1
|
Li S, Higashita R, Fu H, Yang B, Liu J. Score Prior Guided Iterative Solver for Speckles Removal in Optical Coherent Tomography Images. IEEE J Biomed Health Inform 2025; 29:248-258. [PMID: 39437277 DOI: 10.1109/jbhi.2024.3480928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Optical coherence tomography (OCT) is a widely used non-invasive imaging modality for ophthalmic diagnosis. However, the inherent speckle noise becomes the leading cause of OCT image quality, and efficient speckle removal algorithms can improve image readability and benefit automated clinical analysis. As an ill-posed inverse problem, it is of utmost importance for speckle removal to learn suitable priors. In this work, we develop a score prior guided iterative solver (SPIS) with logarithmic space to remove speckles in OCT images. Specifically, we model the posterior distribution of raw OCT images as a data consistency term and transform the speckle removal from a nonlinear into a linear inverse problem in the logarithmic domain. Subsequently, the learned prior distribution through the score function from the diffusion model is utilized as a constraint for the data consistency term into the linear inverse optimization, resulting in an iterative speckle removal procedure that alternates between the score prior predictor and the subsequent non-expansive data consistency corrector. Experimental results on the private and public OCT datasets demonstrate that the proposed SPIS has an excellent performance in speckle removal and out-of-distribution (OOD) generalization. Further downstream automatic analysis on the OCT images verifies that the proposed SPIS can benefit clinical applications.
Collapse
|
2
|
Qiu G, Tao D, You D, Wu L. Low-illumination and noisy bridge crack image restoration by deep CNN denoiser and normalized flow module. Sci Rep 2024; 14:18270. [PMID: 39107363 PMCID: PMC11303699 DOI: 10.1038/s41598-024-69412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
When applying deep learning and image processing techniques for bridge crack detection, the obtained images in real-world scenarios have severe image degradation problem. This study focuses on restoring low-illumination bridge crack images corrupted by noise to improve the accuracy of subsequent crack detection and semantic segmentation. The proposed algorithm consists of a deep CNN denoiser and a normalized flow-based brightness enhancement module. By taking the noise spectrum as an input, the deep CNN denoiser restores image at a broad range of noise levels. The normalized flow module, employs a conditional encoder and a reversible network to map the distribution of normally exposed images to a Gaussian distribution, effectively improving the image brightness. Extensive experiments have demonstrated the approach can usefully recover low-illumination images corrupted by noise compared to the state-of-the-art methods. Furthermore, the algorithm presented in this study can also be applied to other image quality restoration with high generalization and robust abilities. And the semantic segmentation accuracy of the restored image is significantly improved.
Collapse
Affiliation(s)
- Guangying Qiu
- State Key Laboratory of Rail Transit Infrastructure Performance Monitoring and Guarantee, East China Jiaotong University, Nanchang, 330013, China
| | - Dan Tao
- State Key Laboratory of Rail Transit Infrastructure Performance Monitoring and Guarantee, East China Jiaotong University, Nanchang, 330013, China.
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, 330013, China.
| | - Dequan You
- Fujian Communications Research Institute Co., Ltd., Fuzhou, 350000, China
| | - Linming Wu
- Fujian Communications Research Institute Co., Ltd., Fuzhou, 350000, China
| |
Collapse
|
3
|
Srivastava G, Pradhan N, Saini Y. Ensemble of Deep Neural Networks based on Condorcet's Jury Theorem for screening Covid-19 and Pneumonia from radiograph images. Comput Biol Med 2022; 149:105979. [PMID: 36063689 PMCID: PMC9404085 DOI: 10.1016/j.compbiomed.2022.105979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/04/2022]
Abstract
COVID-19 detection using Artificial Intelligence and Computer-Aided Diagnosis has been the subject of several studies. Deep Neural Networks with hundreds or even millions of parameters (weights) are referred to as "black boxes" because their behavior is difficult to comprehend, even when the model's structure and weights are visible. On the same dataset, different Deep Convolutional Neural Networks perform differently. So, we do not necessarily have to rely on just one model; instead, we can evaluate our final score by combining multiple models. While including multiple models in the voter pool, it is not always true that the accuracy will improve. So, In this regard, the authors proposed a novel approach to determine the voting ensemble score of individual classifiers based on Condorcet's Jury Theorem (CJT). The authors demonstrated that the theorem holds while ensembling the N number of classifiers in Neural Networks. With the help of CJT, the authors proved that a model's presence in the voter pool would improve the likelihood that the majority vote will be accurate if it is more accurate than the other models. Besides this, the authors also proposed a Domain Extended Transfer Learning (DETL) ensemble model as a soft voting ensemble method and compared it with CJT based ensemble method. Furthermore, as deep learning models typically fail in real-world testing, a novel dataset has been used with no duplicate images. Duplicates in the dataset are quite problematic since they might affect the training process. Therefore, having a dataset devoid of duplicate images is considered to prevent data leakage problems that might impede the thorough assessment of the trained models. The authors also employed an algorithm for faster training to save computational efforts. Our proposed method and experimental results outperformed the state-of-the-art with the DETL-based ensemble model showing an accuracy of 97.26%, COVID-19, sensitivity of 98.37%, and specificity of 100%. CJT-based ensemble model showed an accuracy of 98.22%, COVID-19, sensitivity of 98.37%, and specificity of 99.79%.
