1
|
Sun P, Yang J, Tian X, Yuan G. Image fusion-based low-dose CBCT enhancement method for visualizing miniscrew insertion in the infrazygomatic crest. BMC Med Imaging 2024; 24:114. [PMID: 38760689 PMCID: PMC11100247 DOI: 10.1186/s12880-024-01289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Digital dental technology covers oral cone-beam computed tomography (CBCT) image processing and low-dose CBCT dental applications. A low-dose CBCT image enhancement method based on image fusion is proposed to address the need for subzygomatic small screw insertion. Specifically, firstly, a sharpening correction module is proposed, where the CBCT image is sharpened to compensate for the loss of details in the underexposed/over-exposed region. Secondly, a visibility restoration module based on type II fuzzy sets is designed, and a contrast enhancement module using curve transformation is designed. In addition to this, we propose a perceptual fusion module that fuses visibility and contrast of oral CBCT images. As a result, the problems of overexposure/underexposure, low visibility, and low contrast that occur in oral CBCT images can be effectively addressed with consistent interpretability. The proposed algorithm was analyzed in comparison experiments with a variety of algorithms, as well as ablation experiments. After analysis, compared with advanced enhancement algorithms, this algorithm achieved excellent results in low-dose CBCT enhancement and effective observation of subzygomatic small screw implantation. Compared with the best performing method, the evaluation metric is 0.07-2 higher on both datasets. The project can be found at: https://github.com/sunpeipei2024/low-dose-CBCT .
Collapse
Affiliation(s)
- Peipei Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jinghui Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xue Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Tello JP, Velez JC, Cadena A, Jutinico A, Pardo M, Percybrooks W. Blood flow effects in a patient with a thoracic aortic endovascular prosthesis. Heliyon 2024; 10:e26355. [PMID: 38434340 PMCID: PMC10907539 DOI: 10.1016/j.heliyon.2024.e26355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
This work analyzes hemodynamic phenomena within the aorta of two elderly patients and their impact on blood flow behavior, particularly affected by an endovascular prosthesis in one of them (Patient II). Computational Fluid Dynamics (CFD) was utilized for this study, involving measurements of velocity, pressure, and wall shear stress (WSS) at various time points during the third cardiac cycle, at specific positions within two cross sections of the thoracic aorta. The first cross-section (Cross-Section 1, CS1) is located before the initial fluid bifurcation, just before the right subclavian artery. The second cross-section (Cross-Section 2, CS2) is situated immediately after the left subclavian artery. The results reveal that, under regular aortic geometries, velocity and pressure magnitudes follow the principles of fluid dynamics, displaying variations. However, in Patient II, an endoprosthesis near the CS2 and the proximal border of the endoprosthesis significantly disrupts fluid behavior owing to the pulsatile flow. The cross-sectional areas of Patient I are smaller than those of Patient II, leading to higher flow magnitudes. Although in CS1 of Patient I, there is considerable variability in velocity magnitudes, they exhibit a more uniform and predictable transition. In contrast, CS2 of Patient II, where magnitude variation is also high, displays irregular fluid behavior due to the endoprosthesis presence. This cross-section coincides with the border of the fluid bifurcation. Additionally, the irregular geometry caused by endovascular aneurysm repair contributes to flow disruption as the endoprosthesis adjusts to the endothelium, reshaping itself to conform with the vessel wall. In this context, significant alterations in velocity values, pressure differentials fluctuating by up to 10%, and low wall shear stress indicate the pronounced influence of the endovascular prosthesis on blood flow behavior. These flow disturbances, when compounded by the heart rate, can potentially lead to changes in vascular anatomy and displacement, resulting in a disruption of the prosthesis-endothelium continuity and thereby causing clinical complications in the patient.
