1
|
Wu X, Cao ZH, Huang TZ, Deng LJ, Chanussot J, Vivone G. Fully-Connected Transformer for Multi-Source Image Fusion. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2025; 47:2071-2088. [PMID: 40031431 DOI: 10.1109/tpami.2024.3523364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Multi-source image fusion combines the information coming from multiple images into one data, thus improving imaging quality. This topic has aroused great interest in the community. How to integrate information from different sources is still a big challenge, although the existing self-attention based transformer methods can capture spatial and channel similarities. In this paper, we first discuss the mathematical concepts behind the proposed generalized self-attention mechanism, where the existing self-attentions are considered basic forms. The proposed mechanism employs multilinear algebra to drive the development of a novel fully-connected self-attention (FCSA) method to fully exploit local and non-local domain-specific correlations among multi-source images. Moreover, we propose a multi-source image representation embedding it into the FCSA framework as a non-local prior within an optimization problem. Some different fusion problems are unfolded into the proposed fully-connected transformer fusion network (FC-Former). More specifically, the concept of generalized self-attention can promote the potential development of self-attention. Hence, the FC-Former can be viewed as a network model unifying different fusion tasks. Compared with state-of-the-art methods, the proposed FC-Former method exhibits robust and superior performance, showing its capability of faithfully preserving information.
Collapse
|
2
|
He C, Xu Y, Wu Z, Zheng S, Wei Z. Multi-Dimensional Visual Data Restoration: Uncovering the Global Discrepancy in Transformed High-Order Tensor Singular Values. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2024; 33:6409-6424. [PMID: 39495680 DOI: 10.1109/tip.2024.3475738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The recently proposed high-order tensor algebraic framework generalizes the tensor singular value decomposition (t-SVD) induced by the invertible linear transform from order-3 to order-d ( ). However, the derived order-d t-SVD rank essentially ignores the implicit global discrepancy in the quantity distribution of non-zero transformed high-order singular values across the higher modes of tensors. This oversight leads to suboptimal restoration in processing real-world multi-dimensional visual datasets. To address this challenge, in this study, we look in-depth at the intrinsic properties of practical visual data tensors, and put our efforts into faithfully measuring their high-order low-rank nature. Technically, we first present a novel order-d tensor rank definition. This rank function effectively captures the aforementioned discrepancy property observed in real visual data tensors and is thus called the discrepant t-SVD rank. Subsequently, we introduce a nonconvex regularizer to facilitate the construction of the corresponding discrepant t-SVD rank minimization regime. The results show that the investigated low-rank approximation has the closed-form solution and avoids dilemmas caused by the previous convex optimization approach. Based on this new regime, we meticulously develop two models for typical restoration tasks: high-order tensor completion and high-order tensor robust principal component analysis. Numerical examples on order-4 hyperspectral videos, order-4 color videos, and order-5 light field images substantiate that our methods outperform state-of-the-art tensor-represented competitors. Finally, taking a fundamental order-3 hyperspectral tensor restoration task as an example, we further demonstrate the effectiveness of our new rank minimization regime for more practical applications. The source codes of the proposed methods are available at https://github.com/CX-He/DTSVD.git.
Collapse
|
3
|
Tian X, Li K, Zhang W, Wang Z, Ma J. Interpretable Model-Driven Deep Network for Hyperspectral, Multispectral, and Panchromatic Image Fusion. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:14382-14395. [PMID: 37256810 DOI: 10.1109/tnnls.2023.3278928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Simultaneously fusing hyperspectral (HS), multispectral (MS), and panchromatic (PAN) images brings a new paradigm to generate a high-resolution HS (HRHS) image. In this study, we propose an interpretable model-driven deep network for HS, MS, and PAN image fusion, called HMPNet. We first propose a new fusion model that utilizes a deep before describing the complicated relationship between the HRHS and PAN images owing to their large resolution difference. Consequently, the difficulty of traditional model-based approaches in designing suitable hand-crafted priors can be alleviated because this deep prior is learned from data. We further solve the optimization problem of this fusion model based on the proximal gradient descent (PGD) algorithm, achieved by a series of iterative steps. By unrolling these iterative steps into several network modules, we finally obtain the HMPNet. Therefore, all parameters besides the deep prior are learned in the deep network, simplifying the selection of optimal parameters in the fusion and achieving a favorable equilibrium between the spatial and spectral qualities. Meanwhile, all modules contained in the HMPNet have explainable physical meanings, which can improve its generalization capability. In the experiment, we exhibit the advantages of the HMPNet over other state-of-the-art methods from the aspects of visual comparison and quantitative analysis, where a series of simulated as well as real datasets are utilized for validation.
Collapse
|
4
|
Wang Y, Li W, Liu N, Gui Y, Tao R. FuBay: An Integrated Fusion Framework for Hyperspectral Super-Resolution Based on Bayesian Tensor Ring. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:14712-14726. [PMID: 37327099 DOI: 10.1109/tnnls.2023.3281355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fusion with corresponding finer-resolution images has been a promising way to enhance hyperspectral images (HSIs) spatially. Recently, low-rank tensor-based methods have shown advantages compared with other kind of ones. However, these current methods either relent to blind manual selection of latent tensor rank, whereas the prior knowledge about tensor rank is surprisingly limited, or resort to regularization to make the role of low rankness without exploration on the underlying low-dimensional factors, both of which are leaving the computational burden of parameter tuning. To address that, a novel Bayesian sparse learning-based tensor ring (TR) fusion model is proposed, named as FuBay. Through specifying hierarchical sprasity-inducing prior distribution, the proposed method becomes the first fully Bayesian probabilistic tensor framework for hyperspectral fusion. With the relationship between component sparseness and the corresponding hyperprior parameter being well studied, a component pruning part is established to asymptotically approaching true latent rank. Furthermore, a variational inference (VI)-based algorithm is derived to learn the posterior of TR factors, circumventing nonconvex optimization that bothers the most tensor decomposition-based fusion methods. As a Bayesian learning methods, our model is characterized to be parameter tuning-free. Finally, extensive experiments demonstrate its superior performance when compared with state-of-the-art methods.
