1
|
Chen Y, Sun Z, Yan C, Zhao M. Edge-guided feature fusion network for RGB-T salient object detection. Front Neurorobot 2024; 18:1489658. [PMID: 39742117 PMCID: PMC11685216 DOI: 10.3389/fnbot.2024.1489658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction RGB-T Salient Object Detection (SOD) aims to accurately segment salient regions in both visible light and thermal infrared images. However, many existing methods overlook the critical complementarity between these modalities, which can enhance detection accuracy. Methods We propose the Edge-Guided Feature Fusion Network (EGFF-Net), which consists of cross-modal feature extraction, edge-guided feature fusion, and salience map prediction. Firstly, the cross-modal feature extraction module captures and aggregates united and intersecting information in each local region of RGB and thermal images. Then, the edge-guided feature fusion module enhances the edge features of salient regions, considering that edge information is very helpful in refining significant area details. Moreover, a layer-by-layer decoding structure integrates multi-level features and generates the prediction of salience maps. Results We conduct extensive experiments on three benchmark datasets and compare EGFF-Net with state-of-the-art methods. Our approach achieves superior performance, demonstrating the effectiveness of the proposed modules in improving both detection accuracy and boundary refinement. Discussion The results highlight the importance of integrating cross-modal information and edge-guided fusion in RGB-T SOD. Our method outperforms existing techniques and provides a robust framework for future developments in multi-modal saliency detection.
Collapse
Affiliation(s)
| | | | | | - Ming Zhao
- Department of Information Engineering, Shanghai Maritime University, Shanghai, China
| |
Collapse
|
2
|
Jiao S, Goel V, Navasardyan S, Yang Z, Khachatryan L, Yang Y, Wei Y, Zhao Y, Shi H. Collaborative Content-Dependent Modeling: A Return to the Roots of Salient Object Detection. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:4237-4246. [PMID: 37440395 DOI: 10.1109/tip.2023.3293759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Salient object detection (SOD) aims to identify the most visually distinctive object(s) from each given image. Most recent progresses focus on either adding elaborative connections among different convolution blocks or introducing boundary-aware supervision to help achieve better segmentation, which is actually moving away from the essence of SOD, i.e., distinctiveness/salience. This paper goes back to the roots of SOD and investigates the principles of how to identify distinctive object(s) in a more effective and efficient way. Intuitively, the salience of one object should largely depend on its global context within the input image. Based on this, we devise a clean yet effective architecture for SOD, named Collaborative Content-Dependent Networks (CCD-Net). In detail, we propose a collaborative content-dependent head whose parameters are conditioned on the input image's global context information. Within the content-dependent head, a hand-crafted multi-scale (HMS) module and a self-induced (SI) module are carefully designed to collaboratively generate content-aware convolution kernels for prediction. Benefited from the content-dependent head, CCD-Net is capable of leveraging global context to detect distinctive object(s) while keeping a simple encoder-decoder design. Extensive experimental results demonstrate that our CCD-Net achieves state-of-the-art results on various benchmarks. Our architecture is simple and intuitive compared to previous solutions, resulting in competitive characteristics with respect to model complexity, operating efficiency, and segmentation accuracy.
Collapse
|
3
|
Cong R, Yang N, Li C, Fu H, Zhao Y, Huang Q, Kwong S. Global-and-Local Collaborative Learning for Co-Salient Object Detection. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:1920-1931. [PMID: 35867373 DOI: 10.1109/tcyb.2022.3169431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The goal of co-salient object detection (CoSOD) is to discover salient objects that commonly appear in a query group containing two or more relevant images. Therefore, how to effectively extract interimage correspondence is crucial for the CoSOD task. In this article, we propose a global-and-local collaborative learning (GLNet) architecture, which includes a global correspondence modeling (GCM) and a local correspondence modeling (LCM) to capture the comprehensive interimage corresponding relationship among different images from the global and local perspectives. First, we treat different images as different time slices and use 3-D convolution to integrate all intrafeatures intuitively, which can more fully extract the global group semantics. Second, we design a pairwise correlation transformation (PCT) to explore similarity correspondence between pairwise images and combine the multiple local pairwise correspondences to generate the local interimage relationship. Third, the interimage relationships of the GCM and LCM are integrated through a global-and-local correspondence aggregation (GLA) module to explore more comprehensive interimage collaboration cues. Finally, the intra and inter features are adaptively integrated by an intra-and-inter weighting fusion (AEWF) module to learn co-saliency features and predict the co-saliency map. The proposed GLNet is evaluated on three prevailing CoSOD benchmark datasets, demonstrating that our model trained on a small dataset (about 3k images) still outperforms 11 state-of-the-art competitors trained on some large datasets (about 8k-200k images).
