Wang Y, Shen X, Yuan Y, Du Y, Li M, Hu SX, Crowley JL, Vaufreydaz D. TokenCut: Segmenting Objects in Images and Videos With Self-Supervised Transformer and Normalized Cut.
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023;
45:15790-15801. [PMID:
37594874 DOI:
10.1109/tpami.2023.3305122]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
In this paper, we describe a graph-based algorithm that uses the features obtained by a self-supervised transformer to detect and segment salient objects in images and videos. With this approach, the image patches that compose an image or video are organised into a fully connected graph, in which the edge between each pair of patches is labeled with a similarity score based on the features learned by the transformer. Detection and segmentation of salient objects can then be formulated as a graph-cut problem and solved using the classical Normalized Cut algorithm. Despite the simplicity of this approach, it achieves state-of-the-art results on several common image and video detection and segmentation tasks. For unsupervised object discovery, this approach outperforms the competing approaches by a margin of 6.1%, 5.7%, and 2.6% when tested with the VOC07, VOC12, and COCO20 K datasets. For the unsupervised saliency detection task in images, this method improves the score for Intersection over Union (IoU) by 4.4%, 5.6% and 5.2%. When tested with the ECSSD, DUTS, and DUT-OMRON datasets. This method also achieves competitive results for unsupervised video object segmentation tasks with the DAVIS, SegTV2, and FBMS datasets.
Collapse