Collapse
|
5
|
Dian R, Shan T, He W, Liu H. Spectral Super-Resolution via Model-Guided Cross-Fusion Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:10059-10070. [PMID: 37022225 DOI: 10.1109/tnnls.2023.3238506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Spectral super-resolution, which reconstructs a hyperspectral image (HSI) from a single red-green-blue (RGB) image, has acquired more and more attention. Recently, convolution neural networks (CNNs) have achieved promising performance. However, they often fail to simultaneously exploit the imaging model of the spectral super-resolution and complex spatial and spectral characteristics of the HSI. To tackle the above problems, we build a novel cross fusion (CF)-based model-guided network (called SSRNet) for spectral super-resolution. In specific, based on the imaging model, we unfold the spectral super-resolution into the HSI prior learning (HPL) module and imaging model guiding (IMG) module. Instead of just modeling one kind of image prior, the HPL module is composed of two subnetworks with different structures, which can effectively learn the complex spatial and spectral priors of the HSI, respectively. Furthermore, a CF strategy is used to establish the connection between the two subnetworks, which further improves the learning performance of the CNN. The IMG module results in solving a strong convex optimization problem, which adaptively optimizes and merges the two features learned by the HPL module by exploiting the imaging model. The two modules are alternately connected to achieve optimal HSI reconstruction performance. Experiments on both the simulated and real data demonstrate that the proposed method can achieve superior spectral reconstruction results with relatively small model size. The code will be available at https://github.com/renweidian.
Collapse
|
6
|
Sedighin F. Tensor Ring Based Image Enhancement. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:1. [PMID: 38510671 PMCID: PMC10950313 DOI: 10.4103/jmss.jmss_32_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 10/11/2023] [Indexed: 03/22/2024]
Abstract
Background Image enhancement, including image de-noising, super-resolution, registration, reconstruction, in-painting, and so on, is an important issue in different research areas. Different methods which have been exploited for image analysis were mostly based on matrix or low order analysis. However, recent researches show the superior power of tensor-based methods for image enhancement. Method In this article, a new method for image super-resolution using Tensor Ring decomposition has been proposed. The proposed image super-resolution technique has been derived for the super-resolution of low resolution and noisy images. The new approach is based on a modification and extension of previous tensor-based approaches used for super-resolution of datasets. In this method, a weighted combination of the original and the resulting image of the previous stage has been computed and used to provide a new input to the algorithm. Result This enables the method to do the super-resolution and de-noising simultaneously. Conclusion Simulation results show the effectiveness of the proposed approach, especially in highly noisy situations.
Collapse
Affiliation(s)
- Farnaz Sedighin
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Dian R, Guo A, Li S. Zero-Shot Hyperspectral Sharpening. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023; 45:12650-12666. [PMID: 37235456 DOI: 10.1109/tpami.2023.3279050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fusing hyperspectral images (HSIs) with multispectral images (MSIs) of higher spatial resolution has become an effective way to sharpen HSIs. Recently, deep convolutional neural networks (CNNs) have achieved promising fusion performance. However, these methods often suffer from the lack of training data and limited generalization ability. To address the above problems, we present a zero-shot learning (ZSL) method for HSI sharpening. Specifically, we first propose a novel method to quantitatively estimate the spectral and spatial responses of imaging sensors with high accuracy. In the training procedure, we spatially subsample the MSI and HSI based on the estimated spatial response and use the downsampled HSI and MSI to infer the original HSI. In this way, we can not only exploit the inherent information in the HSI and MSI, but the trained CNN can also be well generalized to the test data. In addition, we take the dimension reduction on the HSI, which reduces the model size and storage usage without sacrificing fusion accuracy. Furthermore, we design an imaging model-based loss function for CNN, which further boosts the fusion performance. The experimental results show the significantly high efficiency and accuracy of our approach.
Collapse
|
8
|
Qu Q, Pan B, Xu X, Li T, Shi Z. Unmixing Guided Unsupervised Network for RGB Spectral Super-Resolution. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:4856-4867. [PMID: 37527312 DOI: 10.1109/tip.2023.3299197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Spectral super-resolution has attracted research attention recently, which aims to generate hyperspectral images from RGB images. However, most of the existing spectral super-resolution algorithms work in a supervised manner, requiring pairwise data for training, which is difficult to obtain. In this paper, we propose an Unmixing Guided Unsupervised Network (UnGUN), which does not require pairwise imagery to achieve unsupervised spectral super-resolution. In addition, UnGUN utilizes arbitrary other hyperspectral imagery as the guidance image to guide the reconstruction of spectral information. The UnGUN mainly includes three branches: two unmixing branches and a reconstruction branch. Hyperspectral unmixing branch and RGB unmixing branch decompose the guidance and RGB images into corresponding endmembers and abundances respectively, from which the spectral and spatial priors are extracted. Meanwhile, the reconstruction branch integrates the above spectral-spatial priors to generate a coarse hyperspectral image and then refined it. Besides, we design a discriminator to ensure that the distribution of generated image is close to the guidance hyperspectral imagery, so that the reconstructed image follows the characteristics of a real hyperspectral image. The major contribution is that we develop an unsupervised framework based on spectral unmixing, which realizes spectral super-resolution without paired hyperspectral-RGB images. Experiments demonstrate the superiority of UnGUN when compared with some SOTA methods.
