1
|
Xu L, Zhang C, Liu Y, Zhao G, Yuan S, Guan W, Fu J. SP-XTIN: A single projection grating-based X-ray tri-contrast imaging network. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 264:108718. [PMID: 40120289 DOI: 10.1016/j.cmpb.2025.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND AND OBJECTIVE Grating-based X-ray imaging (GBXI) enables the acquisition of tri-contrast signals-absorption, phase, and dark- field-making it highly promising for applications in clinical diagnostics. However, traditional GBXI requires phase stepping of gratings, leading to high radiation doses. In this study, a single projection grating-based X-ray tri-contrast imaging network (SP-XTIN) is proposed. METHODS A Pix2pixHD-based architecture is adopted, and a multi-task learning strategy is employed to transform the generator into a multi-output model that can simultaneously generate tri-contrast images. Additionally, an edge loss term is integrated into the loss function to enhance edge preservation in the tri-contrast images. RESULTS The proposed SP-XTIN is validated on two experimental datasets: one acquired with synchrotron radiation (SR) and another using a laboratory X-ray tube source. For the SR dataset, the feature similarity index measure (FSIM) values for absorption, phase, and dark-field signals achieved were 0.9871, 0.9863, and 0.9786, respectively. Using the laboratory X-ray tube source dataset, the FSIM values were 0.9883, 0.9670, and 0.9631. CONCLUSION The proposed SP-XTIN is effective in advancing GBXI technology. These results highlight its effectiveness and are expected to contribute to the further development of this field.
Collapse
Affiliation(s)
- Linhai Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Changsheng Zhang
- Ningbo Institute of Technology, Beihang University, Ningbo, 315000, China
| | - Yu Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Gang Zhao
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Shengping Yuan
- Aerospace Research Institute of Materials and Processing Technology, Beijing, 100076, China
| | - Wei Guan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Jian Fu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China; Ningbo Institute of Technology, Beihang University, Ningbo, 315000, China.
| |
Collapse
|
2
|
Li L, Zhang Z, Li Y, Wang Y, Zhao W. DDoCT: Morphology preserved dual-domain joint optimization for fast sparse-view low-dose CT imaging. Med Image Anal 2025; 101:103420. [PMID: 39705821 DOI: 10.1016/j.media.2024.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Computed tomography (CT) is continuously becoming a valuable diagnostic technique in clinical practice. However, the radiation dose exposure in the CT scanning process is a public health concern. Within medical diagnoses, mitigating the radiation risk to patients can be achieved by reducing the radiation dose through adjustments in tube current and/or the number of projections. Nevertheless, dose reduction introduces additional noise and artifacts, which have extremely detrimental effects on clinical diagnosis and subsequent analysis. In recent years, the feasibility of applying deep learning methods to low-dose CT (LDCT) imaging has been demonstrated, leading to significant achievements. This article proposes a dual-domain joint optimization LDCT imaging framework (termed DDoCT) which uses noisy sparse-view projection to reconstruct high-performance CT images with joint optimization in projection and image domains. The proposed method not only addresses the noise introduced by reducing tube current, but also pays special attention to issues such as streak artifacts caused by a reduction in the number of projections, enhancing the applicability of DDoCT in practical fast LDCT imaging environments. Experimental results have demonstrated that DDoCT has made significant progress in reducing noise and streak artifacts and enhancing the contrast and clarity of the images.
Collapse
Affiliation(s)
- Linxuan Li
- School of Physics, Beihang University, Beijing, China.
| | - Zhijie Zhang
- School of Physics, Beihang University, Beijing, China.
| | - Yongqing Li
- School of Physics, Beihang University, Beijing, China.
| | - Yanxin Wang
- School of Physics, Beihang University, Beijing, China.
| | - Wei Zhao
- School of Physics, Beihang University, Beijing, China; Hangzhou International Innovation Institute, Beihang University, Hangzhou, China; Tianmushan Laboratory, Hangzhou, China.