Collapse
Affiliation(s)
- Gaurav Srivastava
- Department of Computer Science and Engineering, Manipal University Jaipur, 303007, Rajasthan, India.
| | - Nitesh Pradhan
- Department of Computer Science and Engineering, Manipal University Jaipur, 303007, Rajasthan, India.
| | - Yashwin Saini
- Department of Computer Science and Engineering, Manipal University Jaipur, 303007, Rajasthan, India
| |
Collapse
|
4
|
Glass Refraction Distortion Object Detection via Abstract Features. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5456818. [PMID: 35371226 PMCID: PMC8970925 DOI: 10.1155/2022/5456818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022]
Abstract
Glass reflection and refraction lead to missing and distorted object feature data, affecting the accuracy of object detection. In order to solve the above problems, this paper proposed a glass refraction distortion object detection via abstract features. The number of parameters of the algorithm is reduced by introducing skip connections and expansion modules with different expansion rates. The abstract feature information of the object is extracted by binary cross-entropy loss. Meanwhile, the abstract feature distance between the object domain and source domain is reduced by a loss function, which improves the accuracy of object detection under glass interference. To verify the effectiveness of the algorithm in this paper, the GRI dataset is produced and made public on GitHub. The algorithm of this paper is compared with the current state-of-the-art Deep Face, VGG Face, TBE-CNN, DA-GAN, PEN-3D, LMZMPM, and the average detection accuracy of our algorithm is 92.57% at the highest, and the number of parameters is only 5.13 M.
Collapse
|
5
|
Liu R, Ma L, Yuan X, Zeng S, Zhang J. Task-Oriented Convex Bilevel Optimization With Latent Feasibility. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:1190-1203. [PMID: 35015638 DOI: 10.1109/tip.2022.3140607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper firstly proposes a convex bilevel optimization paradigm to formulate and optimize popular learning and vision problems in real-world scenarios. Different from conventional approaches, which directly design their iteration schemes based on given problem formulation, we introduce a task-oriented energy as our latent constraint which integrates richer task information. By explicitly re- characterizing the feasibility, we establish an efficient and flexible algorithmic framework to tackle convex models with both shrunken solution space and powerful auxiliary (based on domain knowledge and data distribution of the task). In theory, we present the convergence analysis of our latent feasibility re- characterization based numerical strategy. We also analyze the stability of the theoretical convergence under computational error perturbation. Extensive numerical experiments are conducted to verify our theoretical findings and evaluate the practical performance of our method on different applications.
Collapse
|
6
|
Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of Generative Model. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2022.3148373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Chen H, He X, Yang H, Qing L, Teng Q. A Feature-Enriched Deep Convolutional Neural Network for JPEG Image Compression Artifacts Reduction and its Applications. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:430-444. [PMID: 34793307 DOI: 10.1109/tnnls.2021.3124370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The amount of multimedia data, such as images and videos, has been increasing rapidly with the development of various imaging devices and the Internet, bringing more stress and challenges to information storage and transmission. The redundancy in images can be reduced to decrease data size via lossy compression, such as the most widely used standard Joint Photographic Experts Group (JPEG). However, the decompressed images generally suffer from various artifacts (e.g., blocking, banding, ringing, and blurring) due to the loss of information, especially at high compression ratios. This article presents a feature-enriched deep convolutional neural network for compression artifacts reduction (FeCarNet, for short). Taking the dense network as the backbone, FeCarNet enriches features to gain valuable information via introducing multi-scale dilated convolutions, along with the efficient 1 ×1 convolution for lowering both parameter complexity and computation cost. Meanwhile, to make full use of different levels of features in FeCarNet, a fusion block that consists of attention-based channel recalibration and dimension reduction is developed for local and global feature fusion. Furthermore, short and long residual connections both in the feature and pixel domains are combined to build a multi-level residual structure, thereby benefiting the network training and performance. In addition, aiming at reducing computation complexity further, pixel-shuffle-based image downsampling and upsampling layers are, respectively, arranged at the head and tail of the FeCarNet, which also enlarges the receptive field of the whole network. Experimental results show the superiority of FeCarNet over state-of-the-art compression artifacts reduction approaches in terms of both restoration capacity and model complexity. The applications of FeCarNet on several computer vision tasks, including image deblurring, edge detection, image segmentation, and object detection, demonstrate the effectiveness of FeCarNet further.