Collapse
|
9
|
Wang K, Liao X, Li J, Meng D, Wang Y. Hyperspectral Image Super-Resolution via Knowledge-Driven Deep Unrolling and Transformer Embedded Convolutional Recurrent Neural Network. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:4581-4594. [PMID: 37467098 DOI: 10.1109/tip.2023.3293768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Hyperspectral (HS) imaging has been widely used in various real application problems. However, due to the hardware limitations, the obtained HS images usually have low spatial resolution, which could obviously degrade their performance. Through fusing a low spatial resolution HS image with a high spatial resolution auxiliary image (e.g., multispectral, RGB or panchromatic image), the so-called HS image fusion has underpinned much of recent progress in enhancing the spatial resolution of HS image. Nonetheless, a corresponding well registered auxiliary image cannot always be available in some real situations. To remedy this issue, we propose in this paper a newly single HS image super-resolution method based on a novel knowledge-driven deep unrolling technique. Precisely, we first propose a maximum a posterior based energy model with implicit priors, which can be solved by alternating optimization to determine an elementary iteration mechanism. We then unroll such iteration mechanism with an ingenious Transformer embedded convolutional recurrent neural network in which two structural designs are integrated. That is, the vision Transformer and 3D convolution learn the implicit spatial-spectral priors, and the recurrent hidden connections over iterations model the recurrence of the iterative reconstruction stages. Thus, an effective knowledge-driven, end-to-end and data-dependent HS image super-resolution framework can be successfully attained. Extensive experiments on three HS image datasets demonstrate the superiority of the proposed method over several state-of-the-art HS image super-resolution methods.
Collapse
|
10
|
Cao X, Lian Y, Liu Z, Wu J, Zhang W, Liu J. Hyperspectral image super-resolution via spectral matching and correction. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:1635-1643. [PMID: 37707121 DOI: 10.1364/josaa.491595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/17/2023] [Indexed: 09/15/2023]
Abstract
Fusing a low-spatial-resolution hyperspectral image (LR-HSI) and a high-spatial-resolution RGB image (HR-RGB) is an important technique for HR-HSI obtainment. In this paper, we propose a dual-illuminance fusion-based super-resolution method consisting of spectral matching and correction. In the spectral matching stage, an LR-HSI patch is first searched for each HR-RGB pixel; with the minimum color difference as a constraint, the matching spectrum is constructed by linear mixing the spectrum in the HSI patch. In the spectral correlation stage, we establish a polynomial model to correct the matched spectrum with the aid of the HR-RGBs illuminated by two illuminances, and the target spectrum is obtained. All pixels in the HR-RGB are traversed by the spectral matching and correction process, and the target HR-HSI is eventually reconstructed. The effectiveness of our method is evaluated on three public datasets and our real-world dataset. Experimental results demonstrate the effectiveness of our method compared with eight fusion methods.
Collapse
|
11
|
Ran R, Deng LJ, Jiang TX, Hu JF, Chanussot J, Vivone G. GuidedNet: A General CNN Fusion Framework via High-Resolution Guidance for Hyperspectral Image Super-Resolution. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:4148-4161. [PMID: 37022388 DOI: 10.1109/tcyb.2023.3238200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hyperspectral image super-resolution (HISR) is about fusing a low-resolution hyperspectral image (LR-HSI) and a high-resolution multispectral image (HR-MSI) to generate a high-resolution hyperspectral image (HR-HSI). Recently, convolutional neural network (CNN)-based techniques have been extensively investigated for HISR yielding competitive outcomes. However, existing CNN-based methods often require a huge amount of network parameters leading to a heavy computational burden, thus, limiting the generalization ability. In this article, we fully consider the characteristic of the HISR, proposing a general CNN fusion framework with high-resolution guidance, called GuidedNet. This framework consists of two branches, including 1) the high-resolution guidance branch (HGB) that can decompose the high-resolution guidance image into several scales and 2) the feature reconstruction branch (FRB) that takes the low-resolution image and the multiscaled high-resolution guidance images from the HGB to reconstruct the high-resolution fused image. GuidedNet can effectively predict the high-resolution residual details that are added to the upsampled HSI to simultaneously improve spatial quality and preserve spectral information. The proposed framework is implemented using recursive and progressive strategies, which can promote high performance with a significant network parameter reduction, even ensuring network stability by supervising several intermediate outputs. Additionally, the proposed approach is also suitable for other resolution enhancement tasks, such as remote sensing pansharpening and single-image super-resolution (SISR). Extensive experiments on simulated and real datasets demonstrate that the proposed framework generates state-of-the-art outcomes for several applications (i.e., HISR, pansharpening, and SISR). Finally, an ablation study and more discussions assessing, for example, the network generalization, the low computational cost, and the fewer network parameters, are provided to the readers. The code link is: https://github.com/Evangelion09/GuidedNet.