| |
Collapse
|
3
|
Li Y, Sun X, Wang S, Guo L, Qin Y, Pan J, Chen P. TD-STrans: Tri-domain sparse-view CT reconstruction based on sparse transformer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108575. [PMID: 39733746 DOI: 10.1016/j.cmpb.2024.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND AND OBJECTIVE Sparse-view computed tomography (CT) speeds up scanning and reduces radiation exposure in medical diagnosis. However, when the projection views are severely under-sampled, deep learning-based reconstruction methods often suffer from over-smoothing of the reconstructed images due to the lack of high-frequency information. To address this issue, we introduce frequency domain information into the popular projection-image domain reconstruction, proposing a Tri-Domain sparse-view CT reconstruction model based on Sparse Transformer (TD-STrans). METHODS TD-STrans integrates three essential modules: the projection recovery module completes the sparse-view projection, the Fourier domain filling module mitigates artifacts and over-smoothing by filling in missing high-frequency details; the image refinement module further enhances and preserves image details. Additionally, a multi-domain joint loss function is designed to simultaneously enhance the reconstruction quality in the projection domain, image domain, and frequency domain, thereby further improving the preservation of image details. RESULTS The results of simulation experiments on the lymph node dataset and real experiments on the walnut dataset consistently demonstrate the effectiveness of TD-STrans in artifact removal, suppression of over-smoothing, and preservation of structural fidelity. CONCLUSION The reconstruction results of TD-STrans indicate that sparse transformer across multiple domains can alleviate over-smoothing and detail loss caused by reduced views, offering a novel solution for ultra-sparse-view CT imaging.
Collapse
Affiliation(s)
- Yu Li
- Department of Information and Communication Engineering, North University of China, Taiyuan 030051, China; The State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China
| | - Xueqin Sun
- Department of Information and Communication Engineering, North University of China, Taiyuan 030051, China; The State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China
| | - Sukai Wang
- The State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China; Department of computer science and technology, North University of China, Taiyuan 030051, China
| | - Lina Guo
- Department of Information and Communication Engineering, North University of China, Taiyuan 030051, China; The State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China
| | - Yingwei Qin
- Department of Information and Communication Engineering, North University of China, Taiyuan 030051, China; The State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China
| | - Jinxiao Pan
- Department of Information and Communication Engineering, North University of China, Taiyuan 030051, China; The State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China
| | - Ping Chen
- Department of Information and Communication Engineering, North University of China, Taiyuan 030051, China; The State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China.
| |
Collapse
|
4
|
Usui K, Kamiyama S, Arita A, Ogawa K, Sakamoto H, Sakano Y, Kyogoku S, Daida H. Reducing image artifacts in sparse projection CT using conditional generative adversarial networks. Sci Rep 2024; 14:3917. [PMID: 38365934 PMCID: PMC10873335 DOI: 10.1038/s41598-024-54649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Reducing the amount of projection data in computed tomography (CT), specifically sparse-view CT, can reduce exposure dose; however, image artifacts can occur. We quantitatively evaluated the effects of conditional generative adversarial networks (CGAN) on image quality restoration for sparse-view CT using simulated sparse projection images and compared them with autoencoder (AE) and U-Net models. The AE, U-Net, and CGAN models were trained using pairs of artifacts and original images; 90% of patient cases were used for training and the remaining for evaluation. Restoration of CT values was evaluated using mean error (ME) and mean absolute error (MAE). The image quality was evaluated using structural image similarity (SSIM) and peak signal-to-noise ratio (PSNR). Image quality improved in all sparse projection data; however, slight deformation in tumor and spine regions was observed, with a dispersed projection of over 5°. Some hallucination regions were observed in the CGAN results. Image resolution decreased, and blurring occurred in AE and U-Net; therefore, large deviations in ME and MAE were observed in lung and air regions, and the SSIM and PSNR results were degraded. The CGAN model achieved accurate CT value restoration and improved SSIM and PSNR compared to AE and U-Net models.
Collapse
Affiliation(s)
- Keisuke Usui
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Radiation Oncology, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Sae Kamiyama
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akihiro Arita
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Koichi Ogawa
- Faculty of Science and Engineering, Hosei University, 3-7-3, Kajino, Koganei, Tokyo, 184-8584, Japan
| | - Hajime Sakamoto
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasuaki Sakano
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shinsuke Kyogoku
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroyuki Daida
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
5
|
Rahman H, Khan AR, Sadiq T, Farooqi AH, Khan IU, Lim WH. A Systematic Literature Review of 3D Deep Learning Techniques in Computed Tomography Reconstruction. Tomography 2023; 9:2158-2189. [PMID: 38133073 PMCID: PMC10748093 DOI: 10.3390/tomography9060169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Computed tomography (CT) is used in a wide range of medical imaging diagnoses. However, the reconstruction of CT images from raw projection data is inherently complex and is subject to artifacts and noise, which compromises image quality and accuracy. In order to address these challenges, deep learning developments have the potential to improve the reconstruction of computed tomography images. In this regard, our research aim is to determine the techniques that are used for 3D deep learning in CT reconstruction and to identify the training and validation datasets that are accessible. This research was performed on five databases. After a careful assessment of each record based on the objective and scope of the study, we selected 60 research articles for this review. This systematic literature review revealed that convolutional neural networks (CNNs), 3D convolutional neural networks (3D CNNs), and deep learning reconstruction (DLR) were the most suitable deep learning algorithms for CT reconstruction. Additionally, two major datasets appropriate for training and developing deep learning systems were identified: 2016 NIH-AAPM-Mayo and MSCT. These datasets are important resources for the creation and assessment of CT reconstruction models. According to the results, 3D deep learning may increase the effectiveness of CT image reconstruction, boost image quality, and lower radiation exposure. By using these deep learning approaches, CT image reconstruction may be made more precise and effective, improving patient outcomes, diagnostic accuracy, and healthcare system productivity.
