2
|
Kavur AE, Gezer NS, Barış M, Aslan S, Conze PH, Groza V, Pham DD, Chatterjee S, Ernst P, Özkan S, Baydar B, Lachinov D, Han S, Pauli J, Isensee F, Perkonigg M, Sathish R, Rajan R, Sheet D, Dovletov G, Speck O, Nürnberger A, Maier-Hein KH, Bozdağı Akar G, Ünal G, Dicle O, Selver MA. CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation. Med Image Anal 2020; 69:101950. [PMID: 33421920 DOI: 10.1016/j.media.2020.101950] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Segmentation of abdominal organs has been a comprehensive, yet unresolved, research field for many years. In the last decade, intensive developments in deep learning (DL) introduced new state-of-the-art segmentation systems. Despite outperforming the overall accuracy of existing systems, the effects of DL model properties and parameters on the performance are hard to interpret. This makes comparative analysis a necessary tool towards interpretable studies and systems. Moreover, the performance of DL for emerging learning approaches such as cross-modality and multi-modal semantic segmentation tasks has been rarely discussed. In order to expand the knowledge on these topics, the CHAOS - Combined (CT-MR) Healthy Abdominal Organ Segmentation challenge was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI), 2019, in Venice, Italy. Abdominal organ segmentation from routine acquisitions plays an important role in several clinical applications, such as pre-surgical planning or morphological and volumetric follow-ups for various diseases. These applications require a certain level of performance on a diverse set of metrics such as maximum symmetric surface distance (MSSD) to determine surgical error-margin or overlap errors for tracking size and shape differences. Previous abdomen related challenges are mainly focused on tumor/lesion detection and/or classification with a single modality. Conversely, CHAOS provides both abdominal CT and MR data from healthy subjects for single and multiple abdominal organ segmentation. Five different but complementary tasks were designed to analyze the capabilities of participating approaches from multiple perspectives. The results were investigated thoroughly, compared with manual annotations and interactive methods. The analysis shows that the performance of DL models for single modality (CT / MR) can show reliable volumetric analysis performance (DICE: 0.98 ± 0.00 / 0.95 ± 0.01), but the best MSSD performance remains limited (21.89 ± 13.94 / 20.85 ± 10.63 mm). The performances of participating models decrease dramatically for cross-modality tasks both for the liver (DICE: 0.88 ± 0.15 MSSD: 36.33 ± 21.97 mm). Despite contrary examples on different applications, multi-tasking DL models designed to segment all organs are observed to perform worse compared to organ-specific ones (performance drop around 5%). Nevertheless, some of the successful models show better performance with their multi-organ versions. We conclude that the exploration of those pros and cons in both single vs multi-organ and cross-modality segmentations is poised to have an impact on further research for developing effective algorithms that would support real-world clinical applications. Finally, having more than 1500 participants and receiving more than 550 submissions, another important contribution of this study is the analysis on shortcomings of challenge organizations such as the effects of multiple submissions and peeking phenomenon.
Collapse
Affiliation(s)
- A Emre Kavur
- Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Izmir, Turkey
| | - N Sinem Gezer
- Department of Radiology, Faculty Of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Mustafa Barış
- Department of Radiology, Faculty Of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sinem Aslan
- Ca' Foscari University of Venice, ECLT and DAIS, Venice, Italy; Ege University, International Computer Institute, Izmir, Turkey
| | | | | | - Duc Duy Pham
- Intelligent Systems, Faculty of Engineering, University of Duisburg-Essen, Germany
| | - Soumick Chatterjee
- Data and Knowledge Engineering Group, Otto von Guericke University, Magdeburg, Germany; Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Germany
| | - Philipp Ernst
- Data and Knowledge Engineering Group, Otto von Guericke University, Magdeburg, Germany
| | - Savaş Özkan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey
| | - Bora Baydar
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey
| | - Dmitry Lachinov
- Department of Ophthalmology and Optometry, Medical Uni. of Vienna, Austria
| | - Shuo Han
- Johns Hopkins University, Baltimore, USA
| | - Josef Pauli
- Intelligent Systems, Faculty of Engineering, University of Duisburg-Essen, Germany
| | - Fabian Isensee
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Perkonigg
- CIR Lab Dept of Biomedical Imaging and Image-guided Therapy Medical Uni. of Vienna, Austria
| | - Rachana Sathish
- Department of Electrical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Ronnie Rajan
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Debdoot Sheet
- Department of Electrical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Gurbandurdy Dovletov
- Intelligent Systems, Faculty of Engineering, University of Duisburg-Essen, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Germany
| | - Andreas Nürnberger
- Data and Knowledge Engineering Group, Otto von Guericke University, Magdeburg, Germany
| | - Klaus H Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Gözde Bozdağı Akar
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey
| | - Gözde Ünal
- Faculty of Computer and Informatics Engineering, İstanbul Technical University, İstanbul, Turkey
| | - Oğuz Dicle
- Department of Radiology, Faculty Of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - M Alper Selver
- Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
3
|
Kavur AE, Gezer NS, Barış M, Şahin Y, Özkan S, Baydar B, Yüksel U, Kılıkçıer Ç, Olut Ş, Akar GB, Ünal G, Dicle O, Selver MA. Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors. Diagn Interv Radiol 2020; 26:11-21. [PMID: 31904568 PMCID: PMC7075579 DOI: 10.5152/dir.2019.19025] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 06/10/2019] [Indexed: 11/22/2022]
Abstract