Collapse
|
12
|
Wu ZC, Huang TZ, Deng LJ, Huang J, Chanussot J, Vivone G. LRTCFPan: Low-Rank Tensor Completion Based Framework for Pansharpening. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:1640-1655. [PMID: 37027760 DOI: 10.1109/tip.2023.3247165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pansharpening refers to the fusion of a low spatial-resolution multispectral image with a high spatial-resolution panchromatic image. In this paper, we propose a novel low-rank tensor completion (LRTC)-based framework with some regularizers for multispectral image pansharpening, called LRTCFPan. The tensor completion technique is commonly used for image recovery, but it cannot directly perform the pansharpening or, more generally, the super-resolution problem because of the formulation gap. Different from previous variational methods, we first formulate a pioneering image super-resolution (ISR) degradation model, which equivalently removes the downsampling operator and transforms the tensor completion framework. Under such a framework, the original pansharpening problem is realized by the LRTC-based technique with some deblurring regularizers. From the perspective of regularizer, we further explore a local-similarity-based dynamic detail mapping (DDM) term to more accurately capture the spatial content of the panchromatic image. Moreover, the low-tubal-rank property of multispectral images is investigated, and the low-tubal-rank prior is introduced for better completion and global characterization. To solve the proposed LRTCFPan model, we develop an alternating direction method of multipliers (ADMM)-based algorithm. Comprehensive experiments at reduced-resolution (i.e., simulated) and full-resolution (i.e., real) data exhibit that the LRTCFPan method significantly outperforms other state-of-the-art pansharpening methods. The code is publicly available at: https://github.com/zhongchengwu/code_LRTCFPan.
Collapse
|
13
|
Xu H, Jiang J, Feng Y, Jin Y, Zheng J. Tensor completion via hybrid shallow-and-deep priors. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Sun L, He C, Zheng Y, Wu Z, Jeon B. Tensor Cascaded-Rank Minimization in Subspace: A Unified Regime for Hyperspectral Image Low-Level Vision. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 32:100-115. [PMID: 37015482 DOI: 10.1109/tip.2022.3226406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Low-rank tensor representation philosophy has enjoyed a reputation in many hyperspectral image (HSI) low-level vision applications, but previous studies often failed to comprehensively exploit the low-rank nature of HSI along different modes in low-dimensional subspace, and unsurprisingly handled only one specific task. To address these challenges, in this paper, we figured out that in addition to the spatial correlation, the spectral dependency of HSI also implicitly exists in the coefficient tensor of its subspace, this crucial dependency that was not fully utilized by previous studies yet can be effectively exploited in a cascaded manner. This led us to propose a unified subspace low-rank learning regime with a new tensor cascaded rank minimization, named STCR, to fully couple the low-rankness of HSI in different domains for various low-level vision tasks. Technically, the high-dimensional HSI was first projected into a low-dimensional tensor subspace, then a novel tensor low-cascaded-rank decomposition was designed to collapse the constructed tensor into three core tensors in succession to more thoroughly exploit the correlations in spatial, nonlocal, and spectral modes of the coefficient tensor. Next, difference continuity-regularization was introduced to learn a basis that more closely approximates the HSI's endmembers. The proposed regime realizes a comprehensive delineation of the self-portrait of HSI tensor. Extensive evaluations conducted with dozens of state-of-the-art (SOTA) baselines on eight datasets verified that the proposed regime is highly effective and robust to typical HSI low-level vision tasks, including denoising, compressive sensing reconstruction, inpainting, and destriping. The source code of our method is released at https://github.com/CX-He/STCR.git.
Collapse
|
15
|
Hu JF, Huang TZ, Deng LJ, Jiang TX, Vivone G, Chanussot J. Hyperspectral Image Super-Resolution via Deep Spatiospectral Attention Convolutional Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:7251-7265. [PMID: 34106864 DOI: 10.1109/tnnls.2021.3084682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hyperspectral images (HSIs) are of crucial importance in order to better understand features from a large number of spectral channels. Restricted by its inner imaging mechanism, the spatial resolution is often limited for HSIs. To alleviate this issue, in this work, we propose a simple and efficient architecture of deep convolutional neural networks to fuse a low-resolution HSI (LR-HSI) and a high-resolution multispectral image (HR-MSI), yielding a high-resolution HSI (HR-HSI). The network is designed to preserve both spatial and spectral information thanks to a new architecture based on: 1) the use of the LR-HSI at the HR-MSI's scale to get an output with satisfied spectral preservation and 2) the application of the attention and pixelShuffle modules to extract information, aiming to output high-quality spatial details. Finally, a plain mean squared error loss function is used to measure the performance during the training. Extensive experiments demonstrate that the proposed network architecture achieves the best performance (both qualitatively and quantitatively) compared with recent state-of-the-art HSI super-resolution approaches. Moreover, other significant advantages can be pointed out by the use of the proposed approach, such as a better network generalization ability, a limited computational burden, and the robustness with respect to the number of training samples. Please find the source code and pretrained models from https://liangjiandeng.github.io/Projects_Res/HSRnet_2021tnnls.html.
Collapse
|
16
|
Yang J, Wu C, You T, Wang D, Li Y, Shang C, Shen Q. Hierarchical spatio-spectral fusion for hyperspectral image super resolution via sparse representation and pre-trained deep model. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
17
|
Zhang Q, Yuan Q, Song M, Yu H, Zhang L. Cooperated Spectral Low-Rankness Prior and Deep Spatial Prior for HSI Unsupervised Denoising. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:6356-6368. [PMID: 36215364 DOI: 10.1109/tip.2022.3211471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Model-driven methods and data-driven methods have been widely developed for hyperspectral image (HSI) denoising. However, there are pros and cons in both model-driven and data-driven methods. To address this issue, we develop a self-supervised HSI denoising method via integrating model-driven with data-driven strategy. The proposed framework simultaneously cooperates the spectral low-rankness prior and deep spatial prior (SLRP-DSP) for HSI self-supervised denoising. SLRP-DSP introduces the Tucker factorization via orthogonal basis and reduced factor, to capture the global spectral low-rankness prior in HSI. Besides, SLRP-DSP adopts a self-supervised way to learn the deep spatial prior. The proposed method doesn't need a large number of clean HSIs as the label samples. Through the self-supervised learning, SLRP-DSP can adaptively adjust the deep spatial prior from self-spatial information for reduced spatial factor denoising. An alternating iterative optimization framework is developed to exploit the internal low-rankness prior of third-order tensors and the spatial feature extraction capacity of convolutional neural network. Compared with both existing model-driven methods and data-driven methods, experimental results manifest that the proposed SLRP-DSP outperforms on mixed noise removal in different noisy HSIs.