Collapse
Affiliation(s)
- Hameedur Rahman
- Department of Computer Games Development, Faculty of Computing & AI, Air University, E9, Islamabad 44000, Pakistan;
| | - Abdur Rehman Khan
- Department of Creative Technologies, Faculty of Computing & AI, Air University, E9, Islamabad 44000, Pakistan;
| | - Touseef Sadiq
- Centre for Artificial Intelligence Research, Department of Information and Communication Technology, University of Agder, Jon Lilletuns vei 9, 4879 Grimstad, Norway
| | - Ashfaq Hussain Farooqi
- Department of Computer Science, Faculty of Computing AI, Air University, Islamabad 44000, Pakistan;
| | - Inam Ullah Khan
- Department of Electronic Engineering, School of Engineering & Applied Sciences (SEAS), Isra University, Islamabad Campus, Islamabad 44000, Pakistan;
| | - Wei Hong Lim
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
6
|
Cheng CC, Chiang MH, Yeh CH, Lee TT, Ching YT, Hwu Y, Chiang AS. Sparse-view synchrotron X-ray tomographic reconstruction with learning-based sinogram synthesis. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1135-1142. [PMID: 37850562 PMCID: PMC10624031 DOI: 10.1107/s1600577523008032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Synchrotron radiation can be used as a light source in X-ray microscopy to acquire a high-resolution image of a microscale object for tomography. However, numerous projections must be captured for a high-quality tomographic image to be reconstructed; thus, image acquisition is time consuming. Such dense imaging is not only expensive and time consuming but also results in the target receiving a large dose of radiation. To resolve these problems, sparse acquisition techniques have been proposed; however, the generated images often have many artefacts and are noisy. In this study, a deep-learning-based approach is proposed for the tomographic reconstruction of sparse-view projections that are acquired with a synchrotron light source; this approach proceeds as follows. A convolutional neural network (CNN) is used to first interpolate sparse X-ray projections and then synthesize a sufficiently large set of images to produce a sinogram. After the sinogram is constructed, a second CNN is used for error correction. In experiments, this method successfully produced high-quality tomography images from sparse-view projections for two data sets comprising Drosophila and mouse tomography images. However, the initial results for the smaller mouse data set were poor; therefore, transfer learning was used to apply the Drosophila model to the mouse data set, greatly improving the quality of the reconstructed sinogram. The method could be used to achieve high-quality tomography while reducing the radiation dose to imaging subjects and the imaging time and cost.