Collapse
|
4
|
Song Y, Tang H, Zhao M, Sebe N, Wang W. Quasi-Equilibrium Feature Pyramid Network for Salient Object Detection. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:7144-7153. [PMID: 36355731 DOI: 10.1109/tip.2022.3220058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Modern saliency detection models are based on the encoder-decoder framework and they use different strategies to fuse the multi-level features between the encoder and decoder to boost representation power. Motivated by recent work in implicit modelling, we propose to introduce an implicit function to simulate the equilibrium state of the feature pyramid at infinite depths. We question the existence of the ideal equilibrium and thus propose a quasi-equilibrium model by taking the first-order derivative into the black-box root solver using Taylor expansion. It models more realistic convergence states and significantly improves the network performance. We also propose a differentiable edge extractor that directly extracts edges from the saliency masks. By optimizing the extracted edges, the generated saliency masks are naturally optimized on contour constraints and the non-deterministic predictions are removed. We evaluate the proposed methodology on five public datasets and extensive experiments show that our method achieves new state-of-the-art performances on six metrics across datasets.
Collapse
|
5
|
Fan DP, Li T, Lin Z, Ji GP, Zhang D, Cheng MM, Fu H, Shen J. Re-Thinking Co-Salient Object Detection. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:4339-4354. [PMID: 33600309 DOI: 10.1109/tpami.2021.3060412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article, we conduct a comprehensive study on the co-salient object detection (CoSOD) problem for images. CoSOD is an emerging and rapidly growing extension of salient object detection (SOD), which aims to detect the co-occurring salient objects in a group of images. However, existing CoSOD datasets often have a serious data bias, assuming that each group of images contains salient objects of similar visual appearances. This bias can lead to the ideal settings and effectiveness of models trained on existing datasets, being impaired in real-life situations, where similarities are usually semantic or conceptual. To tackle this issue, we first introduce a new benchmark, called CoSOD3k in the wild, which requires a large amount of semantic context, making it more challenging than existing CoSOD datasets. Our CoSOD3k consists of 3,316 high-quality, elaborately selected images divided into 160 groups with hierarchical annotations. The images span a wide range of categories, shapes, object sizes, and backgrounds. Second, we integrate the existing SOD techniques to build a unified, trainable CoSOD framework, which is long overdue in this field. Specifically, we propose a novel CoEG-Net that augments our prior model EGNet with a co-attention projection strategy to enable fast common information learning. CoEG-Net fully leverages previous large-scale SOD datasets and significantly improves the model scalability and stability. Third, we comprehensively summarize 40 cutting-edge algorithms, benchmarking 18 of them over three challenging CoSOD datasets (iCoSeg, CoSal2015, and our CoSOD3k), and reporting more detailed (i.e., group-level) performance analysis. Finally, we discuss the challenges and future works of CoSOD. We hope that our study will give a strong boost to growth in the CoSOD community. The benchmark toolbox and results are available on our project page at https://dpfan.net/CoSOD3K.
Collapse
|
6
|
Ji W, Yan G, Li J, Piao Y, Yao S, Zhang M, Cheng L, Lu H. DMRA: Depth-Induced Multi-Scale Recurrent Attention Network for RGB-D Saliency Detection. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:2321-2336. [PMID: 35245195 DOI: 10.1109/tip.2022.3154931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we propose a novel depth-induced multi-scale recurrent attention network for RGB-D saliency detection, named as DMRA. It achieves dramatic performance especially in complex scenarios. There are four main contributions of our network that are experimentally demonstrated to have significant practical merits. First, we design an effective depth refinement block using residual connections to fully extract and fuse cross-modal complementary cues from RGB and depth streams. Second, depth cues with abundant spatial information are innovatively combined with multi-scale contextual features for accurately locating salient objects. Third, a novel recurrent attention module inspired by Internal Generative Mechanism of human brain is designed to generate more accurate saliency results via comprehensively learning the internal semantic relation of the fused feature and progressively optimizing local details with memory-oriented scene understanding. Finally, a cascaded hierarchical feature fusion strategy is designed to promote efficient information interaction of multi-level contextual features and further improve the contextual representability of model. In addition, we introduce a new real-life RGB-D saliency dataset containing a variety of complex scenarios that has been widely used as a benchmark dataset in recent RGB-D saliency detection research. Extensive empirical experiments demonstrate that our method can accurately identify salient objects and achieve appealing performance against 18 state-of-the-art RGB-D saliency models on nine benchmark datasets.