Collapse
|
18
|
Hou J, Zhu Z, Hou J, Zeng H, Wu J, Zhou J. Deep Posterior Distribution-Based Embedding for Hyperspectral Image Super-Resolution. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:5720-5732. [PMID: 36040941 DOI: 10.1109/tip.2022.3201478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, we investigate the problem of hyperspectral (HS) image spatial super-resolution via deep learning. Particularly, we focus on how to embed the high-dimensional spatial-spectral information of HS images efficiently and effectively. Specifically, in contrast to existing methods adopting empirically-designed network modules, we formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events, including layer-wise spatial-spectral feature extraction and network-level feature aggregation. Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable, producing PDE-Net, in which high-resolution (HR) HS images are iteratively refined from the residuals between input low-resolution (LR) HS images and pseudo-LR-HS images degenerated from reconstructed HR-HS images via probability-inspired HS embedding. Extensive experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods. Besides, the probabilistic characteristic of this kind of networks can provide the epistemic uncertainty of the network outputs, which may bring additional benefits when used for other HS image-based applications. The code will be publicly available at https://github.com/jinnh/PDE-Net.
Collapse
|
19
|
Cao X, Lian Y, Liu Z, Zhou H, Hu X, Huang B, Zhang W. Hyperspectral image super-resolution based on the transfer of both spectra and multi-level features. OPTICS LETTERS 2022; 47:3431-3434. [PMID: 35838725 DOI: 10.1364/ol.463160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Existing hyperspectral image (HSI) super-resolution methods fusing a high-resolution RGB image (HR-RGB) and a low-resolution HSI (LR-HSI) always rely on spatial degradation and handcrafted priors, which hinders their practicality. To address these problems, we propose a novel, to the best of our knowledge, method with two transfer models: a window-based linear mixing (W-LM) model and a feature transfer model. Specifically, W-LM initializes a high-resolution HSI (HR-HSI) by transferring the spectra from the LR-HSI to the HR-RGB. By using the proposed feature transfer model, the HR-RGB multi-level features extracted by a pre-trained convolutional neural network (CNN) are then transferred to the initialized HR-HSI. The proposed method fully exploits spectra of LR-HSI and multi-level features of HR-RGB and achieves super-resolution without requiring the spatial degradation model and any handcrafted priors. The experimental results for 32 × super-resolution on two public datasets and our real image set demonstrate the proposed method outperforms eight state-of-the-art existing methods.
Collapse
|
20
|
Luo YS, Zhao XL, Jiang TX, Chang Y, Ng MK, Li C. Self-Supervised Nonlinear Transform-Based Tensor Nuclear Norm for Multi-Dimensional Image Recovery. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:3793-3808. [PMID: 35609097 DOI: 10.1109/tip.2022.3176220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, transform-based tensor nuclear norm (TNN) minimization methods have received increasing attention for recovering third-order tensors in multi-dimensional imaging problems. The main idea of these methods is to perform the linear transform along the third mode of third-order tensors and then minimize the nuclear norm of frontal slices of the transformed tensor. The main aim of this paper is to propose a nonlinear multilayer neural network to learn a nonlinear transform by solely using the observed tensor in a self-supervised manner. The proposed network makes use of the low-rank representation of the transformed tensor and data-fitting between the observed tensor and the reconstructed tensor to learn the nonlinear transform. Extensive experimental results on different data and different tasks including tensor completion, background subtraction, robust tensor completion, and snapshot compressive imaging demonstrate the superior performance of the proposed method over state-of-the-art methods.
Collapse
|
21
|
Hyperspectral Image Super-Resolution Method Based on Spectral Smoothing Prior and Tensor Tubal Row-Sparse Representation. REMOTE SENSING 2022. [DOI: 10.3390/rs14092142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Due to the limited hardware conditions, hyperspectral image (HSI) has a low spatial resolution, while multispectral image (MSI) can gain higher spatial resolution. Therefore, derived from the idea of fusion, we reconstructed HSI with high spatial resolution and spectral resolution from HSI and MSI and put forward an HSI Super-Resolution model based on Spectral Smoothing prior and Tensor tubal row-sparse representation, termed SSTSR. Foremost, nonlocal priors are applied to refine the super-resolution task into reconstructing each nonlocal clustering tensor. Then per nonlocal cluster tensor is decomposed into two sub tensors under the tensor t-prodcut framework, one sub-tensor is called tersor dictionary and the other is called tensor coefficient. Meanwhile, in the process of dictionary learning and sparse coding, spectral smoothing constraint is imposed on the tensor dictionary, and L1,1,2 norm based tubal row-sparse regularizer is enforced on the tensor coefficient to enhance the structured sparsity. With this model, the spatial similarity and spectral similarity of the nonlocal cluster tensor are fully utilized. Finally, the alternating direction method of multipliers (ADMM) was employed to optimize the solution of our method. Experiments on three simulated datasets and one real dataset show that our approach is superior to many advanced HSI super-resolution methods.