Collapse
Affiliation(s)
- Chang-Chieh Cheng
- Information Technology Service Center, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
| | - Ming-Hsuan Chiang
- Department of Computer Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
| | - Chao-Hong Yeh
- Institute of Data Science and Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
| | - Tsung-Tse Lee
- Institute of Physics, Academia Sinica, 128 Academia Road, Nankang, Taipei, Taiwan
| | - Yu-Tai Ching
- Department of Computer Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
| | - Yeukuang Hwu
- Institute of Physics, Academia Sinica, 128 Academia Road, Nankang, Taipei, Taiwan
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
7
|
Zhang W, Hu T, Li Z, Sun Z, Jia K, Dou H, Feng J, Pogue BW. Selfrec-Net: self-supervised deep learning approach for the reconstruction of Cherenkov-excited luminescence scanned tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:783-798. [PMID: 36874507 PMCID: PMC9979688 DOI: 10.1364/boe.480429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
As an emerging imaging technique, Cherenkov-excited luminescence scanned tomography (CELST) can recover a high-resolution 3D distribution of quantum emission fields within tissue using X-ray excitation for deep penetrance. However, its reconstruction is an ill-posed and under-conditioned inverse problem because of the diffuse optical emission signal. Deep learning based image reconstruction has shown very good potential for solving these types of problems, however they suffer from a lack of ground-truth image data to confirm when used with experimental data. To overcome this, a self-supervised network cascaded by a 3D reconstruction network and the forward model, termed Selfrec-Net, was proposed to perform CELST reconstruction. Under this framework, the boundary measurements are input to the network to reconstruct the distribution of the quantum field and the predicted measurements are subsequently obtained by feeding the reconstructed result to the forward model. The network was trained by minimizing the loss between the input measurements and the predicted measurements rather than the reconstructed distributions and the corresponding ground truths. Comparative experiments were carried out on both numerical simulations and physical phantoms. For singular luminescent targets, the results demonstrate the effectiveness and robustness of the proposed network, and comparable performance can be attained to a state-of-the-art deep supervised learning algorithm, where the accuracy of the emission yield and localization of the objects was far superior to iterative reconstruction methods. Reconstruction of multiple objects is still reasonable with high localization accuracy, although with limits to the emission yield accuracy as the distribution becomes more complex. Overall though the reconstruction of Selfrec-Net provides a self-supervised way to recover the location and emission yield of molecular distributions in murine model tissues.
Collapse
Affiliation(s)
- Wenqian Zhang
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Ting Hu
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Zhe Li
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Zhonghua Sun
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Kebin Jia
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Huijing Dou
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Jinchao Feng
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
| | - Brian W. Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
8
|
Zhang P, Li K. A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107168. [PMID: 36219892 DOI: 10.1016/j.cmpb.2022.107168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The dual-domain deep learning-based reconstruction techniques have enjoyed many successful applications in the field of medical image reconstruction. Applying the analytical reconstruction based operator to transfer the data from the projection domain to the image domain, the dual-domain techniques may suffer from the insufficient suppression or removal of streak artifacts in areas with the missing view data, when addressing the sparse-view reconstruction problems. In this work, to overcome this problem, an intelligent sinogram synthesis based back-projection network (iSSBP-Net) was proposed for sparse-view computed tomography (CT) reconstruction. In the iSSBP-Net method, a convolutional neural network (CNN) was involved in the dual-domain method to inpaint the missing view data in the sinogram before CT reconstruction. METHODS The proposed iSSBP-Net method fused a sinogram synthesis sub-network (SS-Net), a sinogram filter sub-network (SF-Net), a back-projection layer, and a post-CNN into an end-to-end network. Firstly, to inpaint the missing view data, the SS-Net employed a CNN to synthesize the full-view sinogram in the projection domain. Secondly, to improve the visual quality of the sparse-view CT images, the synthesized sinogram was filtered by a CNN. Thirdly, the filtered sinogram was brought into the image domain through the back-projection layer. Finally, to yield images of high visual sensitivity, the post-CNN was applied to restore the desired images from the outputs of the back-projection layer. RESULTS The numerical experiments demonstrate that the proposed iSSBP-Net is superior to all competing algorithms under different scanning condintions for sparse-view CT reconstruction. Compared to the competing algorithms, the proposed iSSBP-Net method improved the peak signal-to-noise ratio of the reconstructed images about 1.21 dB, 0.26 dB, 0.01 dB, and 0.37 dB under the scanning conditions of 360, 180, 90, and 60 views, respectively. CONCLUSION The promising reconstruction results indicate that involving the SS-Net in the dual-domain method is could be an effective manner to suppress or remove the streak artifacts in sparse-view CT images. Due to the promising results reconstructed by the iSSBP-Net method, this study is intended to inspire the further development of sparse-view CT reconstruction by involving a SS-Net in the dual-domain method.
