1
|
Ramlow L, Falcke M, Lindner B. An integrate-and-fire approach to Ca 2+ signaling. Part II: Cumulative refractoriness. Biophys J 2023; 122:4710-4729. [PMID: 37981761 PMCID: PMC10754692 DOI: 10.1016/j.bpj.2023.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023] Open
Abstract
Inositol 1,4,5-trisphosphate-induced Ca2+ signaling is a second messenger system used by almost all eukaryotic cells. The agonist concentration stimulating Ca2+ signals is encoded in the frequency of a Ca2+ concentration spike sequence. When a cell is stimulated, the interspike intervals (ISIs) often show a distinct transient during which they gradually increase, a system property we refer to as cumulative refractoriness. We extend a previously published stochastic model to include the Ca2+ concentration in the intracellular Ca2+ store as a slow adaptation variable. This model can reproduce both stationary and transient statistics of experimentally observed ISI sequences. We derive approximate expressions for the mean and coefficient of variation of the stationary ISIs. We also consider the response to the onset of a constant stimulus and estimate the length of the transient and the strength of the adaptation of the ISI. We show that the adaptation sets the coefficient of variation in agreement with current ideas derived from experiments. Moreover, we explain why, despite a pronounced transient behavior, ISI correlations can be weak, as often observed in experiments. Finally, we fit our model to reproduce the transient statistics of experimentally observed ISI sequences in stimulated HEK cells. The fitted model is able to qualitatively reproduce the relationship between the stationary interval correlations and the number of transient intervals, as well as the strength of the ISI adaptation. We also find positive correlations in the experimental sequence that cannot be explained by our model.
Collapse
Affiliation(s)
- Lukas Ramlow
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Department of Physics, Humboldt University Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Martin Falcke
- Department of Physics, Humboldt University Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Department of Physics, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
2
|
Stern M, Istrate N, Mazzucato L. A reservoir of timescales emerges in recurrent circuits with heterogeneous neural assemblies. eLife 2023; 12:e86552. [PMID: 38084779 PMCID: PMC10810607 DOI: 10.7554/elife.86552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024] Open
Abstract
The temporal activity of many physical and biological systems, from complex networks to neural circuits, exhibits fluctuations simultaneously varying over a large range of timescales. Long-tailed distributions of intrinsic timescales have been observed across neurons simultaneously recorded within the same cortical circuit. The mechanisms leading to this striking temporal heterogeneity are yet unknown. Here, we show that neural circuits, endowed with heterogeneous neural assemblies of different sizes, naturally generate multiple timescales of activity spanning several orders of magnitude. We develop an analytical theory using rate networks, supported by simulations of spiking networks with cell-type specific connectivity, to explain how neural timescales depend on assembly size and show that our model can naturally explain the long-tailed timescale distribution observed in the awake primate cortex. When driving recurrent networks of heterogeneous neural assemblies by a time-dependent broadband input, we found that large and small assemblies preferentially entrain slow and fast spectral components of the input, respectively. Our results suggest that heterogeneous assemblies can provide a biologically plausible mechanism for neural circuits to demix complex temporal input signals by transforming temporal into spatial neural codes via frequency-selective neural assemblies.
Collapse
Affiliation(s)
- Merav Stern
- Institute of Neuroscience, University of OregonEugeneUnited States
- Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicolae Istrate
- Institute of Neuroscience, University of OregonEugeneUnited States
- Departments of Physics, University of OregonEugeneUnited States
| | - Luca Mazzucato
- Institute of Neuroscience, University of OregonEugeneUnited States
- Departments of Physics, University of OregonEugeneUnited States
- Mathematics and Biology, University of OregonEugeneUnited States
| |
Collapse
|
3
|
Knoll G, Lindner B. Information transmission in recurrent networks: Consequences of network noise for synchronous and asynchronous signal encoding. Phys Rev E 2022; 105:044411. [PMID: 35590546 DOI: 10.1103/physreve.105.044411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/04/2022] [Indexed: 06/15/2023]
Abstract
Information about natural time-dependent stimuli encoded by the sensory periphery or communication between cortical networks may span a large frequency range or be localized to a smaller frequency band. Biological systems have been shown to multiplex such disparate broadband and narrow-band signals and then discriminate them in later populations by employing either an integration (low-pass) or coincidence detection (bandpass) encoding strategy. Analytical expressions have been developed for both encoding methods in feedforward populations of uncoupled neurons and confirm that the integration of a population's output low-pass filters the information, whereas synchronous output encodes less information overall and retains signal information in a selected frequency band. The present study extends the theory to recurrent networks and shows that recurrence may sharpen the synchronous bandpass filter. The frequency of the pass band is significantly influenced by the synaptic strengths, especially for inhibition-dominated networks. Synchronous information transfer is also increased when network models take into account heterogeneity that arises from the stochastic distribution of the synaptic weights.