Collapse
|
22
|
Feedback Refined Local-Global Network for Super-Resolution of Hyperspectral Imagery. REMOTE SENSING 2022. [DOI: 10.3390/rs14081944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Powered by advanced deep-learning technology, multi-spectral image super-resolution methods based on convolutional neural networks have recently achieved great progress. However, the single hyperspectral image super-resolution remains a challenging problem due to the high-dimensional and complex spectral characteristics of hyperspectral data, which make it difficult for general 2D convolutional neural networks to simultaneously capture spatial and spectral prior information. To deal with this issue, we propose a novel Feedback Refined Local-Global Network (FRLGN) for the super-resolution of hyperspectral image. To be specific, we develop a new Feedback Structure and a Local-Global Spectral block to alleviate the difficulty in spatial and spectral feature extraction. The Feedback Structure can transfer the high-level information to guide the generation process of low-level features, which is achieved by a recurrent structure with finite unfoldings. Furthermore, in order to effectively use the high-level information passed back, a Local-Global Spectral block is constructed to handle the feedback connections. The Local-Global Spectral block utilizes the feedback high-level information to correct the low-level feature from local spectral bands and generates powerful high-level representations among global spectral bands. By incorporating the Feedback Structure and Local-Global Spectral block, the FRLGN can fully exploit spatial-spectral correlations among spectral bands and gradually reconstruct high-resolution hyperspectral images. Experimental results indicate that FRLGN presents advantages on three public hyperspectral datasets.
Collapse
|
23
|
He W, Yao Q, Li C, Yokoya N, Zhao Q, Zhang H, Zhang L. Non-Local Meets Global: An Iterative Paradigm for Hyperspectral Image Restoration. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:2089-2107. [PMID: 32991278 DOI: 10.1109/tpami.2020.3027563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Non-local low-rank tensor approximation has been developed as a state-of-the-art method for hyperspectral image (HSI) restoration, which includes the tasks of denoising, compressed HSI reconstruction and inpainting. Unfortunately, while its restoration performance benefits from more spectral bands, its runtime also substantially increases. In this paper, we claim that the HSI lies in a global spectral low-rank subspace, and the spectral subspaces of each full band patch group should lie in this global low-rank subspace. This motivates us to propose a unified paradigm combining the spatial and spectral properties for HSI restoration. The proposed paradigm enjoys performance superiority from the non-local spatial denoising and light computation complexity from the low-rank orthogonal basis exploration. An efficient alternating minimization algorithm with rank adaptation is developed. It is done by first solving a fidelity term-related problem for the update of a latent input image, and then learning a low-dimensional orthogonal basis and the related reduced image from the latent input image. Subsequently, non-local low-rank denoising is developed to refine the reduced image and orthogonal basis iteratively. Finally, the experiments on HSI denoising, compressed reconstruction, and inpainting tasks, with both simulated and real datasets, demonstrate its superiority with respect to state-of-the-art HSI restoration methods.
Collapse
|
24
|
Li Q, Yuan Y, Wang Q. Hyperspectral image super-resolution via multi-domain feature learning. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Abstract
Pansharpening is an important yet challenging remote sensing image processing task, which aims to reconstruct a high-resolution (HR) multispectral (MS) image by fusing a HR panchromatic (PAN) image and a low-resolution (LR) MS image. Though deep learning (DL)-based pansharpening methods have achieved encouraging performance, they are infeasible to fully utilize the deep semantic features and shallow contextual features in the process of feature fusion for a HR-PAN image and LR-MS image. In this paper, we propose an efficient full-depth feature fusion network (FDFNet) for remote sensing pansharpening. Specifically, we design three distinctive branches called PAN-branch, MS-branch, and fusion-branch, respectively. The features extracted from the PAN and MS branches will be progressively injected into the fusion branch at every different depth to make the information fusion more broad and comprehensive. With this structure, the low-level contextual features and high-level semantic features can be characterized and integrated adequately. Extensive experiments on reduced- and full-resolution datasets acquired from WorldView-3, QuickBird, and GaoFen-2 sensors demonstrate that the proposed FDFNet only with less than 100,000 parameters performs better than other detail injection-based proposals and several state-of-the-art approaches, both visually and quantitatively.
Collapse
|
26
|
Zhao XL, Yang JH, Ma TH, Jiang TX, Ng MK, Huang TZ. Tensor Completion via Complementary Global, Local, and Nonlocal Priors. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:984-999. [PMID: 34971534 DOI: 10.1109/tip.2021.3138325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal self-similarity (NSS); most existing works utilize one or two of them to implement completion. Naturally, there arises an interesting question: can one concurrently make use of multiple priors in a unified way, such that they can collaborate with each other to achieve better performance? This work gives a positive answer by formulating a novel tensor completion framework which can simultaneously take advantage of the global-local-nonlocal priors. In the proposed framework, the tensor train (TT) rank is adopted to characterize the global correlation; meanwhile, two Plug-and-Play (PnP) denoisers, including a convolutional neural network (CNN) denoiser and the color block-matching and 3 D filtering (CBM3D) denoiser, are incorporated to preserve local details and exploit NSS, respectively. Then, we design a proximal alternating minimization algorithm to efficiently solve this model under the PnP framework. Under mild conditions, we establish the convergence guarantee of the proposed algorithm. Extensive experiments show that these priors organically benefit from each other to achieve state-of-the-art performance both quantitatively and qualitatively.