PURPOSE To compare the accuracy and repeatability of emerging machine learning based (i.e. deep) automatic segmentation algorithms with those of well-established semi-automatic (interactive) methods for determining liver volume in living liver transplant donors at computerized tomography (CT) imaging. METHODS A total of 12 (6 semi-, 6 full-automatic) methods are evaluated. The semi-automatic segmentation algorithms are based on both traditional iterative models including watershed, fast marching, region growing, active contours and modern techniques including robust statistical segmenter and super-pixels. These methods entail some sort of interaction mechanism such as placing initialization seeds on images or determining a parameter range. The automatic methods are based on deep learning and they include three framework templates (DeepMedic, NiftyNet and U-Net) the first two of which are applied with default parameter sets and the last two involve adapted novel model designs. For 20 living donors (6 training and 12 test datasets), a group of imaging scientists and radiologists created ground truths by performing manual segmentations on contrast material-enhanced CT images. Each segmentation is evaluated using five metrics (i.e. volume overlap and relative volume errors, average/RMS/maximum symmetrical surface distances). The results are mapped to a scoring system and a final grade is calculated by taking their average. Accuracy and repeatability were evaluated using slice by slice comparisons and volumetric analysis. Diversity and complementarity are observed through heatmaps. Majority voting and Simultaneous Truth and Performance Level Estimation (STAPLE) algorithms are utilized to obtain the fusion of the individual results. RESULTS The top four methods are determined to be automatic deep models having 79.63, 79.46 and 77.15 and 74.50 scores. Intra-user score is determined as 95.14. Overall, deep automatic segmentation outperformed interactive techniques on all metrics. The mean volume of liver of ground truth is found to be 1409.93 mL ± 271.28 mL, while it is calculated as 1342.21 mL ± 231.24 mL using automatic and 1201.26 mL ± 258.13 mL using interactive methods, showing higher accuracy and less variation on behalf of automatic methods. The qualitative analysis of segmentation results showed significant diversity and complementarity enabling the idea of using ensembles to obtain superior results. The fusion of automatic methods reached 83.87 with majority voting and 86.20 using STAPLE that are only slightly less than fusion of all methods that achieved 86.70 (majority voting) and 88.74 (STAPLE). CONCLUSION Use of the new deep learning based automatic segmentation algorithms substantially increases the accuracy and repeatability for segmentation and volumetric measurements of liver. Fusion of automatic methods based on ensemble approaches exhibits best results almost without any additional time cost due to potential parallel execution of multiple models.
Collapse
Affiliation(s)
- A. Emre Kavur
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Naciye Sinem Gezer
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Mustafa Barış
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Yusuf Şahin
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Savaş Özkan
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Bora Baydar
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Ulaş Yüksel
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Çağlar Kılıkçıer
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Şahin Olut
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Gözde Bozdağı Akar
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Gözde Ünal
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Oğuz Dicle
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - M. Alper Selver
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| |
Collapse
|
4
|
Fischer F, Selver MA, Gezer S, Dicle O, Hillen W. Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data. J Med Biol Eng 2015; 35:709-723. [PMID: 26692829 PMCID: PMC4666236 DOI: 10.1007/s40846-015-0097-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/28/2015] [Indexed: 11/30/2022]
Abstract
Tomographic medical imaging systems produce hundreds to thousands of slices, enabling three-dimensional (3D) analysis. Radiologists process these images through various tools and techniques in order to generate 3D renderings for various applications, such as surgical planning, medical education, and volumetric measurements. To save and store these visualizations, current systems use snapshots or video exporting, which prevents further optimizations and requires the storage of significant additional data. The Grayscale Softcopy Presentation State extension of the Digital Imaging and Communications in Medicine (DICOM) standard resolves this issue for two-dimensional (2D) data by introducing an extensive set of parameters, namely 2D Presentation States (2DPR), that describe how an image should be displayed. 2DPR allows storing these parameters instead of storing parameter applied images, which cause unnecessary duplication of the image data. Since there is currently no corresponding extension for 3D data, in this study, a DICOM-compliant object called 3D presentation states (3DPR) is proposed for the parameterization and storage of 3D medical volumes. To accomplish this, the 3D medical visualization process is divided into four tasks, namely pre-processing, segmentation, post-processing, and rendering. The important parameters of each task are determined. Special focus is given to the compression of segmented data, parameterization of the rendering process, and DICOM-compliant implementation of the 3DPR object. The use of 3DPR was tested in a radiology department on three clinical cases, which require multiple segmentations and visualizations during the workflow of radiologists. The results show that 3DPR can effectively simplify the workload of physicians by directly regenerating 3D renderings without repeating intermediate tasks, increase efficiency by preserving all user interactions, and provide efficient storage as well as transfer of visualized data.
Collapse
Affiliation(s)
- Felix Fischer
- />FH-Aachen, Juelich Division, Medical Informatics Laboratory, Aachen, Germany
- />Nautavis GmbH, Linnich, Germany
| | - M. Alper Selver
- />Electrical & Electronics Engineering Department, Dokuz Eylul University, 35160 Izmir, Turkey
| | - Sinem Gezer
- />School of Medicine, Radiology Department, Dokuz Eylul University, Izmir, Turkey
| | - Oğuz Dicle
- />School of Medicine, Radiology Department, Dokuz Eylul University, Izmir, Turkey
| | - Walter Hillen
- />FH-Aachen, Juelich Division, Medical Informatics Laboratory, Aachen, Germany
| |
Collapse
|