Collapse
|
7
|
Predicting atypical visual saliency for autism spectrum disorder via scale-adaptive inception module and discriminative region enhancement loss. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.06.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Zou W, Zhuo S, Tang Y, Tian S, Li X, Xu C. STA3D: Spatiotemporally attentive 3D network for video saliency prediction. Pattern Recognit Lett 2021. [DOI: 10.1016/j.patrec.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Stereo superpixel: An iterative framework based on parallax consistency and collaborative optimization. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2020.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Fu K, Fan DP, Ji GP, Zhao Q, Shen J, Zhu C. Siamese Network for RGB-D Salient Object Detection and Beyond. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2021; PP:1-1. [PMID: 33861691 DOI: 10.1109/tpami.2021.3073689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Existing RGB-D salient object detection (SOD) models usually treat RGB and depth as independent information and design separate networks for feature extraction from each. Such schemes can easily be constrained by a limited amount of training data or over-reliance on an elaborately designed training process. Inspired by the observation that RGB and depth modalities actually present certain commonality in distinguishing salient objects, a novel joint learning and densely cooperative fusion (JL-DCF) architecture is designed to learn from both RGB and depth inputs through a shared network backbone, known as the Siamese architecture. In this paper, we propose two effective components: joint learning (JL), and densely cooperative fusion (DCF). The JL module provides robust saliency feature learning by exploiting cross-modal commonality via a Siamese network, while the DCF module is introduced for complementary feature discovery. Comprehensive experiments using 5 popular metrics show that the designed framework yields a robust RGB-D saliency detector with good generalization. As a result, JL-DCF significantly advances the SOTAs by an average of ~2.0% (F-measure) across 7 challenging datasets. In addition, we show that JL-DCF is readily applicable to other related multi-modal detection tasks, including RGB-T SOD and video SOD, achieving comparable or better performance.
Collapse
|
11
|
Ma G, Li S, Chen C, Hao A, Qin H. Rethinking Image Salient Object Detection: Object-Level Semantic Saliency Reranking First, Pixelwise Saliency Refinement Later. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:4238-4252. [PMID: 33819154 DOI: 10.1109/tip.2021.3068649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human attention is an interactive activity between our visual system and our brain, using both low-level visual stimulus and high-level semantic information. Previous image salient object detection (SOD) studies conduct their saliency predictions via a multitask methodology in which pixelwise saliency regression and segmentation-like saliency refinement are conducted simultaneously. However, this multitask methodology has one critical limitation: the semantic information embedded in feature backbones might be degenerated during the training process. Our visual attention is determined mainly by semantic information, which is evidenced by our tendency to pay more attention to semantically salient regions even if these regions are not the most perceptually salient at first glance. This fact clearly contradicts the widely used multitask methodology mentioned above. To address this issue, this paper divides the SOD problem into two sequential steps. First, we devise a lightweight, weakly supervised deep network to coarsely locate the semantically salient regions. Next, as a postprocessing refinement, we selectively fuse multiple off-the-shelf deep models on the semantically salient regions identified by the previous step to formulate a pixelwise saliency map. Compared with the state-of-the-art (SOTA) models that focus on learning the pixelwise saliency in single images using only perceptual clues, our method aims at investigating the object-level semantic ranks between multiple images, of which the methodology is more consistent with the human attention mechanism. Our method is simple yet effective, and it is the first attempt to consider salient object detection as mainly an object-level semantic reranking problem.