Collapse
|
8
|
Image Denoising Using Nonlocal Regularized Deep Image Prior. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Deep neural networks have shown great potential in various low-level vision tasks, leading to several state-of-the-art image denoising techniques. Training a deep neural network in a supervised fashion usually requires the collection of a great number of examples and the consumption of a significant amount of time. However, the collection of training samples is very difficult for some application scenarios, such as the full-sampled data of magnetic resonance imaging and the data of satellite remote sensing imaging. In this paper, we overcome the problem of a lack of training data by using an unsupervised deep-learning-based method. Specifically, we propose a deep-learning-based method based on the deep image prior (DIP) method, which only requires a noisy image as training data, without any clean data. It infers the natural images with random inputs and the corrupted observation with the help of performing correction via a convolutional network. We improve the original DIP method as follows: Firstly, the original optimization objective function is modified by adding nonlocal regularizers, consisting of a spatial filter and a frequency domain filter, to promote the gradient sparsity of the solution. Secondly, we solve the optimization problem with the alternating direction method of multipliers (ADMM) framework, resulting in two separate optimization problems, including a symmetric U-Net training step and a plug-and-play proximal denoising step. As such, the proposed method exploits the powerful denoising ability of both deep neural networks and nonlocal regularizations. Experiments validate the effectiveness of leveraging a combination of DIP and nonlocal regularizers, and demonstrate the superior performance of the proposed method both quantitatively and visually compared with the original DIP method.
Collapse
|
9
|
SSIM-based sparse image restoration. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2021. [DOI: 10.1016/j.jksuci.2021.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Hao D, Ding S, Qiu L, Lv Y, Fei B, Zhu Y, Qin B. Sequential vessel segmentation via deep channel attention network. Neural Netw 2020; 128:172-187. [PMID: 32447262 DOI: 10.1016/j.neunet.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 02/01/2023]
Abstract
Accurately segmenting contrast-filled vessels from X-ray coronary angiography (XCA) image sequence is an essential step for the diagnosis and therapy of coronary artery disease. However, developing automatic vessel segmentation is particularly challenging due to the overlapping structures, low contrast and the presence of complex and dynamic background artifacts in XCA images. This paper develops a novel encoder-decoder deep network architecture which exploits the several contextual frames of 2D+t sequential images in a sliding window centered at current frame to segment 2D vessel masks from the current frame. The architecture is equipped with temporal-spatial feature extraction in encoder stage, feature fusion in skip connection layers and channel attention mechanism in decoder stage. In the encoder stage, a series of 3D convolutional layers are employed to hierarchically extract temporal-spatial features. Skip connection layers subsequently fuse the temporal-spatial feature maps and deliver them to the corresponding decoder stages. To efficiently discriminate vessel features from the complex and noisy backgrounds in the XCA images, the decoder stage effectively utilizes channel attention blocks to refine the intermediate feature maps from skip connection layers for subsequently decoding the refined features in 2D ways to produce the segmented vessel masks. Furthermore, Dice loss function is implemented to train the proposed deep network in order to tackle the class imbalance problem in the XCA data due to the wide distribution of complex background artifacts. Extensive experiments by comparing our method with other state-of-the-art algorithms demonstrate the proposed method's superior performance over other methods in terms of the quantitative metrics and visual validation. To facilitate the reproductive research in XCA community, we publicly release our dataset and source codes at https://github.com/Binjie-Qin/SVS-net.
Collapse
Affiliation(s)
- Dongdong Hao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Song Ding
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Linwei Qiu
- School of Astronautics, Beihang University, Beijing 100191, China
| | - Yisong Lv
- School of Continuing Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baowei Fei
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 600 Yi Shan Road, Shanghai 200233, China
| | - Binjie Qin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|