Collapse
Affiliation(s)
- Gregory Knoll
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany and Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany and Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| |
Collapse
|
4
|
Ramlow L, Lindner B. Interspike interval correlations in neuron models with adaptation and correlated noise. PLoS Comput Biol 2021; 17:e1009261. [PMID: 34449771 PMCID: PMC8428727 DOI: 10.1371/journal.pcbi.1009261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel's time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability.
Collapse
Affiliation(s)
- Lukas Ramlow
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Physics Department, Humboldt University zu Berlin, Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Physics Department, Humboldt University zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Bostner Ž, Knoll G, Lindner B. Information filtering by coincidence detection of synchronous population output: analytical approaches to the coherence function of a two-stage neural system. BIOLOGICAL CYBERNETICS 2020; 114:403-418. [PMID: 32583370 PMCID: PMC7326833 DOI: 10.1007/s00422-020-00838-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Information about time-dependent sensory stimuli is encoded in the activity of neural populations; distinct aspects of the stimulus are read out by different types of neurons: while overall information is perceived by integrator cells, so-called coincidence detector cells are driven mainly by the synchronous activity in the population that encodes predominantly high-frequency content of the input signal (high-pass information filtering). Previously, an analytically accessible statistic called the partial synchronous output was introduced as a proxy for the coincidence detector cell's output in order to approximate its information transmission. In the first part of the current paper, we compare the information filtering properties (specifically, the coherence function) of this proxy to those of a simple coincidence detector neuron. We show that the latter's coherence function can indeed be well-approximated by the partial synchronous output with a time scale and threshold criterion that are related approximately linearly to the membrane time constant and firing threshold of the coincidence detector cell. In the second part of the paper, we propose an alternative theory for the spectral measures (including the coherence) of the coincidence detector cell that combines linear-response theory for shot-noise driven integrate-and-fire neurons with a novel perturbation ansatz for the spectra of spike-trains driven by colored noise. We demonstrate how the variability of the synaptic weights for connections from the population to the coincidence detector can shape the information transmission of the entire two-stage system.
Collapse
Affiliation(s)
- Žiga Bostner
- Physics Department, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Gregory Knoll
- Physics Department, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
| | - Benjamin Lindner
- Physics Department, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
| |
Collapse
|
6
|
Muscinelli SP, Gerstner W, Schwalger T. How single neuron properties shape chaotic dynamics and signal transmission in random neural networks. PLoS Comput Biol 2019; 15:e1007122. [PMID: 31181063 PMCID: PMC6586367 DOI: 10.1371/journal.pcbi.1007122] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/20/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
While most models of randomly connected neural networks assume single-neuron models with simple dynamics, neurons in the brain exhibit complex intrinsic dynamics over multiple timescales. We analyze how the dynamical properties of single neurons and recurrent connections interact to shape the effective dynamics in large randomly connected networks. A novel dynamical mean-field theory for strongly connected networks of multi-dimensional rate neurons shows that the power spectrum of the network activity in the chaotic phase emerges from a nonlinear sharpening of the frequency response function of single neurons. For the case of two-dimensional rate neurons with strong adaptation, we find that the network exhibits a state of "resonant chaos", characterized by robust, narrow-band stochastic oscillations. The coherence of stochastic oscillations is maximal at the onset of chaos and their correlation time scales with the adaptation timescale of single units. Surprisingly, the resonance frequency can be predicted from the properties of isolated neurons, even in the presence of heterogeneity in the adaptation parameters. In the presence of these internally-generated chaotic fluctuations, the transmission of weak, low-frequency signals is strongly enhanced by adaptation, whereas signal transmission is not influenced by adaptation in the non-chaotic regime. Our theoretical framework can be applied to other mechanisms at the level of single neurons, such as synaptic filtering, refractoriness or spike synchronization. These results advance our understanding of the interaction between the dynamics of single units and recurrent connectivity, which is a fundamental step toward the description of biologically realistic neural networks.