Collapse
|
12
|
Xu M, Fu P, Liu B, Li J. Multi-Stream Attention-Aware Graph Convolution Network for Video Salient Object Detection. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:4183-4197. [PMID: 33822725 DOI: 10.1109/tip.2021.3070200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent advances in deep convolution neural networks (CNNs) boost the development of video salient object detection (SOD), and many remarkable deep-CNNs video SOD models have been proposed. However, many existing deep-CNNs video SOD models still suffer from coarse boundaries of the salient object, which may be attributed to the loss of high-frequency information. The traditional graph-based video SOD models can preserve object boundaries well by conducting superpixels/supervoxels segmentation in advance, but they perform weaker in highlighting the whole object than the latest deep-CNNs models, limited by heuristic graph clustering algorithms. To tackle this problem, we find a new way to address this issue under the framework of graph convolution networks (GCNs), taking advantage of graph model and deep neural network. Specifically, a superpixel-level spatiotemporal graph is first constructed among multiple frame-pairs by exploiting the motion cues implied in the frame-pairs. Then the graph data is imported into the devised multi-stream attention-aware GCN, where a novel Edge-Gated graph convolution (GC) operation is proposed to boost the saliency information aggregation on the graph data. A novel attention module is designed to encode the spatiotemporal sematic information via adaptive selection of graph nodes and fusion of the static-specific and the motion-specific graph embedding. Finally, a smoothness-aware regularization term is proposed to enhance the uniformity of salient object. Graph nodes (superpixels) inherently belonging to the same class will be ideally clustered together in the learned embedding space. Extensive experiments have been conducted on three widely used datasets. Compared with fourteen state-of-the-art video SOD models, our proposed method can well retain the salient object boundaries and possess a strong learning ability, which shows that this work is a good practice for designing GCNs for video SOD.
Collapse
|
13
|
Wang X, Li S, Chen C, Hao A, Qin H. Depth quality-aware selective saliency fusion for RGB-D image salient object detection. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.12.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Li P, Xing X, Xu X, Cai B, Cheng J. Attention-aware concentrated network for saliency prediction. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.10.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Wang W, Shen J, Xie J, Cheng MM, Ling H, Borji A. Revisiting Video Saliency Prediction in the Deep Learning Era. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2021; 43:220-237. [PMID: 31247542 DOI: 10.1109/tpami.2019.2924417] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Predicting where people look in static scenes, a.k.a visual saliency, has received significant research interest recently. However, relatively less effort has been spent in understanding and modeling visual attention over dynamic scenes. This work makes three contributions to video saliency research. First, we introduce a new benchmark, called DHF1K (Dynamic Human Fixation 1K), for predicting fixations during dynamic scene free-viewing, which is a long-time need in this field. DHF1K consists of 1K high-quality elaborately-selected video sequences annotated by 17 observers using an eye tracker device. The videos span a wide range of scenes, motions, object types and backgrounds. Second, we propose a novel video saliency model, called ACLNet (Attentive CNN-LSTM Network), that augments the CNN-LSTM architecture with a supervised attention mechanism to enable fast end-to-end saliency learning. The attention mechanism explicitly encodes static saliency information, thus allowing LSTM to focus on learning a more flexible temporal saliency representation across successive frames. Such a design fully leverages existing large-scale static fixation datasets, avoids overfitting, and significantly improves training efficiency and testing performance. Third, we perform an extensive evaluation of the state-of-the-art saliency models on three datasets : DHF1K, Hollywood-2, and UCF sports. An attribute-based analysis of previous saliency models and cross-dataset generalization are also presented. Experimental results over more than 1.2K testing videos containing 400K frames demonstrate that ACLNet outperforms other contenders and has a fast processing speed (40 fps using a single GPU). Our code and all the results are available at https://github.com/wenguanwang/DHF1K.
Collapse
|
16
|
Bi H, Yang L, Zhu H, Lu D, Jiang J. STEG-Net: Spatio-Temporal Edge Guidance Network for Video Salient Object Detection. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3078824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Li C, Cong R, Kwong S, Hou J, Fu H, Zhu G, Zhang D, Huang Q. ASIF-Net: Attention Steered Interweave Fusion Network for RGB-D Salient Object Detection. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:88-100. [PMID: 32078571 DOI: 10.1109/tcyb.2020.2969255] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Salient object detection from RGB-D images is an important yet challenging vision task, which aims at detecting the most distinctive objects in a scene by combining color information and depth constraints. Unlike prior fusion manners, we propose an attention steered interweave fusion network (ASIF-Net) to detect salient objects, which progressively integrates cross-modal and cross-level complementarity from the RGB image and corresponding depth map via steering of an attention mechanism. Specifically, the complementary features from RGB-D images are jointly extracted and hierarchically fused in a dense and interweaved manner. Such a manner breaks down the barriers of inconsistency existing in the cross-modal data and also sufficiently captures the complementarity. Meanwhile, an attention mechanism is introduced to locate the potential salient regions in an attention-weighted fashion, which advances in highlighting the salient objects and suppressing the cluttered background regions. Instead of focusing only on pixelwise saliency, we also ensure that the detected salient objects have the objectness characteristics (e.g., complete structure and sharp boundary) by incorporating the adversarial learning that provides a global semantic constraint for RGB-D salient object detection. Quantitative and qualitative experiments demonstrate that the proposed method performs favorably against 17 state-of-the-art saliency detectors on four publicly available RGB-D salient object detection datasets. The code and results of our method are available at https://github.com/Li-Chongyi/ASIF-Net.