Collapse
|
27
|
Difference Curvature Multidimensional Network for Hyperspectral Image Super-Resolution. REMOTE SENSING 2021. [DOI: 10.3390/rs13173455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, convolutional-neural-network-based methods have been introduced to the field of hyperspectral image super-resolution following their great success in the field of RGB image super-resolution. However, hyperspectral images appear different from RGB images in that they have high dimensionality, implying a redundancy in the high-dimensional space. Existing approaches struggle in learning the spectral correlation and spatial priors, leading to inferior performance. In this paper, we present a difference curvature multidimensional network for hyperspectral image super-resolution that exploits the spectral correlation to help improve the spatial resolution. Specifically, we introduce a multidimensional enhanced convolution (MEC) unit into the network to learn the spectral correlation through a self-attention mechanism. Meanwhile, it reduces the redundancy in the spectral dimension via a bottleneck projection to condense useful spectral features and reduce computations. To remove the unrelated information in high-dimensional space and extract the delicate texture features of a hyperspectral image, we design an additional difference curvature branch (DCB), which works as an edge indicator to fully preserve the texture information and eliminate the unwanted noise. Experiments on three publicly available datasets demonstrate that the proposed method can recover sharper images with minimal spectral distortion compared to state-of-the-art methods. PSNR/SAM is 0.3–0.5 dB/0.2–0.4 better than the second best methods.
Collapse
|
28
|
Fast and Stable Hyperspectral Multispectral Image Fusion Technique Using Moore–Penrose Inverse Solver. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fusion low-resolution hyperspectral images (LR-HSI) and high-resolution multispectral images (HR-MSI) are important methods for obtaining high-resolution hyperspectral images (HR-HSI). Some hyperspectral image fusion application areas have strong real-time requirements for image fusion, and a fast fusion method is urgently needed. This paper proposes a fast and stable fusion method (FSF) based on matrix factorization, which can largely reduce the computational workloads of image fusion to achieve fast and efficient image fusion. FSF introduces the Moore–Penrose inverse in the fusion model to simplify the estimation of the coefficient matrix and uses singular value decomposition (SVD) to simplify the estimation of the spectral basis, thus significantly reducing the computational effort of model solving. Meanwhile, FSF introduces two multiplicative iterative processes to optimize the spectral basis and coefficient matrix to achieve stable and high-quality fusion. We have tested the fusion method on remote sensing and ground-based datasets. The experiments show that our proposed method can achieve the performance of several state-of-the-art algorithms while reducing execution time to less than 1% of such algorithms.
Collapse
|
29
|
Zhang L, Nie J, Wei W, Li Y, Zhang Y. Deep Blind Hyperspectral Image Super-Resolution. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:2388-2400. [PMID: 32639931 DOI: 10.1109/tnnls.2020.3005234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The production of a high spatial resolution (HR) hyperspectral image (HSI) through the fusion of a low spatial resolution (LR) HSI with an HR multispectral image (MSI) has underpinned much of the recent progress in HSI super-resolution. The premise of these signs of progress is that both the degeneration from the HR HSI to LR HSI in the spatial domain and the degeneration from the HR HSI to HR MSI in the spectral domain are assumed to be known in advance. However, such a premise is difficult to achieve in practice. To address this problem, we propose to incorporate degeneration estimation into HSI super-resolution and present an unsupervised deep framework for "blind" HSIs super-resolution where the degenerations in both domains are unknown. In this framework, we model the latent HR HSI and the unknown degenerations with deep network structures to regularize them instead of using handcrafted (or shallow) priors. Specifically, we generate the latent HR HSI with an image-specific generator network and structure the degenerations in spatial and spectral domains through a convolution layer and a fully connected layer, respectively. By doing this, the proposed framework can be formulated as an end-to-end deep network learning problem, which is purely supervised by those two input images (i.e., LR HSI and HR MSI) and can be effectively solved by the backpropagation algorithm. Experiments on both natural scene and remote sensing HSI data sets show the superior performance of the proposed method in coping with unknown degeneration either in the spatial domain, spectral domain, or even both of them.
Collapse
|
30
|
Zhang Y, Shao Y, Shen J, Lu Y, Zheng Z, Sidib Y, Yu B. Infrared image impulse noise suppression using tensor robust principal component analysis and truncated total variation. APPLIED OPTICS 2021; 60:4916-4929. [PMID: 34143054 DOI: 10.1364/ao.421081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Infrared image denoising is an essential inverse problem that has been widely applied in many fields. However, when suppressing impulse noise, existing methods lead to blurred object details and loss of image information. Moreover, computational efficiency is another challenge for existing methods when processing infrared images with large resolution. An infrared image impulse-noise-suppression method is introduced based on tensor robust principal component analysis. Specifically, we propose a randomized tensor singular-value thresholding algorithm to solve the tensor kernel norm based on the matrix stochastic singular-value decomposition and tensor singular-value threshold. Combined with the image blocking, it can not only ensure the denoising performance but also greatly improve the algorithm's efficiency. Finally, truncated total variation is applied to improve the smoothness of the denoised image. Experimental results indicate that the proposed algorithm outperforms the state-of-the-art methods in computational efficiency, denoising effect, and detail feature preservation.
