available datasets.
Collapse
|
4
|
Zha Z, Wen B, Yuan X, Zhou J, Zhu C, Kot AC. A Hybrid Structural Sparsification Error Model for Image Restoration. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:4451-4465. [PMID: 33625989 DOI: 10.1109/tnnls.2021.3057439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent works on structural sparse representation (SSR), which exploit image nonlocal self-similarity (NSS) prior by grouping similar patches for processing, have demonstrated promising performance in various image restoration applications. However, conventional SSR-based image restoration methods directly fit the dictionaries or transforms to the internal (corrupted) image data. The trained internal models inevitably suffer from overfitting to data corruption, thus generating the degraded restoration results. In this article, we propose a novel hybrid structural sparsification error (HSSE) model for image restoration, which jointly exploits image NSS prior using both the internal and external image data that provide complementary information. Furthermore, we propose a general image restoration scheme based on the HSSE model, and an alternating minimization algorithm for a range of image restoration applications, including image inpainting, image compressive sensing and image deblocking. Extensive experiments are conducted to demonstrate that the proposed HSSE-based scheme outperforms many popular or state-of-the-art image restoration methods in terms of both objective metrics and visual perception.
Collapse
|
5
|
Niu Y, Liu C, Ma M, Li F, Chen Z, Shi G. NL-CALIC Soft Decoding Using Strict Constrained Wide-Activated Recurrent Residual Network. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:1243-1257. [PMID: 34951841 DOI: 10.1109/tip.2021.3136608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we propose a normalized Tanh activate strategy and a lightweight wide-activate recurrent structure to solve three key challenges of the soft-decoding of near-lossless codes: 1. How to add an effective strict constrained peak absolute error (PAE) boundary to the network; 2. An end-to-end solution that is suitable for different quantization steps (compression ratios). 3. Simple structure that favors the GPU and FPGA implementation. To this end, we propose a Wide-activated Recurrent structure with a normalized Tanh activate strategy for Soft-Decoding (WRSD). Experiments demonstrate the effectiveness of the proposed WRSD technique that WRSD outperforms better than the state-of-the-art soft decoders with less than 5% number of parameters, and every computation node of WRSD requires less than 64KB storage for the parameters which can be easily cached by most of the current consumer-level GPUs. Source code is available at https://github.com/dota-109/WRSD.
Collapse
|
6
|
|
7
|
Zha Z, Wen B, Yuan X, Zhou JT, Zhou J, Zhu C. Triply Complementary Priors for Image Restoration. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:5819-5834. [PMID: 34133279 DOI: 10.1109/tip.2021.3086049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent works that utilized deep models have achieved superior results in various image restoration (IR) applications. Such approach is typically supervised, which requires a corpus of training images with distributions similar to the images to be recovered. On the other hand, the shallow methods, which are usually unsupervised remain promising performance in many inverse problems, e.g., image deblurring and image compressive sensing (CS), as they can effectively leverage nonlocal self-similarity priors of natural images. However, most of such methods are patch-based leading to the restored images with various artifacts due to naive patch aggregation in addition to the slow speed. Using either approach alone usually limits performance and generalizability in IR tasks. In this paper, we propose a joint low-rank and deep (LRD) image model, which contains a pair of triply complementary priors, namely, internal and external, shallow and deep, and non-local and local priors. We then propose a novel hybrid plug-and-play (H-PnP) framework based on the LRD model for IR. Following this, a simple yet effective algorithm is developed to solve the proposed H-PnP based IR problems. Extensive experimental results on several representative IR tasks, including image deblurring, image CS and image deblocking, demonstrate that the proposed H-PnP algorithm achieves favorable performance compared to many popular or state-of-the-art IR methods in terms of both objective and visual perception.
Collapse
|
8
|
Zha Z, Wen B, Yuan X, Zhou J, Zhu C. Image Restoration via Reconciliation of Group Sparsity and Low-Rank Models. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:5223-5238. [PMID: 34010133 DOI: 10.1109/tip.2021.3078329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Image nonlocal self-similarity (NSS) property has been widely exploited via various sparsity models such as joint sparsity (JS) and group sparse coding (GSC). However, the existing NSS-based sparsity models are either too restrictive, e.g., JS enforces the sparse codes to share the same support, or too general, e.g., GSC imposes only plain sparsity on the group coefficients, which limit their effectiveness for modeling real images. In this paper, we propose a novel NSS-based sparsity model, namely, low-rank regularized group sparse coding (LR-GSC), to bridge the gap between the popular GSC and JS. The proposed LR-GSC model simultaneously exploits the sparsity and low-rankness of the dictionary-domain coefficients for each group of similar patches. An alternating minimization with an adaptive adjusted parameter strategy is developed to solve the proposed optimization problem for different image restoration tasks, including image denoising, image deblocking, image inpainting, and image compressive sensing. Extensive experimental results demonstrate that the proposed LR-GSC algorithm outperforms many popular or state-of-the-art methods in terms of objective and perceptual metrics.