Collapse
|
18
|
Zhang Q, Cong R, Li C, Cheng MM, Fang Y, Cao X, Zhao Y, Kwong S. Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; 30:1305-1317. [PMID: 33306467 DOI: 10.1109/tip.2020.3042084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite the remarkable advances in visual saliency analysis for natural scene images (NSIs), salient object detection (SOD) for optical remote sensing images (RSIs) still remains an open and challenging problem. In this paper, we propose an end-to-end Dense Attention Fluid Network (DAFNet) for SOD in optical RSIs. A Global Context-aware Attention (GCA) module is proposed to adaptively capture long-range semantic context relationships, and is further embedded in a Dense Attention Fluid (DAF) structure that enables shallow attention cues flow into deep layers to guide the generation of high-level feature attention maps. Specifically, the GCA module is composed of two key components, where the global feature aggregation module achieves mutual reinforcement of salient feature embeddings from any two spatial locations, and the cascaded pyramid attention module tackles the scale variation issue by building up a cascaded pyramid framework to progressively refine the attention map in a coarse-to-fine manner. In addition, we construct a new and challenging optical RSI dataset for SOD that contains 2,000 images with pixel-wise saliency annotations, which is currently the largest publicly available benchmark. Extensive experiments demonstrate that our proposed DAFNet significantly outperforms the existing state-of-the-art SOD competitors. https://github.com/rmcong/DAFNet_TIP20.
Collapse
|
19
|
Zhang X, Wang Z, Hu Q, Ren J, Sun M. Boundary-aware High-resolution Network with region enhancement for salient object detection. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Wang X, Li S, Chen C, Fang Y, Hao A, Qin H. Data-Level Recombination and Lightweight Fusion Scheme for RGB-D Salient Object Detection. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; 30:458-471. [PMID: 33201813 DOI: 10.1109/tip.2020.3037470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Existing RGB-D salient object detection methods treat depth information as an independent component to complement RGB and widely follow the bistream parallel network architecture. To selectively fuse the CNN features extracted from both RGB and depth as a final result, the state-of-the-art (SOTA) bistream networks usually consist of two independent subbranches: one subbranch is used for RGB saliency, and the other aims for depth saliency. However, depth saliency is persistently inferior to the RGB saliency because the RGB component is intrinsically more informative than the depth component. The bistream architecture easily biases its subsequent fusion procedure to the RGB subbranch, leading to a performance bottleneck. In this paper, we propose a novel data-level recombination strategy to fuse RGB with D (depth) before deep feature extraction, where we cyclically convert the original 4-dimensional RGB-D into DGB, RDB and RGD. Then, a newly lightweight designed triple-stream network is applied over these novel formulated data to achieve an optimal channel-wise complementary fusion status between the RGB and D, achieving a new SOTA performance.