Collapse
|
31
|
Hyperspectral Image Super-Resolution with Self-Supervised Spectral-Spatial Residual Network. REMOTE SENSING 2021. [DOI: 10.3390/rs13071260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, many convolutional networks have been built to fuse a low spatial resolution (LR) hyperspectral image (HSI) and a high spatial resolution (HR) multispectral image (MSI) to obtain HR HSIs. However, most deep learning-based methods are supervised methods, which require sufficient HR HSIs for supervised training. Collecting plenty of HR HSIs is laborious and time-consuming. In this paper, a self-supervised spectral-spatial residual network (SSRN) is proposed to alleviate dependence on a mass of HR HSIs. In SSRN, the fusion of HR MSIs and LR HSIs is considered a pixel-wise spectral mapping problem. Firstly, this paper assumes that the spectral mapping between HR MSIs and HR HSIs can be approximated by the spectral mapping between LR MSIs (derived from HR MSIs) and LR HSIs. Secondly, the spectral mapping between LR MSIs and LR HSIs is explored by SSRN. Finally, a self-supervised fine-tuning strategy is proposed to transfer the learned spectral mapping to generate HR HSIs. SSRN does not require HR HSIs as the supervised information in training. Simulated and real hyperspectral databases are utilized to verify the performance of SSRN.
Collapse
|
32
|
Xue J, Zhao YQ, Bu Y, Liao W, Chan JCW, Philips W. Spatial-Spectral Structured Sparse Low-Rank Representation for Hyperspectral Image Super-Resolution. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:3084-3097. [PMID: 33596175 DOI: 10.1109/tip.2021.3058590] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hyperspectral image super-resolution by fusing high-resolution multispectral image (HR-MSI) and low-resolution hyperspectral image (LR-HSI) aims at reconstructing high resolution spatial-spectral information of the scene. Existing methods mostly based on spectral unmixing and sparse representation are often developed from a low-level vision task perspective, they cannot sufficiently make use of the spatial and spectral priors available from higher-level analysis. To this issue, this paper proposes a novel HSI super-resolution method that fully considers the spatial/spectral subspace low-rank relationships between available HR-MSI/LR-HSI and latent HSI. Specifically, it relies on a new subspace clustering method named "structured sparse low-rank representation" (SSLRR), to represent the data samples as linear combinations of the bases in a given dictionary, where the sparse structure is induced by low-rank factorization for the affinity matrix. Then we exploit the proposed SSLRR model to learn the SSLRR along spatial/spectral domain from the MSI/HSI inputs. By using the learned spatial and spectral low-rank structures, we formulate the proposed HSI super-resolution model as a variational optimization problem, which can be readily solved by the ADMM algorithm. Compared with state-of-the-art hyperspectral super-resolution methods, the proposed method shows better performance on three benchmark datasets in terms of both visual and quantitative evaluation.
Collapse
|
33
|
Dian R, Li S, Fang L, Lu T, Bioucas-Dias JM. Nonlocal Sparse Tensor Factorization for Semiblind Hyperspectral and Multispectral Image Fusion. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:4469-4480. [PMID: 31794410 DOI: 10.1109/tcyb.2019.2951572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combining a high-spatial-resolution multispectral image (HR-MSI) with a low-spatial-resolution hyperspectral image (LR-HSI) has become a common way to enhance the spatial resolution of the HSI. The existing state-of-the-art LR-HSI and HR-MSI fusion methods are mostly based on the matrix factorization, where the matrix data representation may be hard to fully make use of the inherent structures of 3-D HSI. We propose a nonlocal sparse tensor factorization approach, called the NLSTF_SMBF, for the semiblind fusion of HSI and MSI. The proposed method decomposes the HSI into smaller full-band patches (FBPs), which, in turn, are factored as dictionaries of the three HSI modes and a sparse core tensor. This decomposition allows to solve the fusion problem as estimating a sparse core tensor and three dictionaries for each FBP. Similar FBPs are clustered together, and they are assumed to share the same dictionaries to make use of the nonlocal self-similarities of the HSI. For each group, we learn the dictionaries from the observed HR-MSI and LR-HSI. The corresponding sparse core tensor of each FBP is computed via tensor sparse coding. Two distinctive features of NLSTF_SMBF are that: 1) it is blind with respect to the point spread function (PSF) of the hyperspectral sensor and 2) it copes with spatially variant PSFs. The experimental results provide the evidence of the advantages of the NLSTF_SMBF method over the existing state-of-the-art methods, namely, in semiblind scenarios.
Collapse
|
34
|
Xie W, Lei J, Cui Y, Li Y, Du Q. Hyperspectral Pansharpening With Deep Priors. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:1529-1543. [PMID: 31265415 DOI: 10.1109/tnnls.2019.2920857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hyperspectral (HS) image can describe subtle differences in the spectral signatures of materials, but it has low spatial resolution limited by the existing technical and budget constraints. In this paper, we propose a promising HS pansharpening method with deep priors (HPDP) to fuse a low-resolution (LR) HS image with a high-resolution (HR) panchromatic (PAN) image. Different from the existing methods, we redefine the spectral response function (SRF) based on the larger eigenvalue of structure tensor (ST) matrix for the first time that is more in line with the characteristics of HS imaging. Then, we introduce HFNet to capture deep residual mapping of high frequency across the upsampled HS image and the PAN image in a band-by-band manner. Specifically, the learned residual mapping of high frequency is injected into the structural transformed HS images, which are the extracted deep priors served as additional constraint in a Sylvester equation to estimate the final HR HS image. Comparative analyses validate that the proposed HPDP method presents the superior pansharpening performance by ensuring higher quality both in spatial and spectral domains for all types of data sets. In addition, the HFNet is trained in the high-frequency domain based on multispectral (MS) images, which overcomes the sensitivity of deep neural network (DNN) to data sets acquired by different sensors and the difficulty of insufficient training samples for HS pansharpening.
Collapse
|