Collapse
Affiliation(s)
- Pengcheng Zhang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, PR China.
| | - Kunpeng Li
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, PR China
| |
Collapse
|
9
|
Feature selection based on self-information and entropy measures for incomplete neighborhood decision systems. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractFor incomplete datasets with mixed numerical and symbolic features, feature selection based on neighborhood multi-granulation rough sets (NMRS) is developing rapidly. However, its evaluation function only considers the information contained in the lower approximation of the neighborhood decision, which easily leads to the loss of some information. To solve this problem, we construct a novel NMRS-based uncertain measure for feature selection, named neighborhood multi-granulation self-information-based pessimistic neighborhood multi-granulation tolerance joint entropy (PTSIJE), which can be used to incomplete neighborhood decision systems. First, from the algebra view, four kinds of neighborhood multi-granulation self-information measures of decision variables are proposed by using the upper and lower approximations of NMRS. We discuss the related properties, and find the fourth measure-lenient neighborhood multi-granulation self-information measure (NMSI) has better classification performance. Then, inspired by the algebra and information views simultaneously, a feature selection method based on PTSIJE is proposed. Finally, the Fisher score method is used to delete uncorrelated features to reduce the computational complexity for high-dimensional gene datasets, and a heuristic feature selection algorithm is raised to improve classification performance for mixed and incomplete datasets. Experimental results on 11 datasets show that our method selects fewer features and has higher classification accuracy than related methods.
Collapse
|
10
|
The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractConventional reconstruction techniques, such as filtered back projection (FBP) and iterative reconstruction (IR), which have been utilised widely in the image reconstruction process of computed tomography (CT) are not suitable in the case of low-dose CT applications, because of the unsatisfying quality of the reconstructed image and inefficient reconstruction time. Therefore, as the demand for CT radiation dose reduction continues to increase, the use of artificial intelligence (AI) in image reconstruction has become a trend that attracts more and more attention. This systematic review examined various deep learning methods to determine their characteristics, availability, intended use and expected outputs concerning low-dose CT image reconstruction. Utilising the methodology of Kitchenham and Charter, we performed a systematic search of the literature from 2016 to 2021 in Springer, Science Direct, arXiv, PubMed, ACM, IEEE, and Scopus. This review showed that algorithms using deep learning technology are superior to traditional IR methods in noise suppression, artifact reduction and structure preservation, in terms of improving the image quality of low-dose reconstructed images. In conclusion, we provided an overview of the use of deep learning approaches in low-dose CT image reconstruction together with their benefits, limitations, and opportunities for improvement.
Collapse
|
11
|
Wang M, Wei S, Liang J, Zhou Z, Qu Q, Shi J, Zhang X. TPSSI-Net: Fast and Enhanced Two-Path Iterative Network for 3D SAR Sparse Imaging. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:7317-7332. [PMID: 34415832 DOI: 10.1109/tip.2021.3104168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The emerging field of combining compressed sensing (CS) and three-dimensional synthetic aperture radar (3D SAR) imaging has shown significant potential to reduce sampling rate and improve image quality. However, the conventional CS-driven algorithms are always limited by huge computational costs and non-trivial tuning of parameters. In this article, to address this problem, we propose a two-path iterative framework dubbed TPSSI-Net for 3D SAR sparse imaging. By mapping the AMP into a layer-fixed deep neural network, each layer of TPSSI-Net consists of four modules in cascade corresponding to four steps of the AMP optimization. Differently, the Onsager terms in TPSSI-Net are modified to be differentiable and scaled by learnable coefficients. Rather than manually choosing a sparsifying basis, a two-path convolutional neural network (CNN) is developed and embedded in TPSSI-Net for nonlinear sparse representation in the complex-valued domain. All parameters are layer-varied and optimized by end-to-end training based on a channel-wise loss function, bounding both symmetry constraint and measurement fidelity. Finally, extensive SAR imaging experiments, including simulations and real-measured tests, demonstrate the effectiveness and high efficiency of the proposed TPSSI-Net.
Collapse
|
12
|
Chen XL, Yan TY, Wang N, von Deneen KM. Rising role of artificial intelligence in image reconstruction for biomedical imaging. Artif Intell Med Imaging 2020; 1:1-5. [DOI: 10.35711/aimi.v1.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
In this editorial, we review recent progress on the applications of artificial intelligence (AI) in image reconstruction for biomedical imaging. Because it abandons prior information of traditional artificial design and adopts a completely data-driven mode to obtain deeper prior information via learning, AI technology plays an increasingly important role in biomedical image reconstruction. The combination of AI technology and the biomedical image reconstruction method has become a hotspot in the field. Favoring AI, the performance of biomedical image reconstruction has been improved in terms of accuracy, resolution, imaging speed, etc. We specifically focus on how to use AI technology to improve the performance of biomedical image reconstruction, and propose possible future directions in this field.
Collapse
Affiliation(s)
- Xue-Li Chen
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi Province, China
| | - Tian-Yu Yan
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi Province, China
| | - Nan Wang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi Province, China
| | - Karen M von Deneen
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi Province, China
| |
Collapse
|