Collapse
|
9
|
Zha Z, Yuan X, Zhou J, Zhu C, Wen B. Image Restoration via Simultaneous Nonlocal Self-Similarity Priors. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; PP:8561-8576. [PMID: 32822296 DOI: 10.1109/tip.2020.3015545] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Through exploiting the image nonlocal self-similarity (NSS) prior by clustering similar patches to construct patch groups, recent studies have revealed that structural sparse representation (SSR) models can achieve promising performance in various image restoration tasks. However, most existing SSR methods only exploit the NSS prior from the input degraded (internal) image, and few methods utilize the NSS prior from external clean image corpus; how to jointly exploit the NSS priors of internal image and external clean image corpus is still an open problem. In this paper, we propose a novel approach for image restoration by simultaneously considering internal and external nonlocal self-similarity (SNSS) priors that offer mutually complementary information. Specifically, we first group nonlocal similar patches from images of a training corpus. Then a group-based Gaussian mixture model (GMM) learning algorithm is applied to learn an external NSS prior. We exploit the SSR model by integrating the NSS priors of both internal and external image data. An alternating minimization with an adaptive parameter adjusting strategy is developed to solve the proposed SNSS-based image restoration problems, which makes the entire algorithm more stable and practical. Experimental results on three image restoration applications, namely image denoising, deblocking and deblurring, demonstrate that the proposed SNSS produces superior results compared to many popular or state-of-the-art methods in both objective and perceptual quality measurements.
Collapse
|
10
|
Zha Z, Yuan X, Wen B, Zhou J, Zhang J, Zhu C. From Rank Estimation to Rank Approximation: Rank Residual Constraint for Image Restoration. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 29:3254-3269. [PMID: 31841410 DOI: 10.1109/tip.2019.2958309] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this paper, we propose a novel approach for the rank minimization problem, termed rank residual constraint (RRC). Different from existing low-rank based approaches, such as the well-known nuclear norm minimization (NNM) and the weighted nuclear norm minimization (WNNM), which estimate the underlying low-rank matrix directly from the corrupted observation, we progressively approximate (approach) the underlying low-rank matrix via minimizing the rank residual. Through integrating the image nonlocal self-similarity (NSS) prior with the proposed RRC model, we apply it to image restoration tasks, including image denoising and image compression artifacts reduction. Toward this end, we first obtain a good reference of the original image groups by using the image NSS prior, and then the rank residual of the image groups between this reference and the degraded image is minimized to achieve a better estimate to the desired image. In this manner, both the reference and the estimated image in each iteration are improved gradually and jointly. Based on the group-based sparse representation model, we further provide a theoretical analysis on the feasibility of the proposed RRC model. Experimental results demonstrate that the proposed RRC model outperforms many state-of-the-art schemes in both the objective and perceptual qualities.
Collapse
|
11
|
Evaluation of Classical Operators and Fuzzy Logic Algorithms for Edge Detection of Panels at Exterior Cladding of Buildings. BUILDINGS 2019. [DOI: 10.3390/buildings9020040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The automated process of construction defect detection using non-contact methods provides vital information for quality control and updating building information modelling. The external cladding in modular construction should be regularly controlled in terms of the quality of panels and proper installation because its appearance is very important for clients. However, there are limited computational methods for examining the installation issues of external cladding remotely in an automated manner. These issues could be the incorrect sitting of a panel, unequal joints in an elevation, scratches or cracks on the face of a panel or dimensions of different elements of external cladding. This paper aims to present seven algorithms to detect panel edges and statistically compare their performance through application on two scenarios of buildings in construction sites. Two different scenarios are selected, where the building façades are available to the public, and a sample of 100 images is taken using a state-of-the-art 3D camera for edge detection analysis. The experimentation results are validated by using a series of computational error and accuracy analyses and statistical methods including Mean Square Error, Peak Signal to Noise Ratio and Structural Similarity Index. The performance of an image processing algorithm depends on the quality of images and the algorithm utilised. The results show better performance of the fuzzy logic algorithm because it detects clear edges for installed panels. The applications of classical operators including Sobel, Canny, LoG, Prewitt and Roberts algorithms give similar results and show similarities in terms of the average of errors and accuracy. In addition, the results show that the minor difference of the average of the error and accuracy indices for Sobel, Canny, LoG, Prewitt and Roberts methods between both scenarios are not statistically significant, while the difference in the average of the error and accuracy indices for RGB-Sobel and Fuzzy methods between both scenarios are statistically significant. The accuracy of the algorithms can be improved by removing unwanted items such as vegetation and clouds in the sky. The evaluated algorithms assist practitioners to analyse their images collected day to day from construction sites, and to update building information modelling and the project digital drawings. Future work may need to focus on the combination of the evaluated algorithms using new data sets including colour edge detection for automatic defect identification using RGB and 360-degree images.
Collapse
|