Collapse
Affiliation(s)
- Samuel P. Muscinelli
- School of Computer and Communication Sciences and School of Life Sciences, École polytechnique fédérale de Lausanne, Station 15, CH-1015 Lausanne EPFL, Switzerland
| | - Wulfram Gerstner
- School of Computer and Communication Sciences and School of Life Sciences, École polytechnique fédérale de Lausanne, Station 15, CH-1015 Lausanne EPFL, Switzerland
| | - Tilo Schwalger
- Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany
- Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
7
|
Noel A, Makrakis D, Eckford AW. Distortion Distribution of Neural Spike Train Sequence Matching With Optogenetics. IEEE Trans Biomed Eng 2018; 65:2814-2826. [PMID: 29993402 DOI: 10.1109/tbme.2018.2819200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This paper uses a simple optogenetic model to compare the timing distortion between a randomly-generated target spike sequence and an externally-stimulated neuron spike sequence. Optogenetics is an emerging field of neuroscience where neurons are genetically modified to express light-sensitive receptors that enable external control when the neurons fire. METHODS Two different measures are studied to determine the timing distortion. The first measure is the delay in externally-stimulated spikes. The second measure is the root-mean-square-error between the filtered outputs of the target and stimulated spike sequences. RESULTS The mean and the distribution of the distortion are derived in closed form when the target sequence generation rate is sufficiently low. The derived results are verified with simulations. CONCLUSION The proposed model and distortion measures can be used to measure the deviation between neuron spike sequences that are prescribed and what can be achieved via external stimulation. SIGNIFICANCE Given the prominence of neuronal signaling within the brain and throughout the body, optogenetics has significant potential to improve the understanding of the nervous system and to develop treatments for neurological diseases. This work is a step towards an analytical model to predict whether different spike trains were observed from the same external stimulus, and the broader goal of understanding the quantity and reliability of information that can be carried by neurons.
Collapse
|
8
|
Beiran M, Kruscha A, Benda J, Lindner B. Coding of time-dependent stimuli in homogeneous and heterogeneous neural populations. J Comput Neurosci 2017; 44:189-202. [PMID: 29222729 DOI: 10.1007/s10827-017-0674-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 11/29/2022]
Abstract
We compare the information transmission of a time-dependent signal by two types of uncoupled neuron populations that differ in their sources of variability: i) a homogeneous population whose units receive independent noise and ii) a deterministic heterogeneous population, where each unit exhibits a different baseline firing rate ('disorder'). Our criterion for making both sources of variability quantitatively comparable is that the interspike-interval distributions are identical for both systems. Numerical simulations using leaky integrate-and-fire neurons unveil that a non-zero amount of both noise or disorder maximizes the encoding efficiency of the homogeneous and heterogeneous system, respectively, as a particular case of suprathreshold stochastic resonance. Our findings thus illustrate that heterogeneity can render similarly profitable effects for neuronal populations as dynamic noise. The optimal noise/disorder depends on the system size and the properties of the stimulus such as its intensity or cutoff frequency. We find that weak stimuli are better encoded by a noiseless heterogeneous population, whereas for strong stimuli a homogeneous population outperforms an equivalent heterogeneous system up to a moderate noise level. Furthermore, we derive analytical expressions of the coherence function for the cases of very strong noise and of vanishing intrinsic noise or heterogeneity, which predict the existence of an optimal noise intensity. Our results show that, depending on the type of signal, noise as well as heterogeneity can enhance the encoding performance of neuronal populations.
Collapse
Affiliation(s)
- Manuel Beiran
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany. .,Group for Neural Theory, Laboratoire de Neurosciences Cognitives, Département Études Cognitives, École Normale Supérieure, INSERM, PSL Research University, Paris, France.
| | - Alexandra Kruscha
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Physics Department, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Benda
- Institute for Neurobiology, Eberhard Karls Universität, Tübingen, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Physics Department, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Synchronous spikes are necessary but not sufficient for a synchrony code in populations of spiking neurons. Proc Natl Acad Sci U S A 2017; 114:E1977-E1985. [PMID: 28202729 DOI: 10.1073/pnas.1615561114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synchronous activity in populations of neurons potentially encodes special stimulus features. Selective readout of either synchronous or asynchronous activity allows formation of two streams of information processing. Theoretical work predicts that such a synchrony code is a fundamental feature of populations of spiking neurons if they operate in specific noise and stimulus regimes. Here we experimentally test the theoretical predictions by quantifying and comparing neuronal response properties in tuberous and ampullary electroreceptor afferents of the weakly electric fish Apteronotus leptorhynchus These related systems show similar levels of synchronous activity, but only in the more irregularly firing tuberous afferents a synchrony code is established, whereas in the more regularly firing ampullary afferents it is not. The mere existence of synchronous activity is thus not sufficient for a synchrony code. Single-cell features such as the irregularity of spiking and the frequency dependence of the neuron's transfer function determine whether synchronous spikes possess a distinct meaning for the encoding of time-dependent signals.
Collapse
|