Collapse
|
21
|
Li C, Cong R, Guo C, Li H, Zhang C, Zheng F, Zhao Y. A parallel down-up fusion network for salient object detection in optical remote sensing images. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.05.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Cong R, Lei J, Fu H, Hou J, Huang Q, Kwong S. Going From RGB to RGBD Saliency: A Depth-Guided Transformation Model. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:3627-3639. [PMID: 31443060 DOI: 10.1109/tcyb.2019.2932005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Depth information has been demonstrated to be useful for saliency detection. However, the existing methods for RGBD saliency detection mainly focus on designing straightforward and comprehensive models, while ignoring the transferable ability of the existing RGB saliency detection models. In this article, we propose a novel depth-guided transformation model (DTM) going from RGB saliency to RGBD saliency. The proposed model includes three components, that is: 1) multilevel RGBD saliency initialization; 2) depth-guided saliency refinement; and 3) saliency optimization with depth constraints. The explicit depth feature is first utilized in the multilevel RGBD saliency model to initialize the RGBD saliency by combining the global compactness saliency cue and local geodesic saliency cue. The depth-guided saliency refinement is used to further highlight the salient objects and suppress the background regions by introducing the prior depth domain knowledge and prior refined depth shape. Benefiting from the consistency of the entire object in the depth map, we formulate an optimization model to attain more consistent and accurate saliency results via an energy function, which integrates the unary data term, color smooth term, and depth consistency term. Experiments on three public RGBD saliency detection benchmarks demonstrate the effectiveness and performance improvement of the proposed DTM from RGB to RGBD saliency.
Collapse
|
23
|
Recent Advances in Saliency Estimation for Omnidirectional Images, Image Groups, and Video Sequences. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We present a review of methods for automatic estimation of visual saliency: the perceptual property that makes specific elements in a scene stand out and grab the attention of the viewer. We focus on domains that are especially recent and relevant, as they make saliency estimation particularly useful and/or effective: omnidirectional images, image groups for co-saliency, and video sequences. For each domain, we perform a selection of recent methods, we highlight their commonalities and differences, and describe their unique approaches. We also report and analyze the datasets involved in the development of such methods, in order to reveal additional peculiarities of each domain, such as the representation used for the ground truth saliency information (scanpaths, saliency maps, or salient object regions). We define domain-specific evaluation measures, and provide quantitative comparisons on the basis of common datasets and evaluation criteria, highlighting the different impact of existing approaches on each domain. We conclude by synthesizing the emerging directions for research in the specialized literature, which include novel representations for omnidirectional images, inter- and intra- image saliency decomposition for co-saliency, and saliency shift for video saliency estimation.
Collapse
|
24
|
Zhang M, Ji W, Piao Y, Li J, Zhang Y, Xu S, Lu H. LFNet: Light Field Fusion Network for Salient Object Detection. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; 29:6276-6287. [PMID: 32365027 DOI: 10.1109/tip.2020.2990341] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we propose a novel light field fusion network-LFNet, a CNNs-based light field saliency model using 4D light field data containing abundant spatial and contextual information. The proposed method can reliably locate and identify salient objects even in a complex scene. Our LFNet contains a light field refinement module (LFRM) and a light field integration module (LFIM) which can fully refine and integrate focusness, depths and objectness cues from light field image. The LFRM learns the light field residual between light field and RGB images for refining features with useful light field cues, and then the LFIM weights each refined light field feature and learns spatial correlation between them to predict saliency maps. Our method can take full advantage of light field information and achieve excellent performance especially in complex scenes, e.g., similar foreground and background, multiple or transparent objects and low-contrast environment. Experiments show our method outperforms the state-of-the-art 2D, 3D and 4D methods across three light field datasets.
Collapse
|
25
|
Lai Q, Wang W, Sun H, Shen J. Video Saliency Prediction using Spatiotemporal Residual Attentive Networks. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 29:1113-1126. [PMID: 31449021 DOI: 10.1109/tip.2019.2936112] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper proposes a novel residual attentive learning network architecture for predicting dynamic eye-fixation maps. The proposed model emphasizes two essential issues, i.e, effective spatiotemporal feature integration and multi-scale saliency learning. For the first problem, appearance and motion streams are tightly coupled via dense residual cross connections, which integrate appearance information with multi-layer, comprehensive motion features in a residual and dense way. Beyond traditional two-stream models learning appearance and motion features separately, such design allows early, multi-path information exchange between different domains, leading to a unified and powerful spatiotemporal learning architecture. For the second one, we propose a composite attention mechanism that learns multi-scale local attentions and global attention priors end-to-end. It is used for enhancing the fused spatiotemporal features via emphasizing important features in multi-scales. A lightweight convolutional Gated Recurrent Unit (convGRU), which is flexible for small training data situation, is used for long-term temporal characteristics modeling. Extensive experiments over four benchmark datasets clearly demonstrate the advantage of the proposed video saliency model over other competitors and the effectiveness of each component of our network. Our code and all the results will be available at https://github.com/ashleylqx/STRA-Net.
Collapse
|