Collapse
Affiliation(s)
- Juan P. Tello
- Universidad del Norte, Km. 5 Via Puerto Colombia, Barranquilla, Colombia
| | - Juan C. Velez
- Universidad del Norte, Km. 5 Via Puerto Colombia, Barranquilla, Colombia
| | | | - Andres Jutinico
- Universidad Distrital Francisco Jose de Caldas, Bogota, Colombia
| | - Mauricio Pardo
- Universidad del Norte, Km. 5 Via Puerto Colombia, Barranquilla, Colombia
| | | |
Collapse
|
3
|
Cheng L, Hobbs RF, Sgouros G, Frey EC. Development and evaluation of convergent and accelerated penalized SPECT image reconstruction methods for improved dose-volume histogram estimation in radiopharmaceutical therapy. Med Phys 2015; 41:112507. [PMID: 25370666 DOI: 10.1118/1.4897613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Three-dimensional (3D) dosimetry has the potential to provide better prediction of response of normal tissues and tumors and is based on 3D estimates of the activity distribution in the patient obtained from emission tomography. Dose-volume histograms (DVHs) are an important summary measure of 3D dosimetry and a widely used tool for treatment planning in radiation therapy. Accurate estimates of the radioactivity distribution in space and time are desirable for accurate 3D dosimetry. The purpose of this work was to develop and demonstrate the potential of penalized SPECT image reconstruction methods to improve DVHs estimates obtained from 3D dosimetry methods. METHODS The authors developed penalized image reconstruction methods, using maximum a posteriori (MAP) formalism, which intrinsically incorporate regularization in order to control noise and, unlike linear filters, are designed to retain sharp edges. Two priors were studied: one is a 3D hyperbolic prior, termed single-time MAP (STMAP), and the second is a 4D hyperbolic prior, termed cross-time MAP (CTMAP), using both the spatial and temporal information to control noise. The CTMAP method assumed perfect registration between the estimated activity distributions and projection datasets from the different time points. Accelerated and convergent algorithms were derived and implemented. A modified NURBS-based cardiac-torso phantom with a multicompartment kidney model and organ activities and parameters derived from clinical studies were used in a Monte Carlo simulation study to evaluate the methods. Cumulative dose-rate volume histograms (CDRVHs) and cumulative DVHs (CDVHs) obtained from the phantom and from SPECT images reconstructed with both the penalized algorithms and OS-EM were calculated and compared both qualitatively and quantitatively. The STMAP method was applied to patient data and CDRVHs obtained with STMAP and OS-EM were compared qualitatively. RESULTS The results showed that the penalized algorithms substantially improved the CDRVH and CDVH estimates for large organs such as the liver compared to optimally postfiltered OS-EM. For example, the mean squared errors (MSEs) of the CDRVHs for the liver at 5 h postinjection obtained with CTMAP and STMAP were about 15% and 17%, respectively, of the MSEs obtained with optimally filtered OS-EM. For the CDVH estimates, the MSEs obtained with CTMAP and STMAP were about 16% and 19%, respectively, of the MSEs from OS-EM. For the kidneys and renal cortices, larger residual errors were observed for all algorithms, likely due to partial volume effects. The STMAP method showed promising qualitative results when applied to patient data. CONCLUSIONS Penalized image reconstruction methods were developed and evaluated through a simulation study. The study showed that the MAP algorithms substantially improved CDVH estimates for large organs such as the liver compared to optimally postfiltered OS-EM reconstructions. For small organs with fine structural detail such as the kidneys, a large residual error was observed for both MAP algorithms and OS-EM. While CTMAP provided marginally better MSEs than STMAP, given the extra effort needed to handle misregistration of images at different time points in the algorithm and the potential impact of residual misregistration, 3D regularization methods, such as that used in STMAP, appear to be a more practical choice.
Collapse
Affiliation(s)
- Lishui Cheng
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287 and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Robert F Hobbs
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - George Sgouros
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Eric C Frey
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
4
|
Ben Abdallah M, Malek J, Azar AT, Belmabrouk H, Esclarín Monreal J, Krissian K. Adaptive noise-reducing anisotropic diffusion filter. Neural Comput Appl 2015. [DOI: 10.1007/s00521-015-1933-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI. Comput Med Imaging Graph 2014; 38:714-24. [PMID: 25155697 DOI: 10.1016/j.compmedimag.2014.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/06/2014] [Accepted: 07/21/2014] [Indexed: 11/23/2022]
Abstract
Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations.
Collapse
|
6
|
Chen LY, Pan MC, Pan MC. Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization. APPLIED OPTICS 2013; 52:1173-1182. [PMID: 23434988 DOI: 10.1364/ao.52.001173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/09/2013] [Indexed: 06/01/2023]
Abstract
In this paper, a flexible edge-preserving regularization algorithm based on the finite element method is proposed to reconstruct the optical-property images of near-infrared diffuse optical tomography. This regularization algorithm can easily incorporate with varied weighting functions, such as a generalized Lorentzian function, an exponential function, or a generalized total variation function. To evaluate the performance, results obtained from Tikhonov or edge-preserving regularization are compared with each other. As found, the edge-preserving regularization with the generalized Lorentzian function is more attractive than that with other functions for the estimation of absorption-coefficient images concerning functional tomographic images to discover functional information of tested phantoms/tissues.
Collapse
Affiliation(s)
- Liang-Yu Chen
- Department of Mechanical Engineering, National Central University, Taoyuan County, Taiwan
| | | | | |
Collapse
|
7
|
Woo J, Murano EZ, Stone M, Prince JL. Reconstruction of high-resolution tongue volumes from MRI. IEEE Trans Biomed Eng 2012; 59:3511-24. [PMID: 23033324 DOI: 10.1109/tbme.2012.2218246] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Magnetic resonance images of the tongue have been used in both clinical studies and scientific research to reveal tongue structure. In order to extract different features of the tongue and its relation to the vocal tract, it is beneficial to acquire three orthogonal image volumes--e.g., axial, sagittal, and coronal volumes. In order to maintain both low noise and high visual detail and minimize the blurred effect due to involuntary motion artifacts, each set of images is acquired with an in-plane resolution that is much better than the through-plane resolution. As a result, any one dataset, by itself, is not ideal for automatic volumetric analyses such as segmentation, registration, and atlas building or even for visualization when oblique slices are required. This paper presents a method of superresolution volume reconstruction of the tongue that generates an isotropic image volume using the three orthogonal image volumes. The method uses preprocessing steps that include registration and intensity matching and a data combination approach with the edge-preserving property carried out by Markov random field optimization. The performance of the proposed method was demonstrated on 15 clinical datasets, preserving anatomical details and yielding superior results when compared with different reconstruction methods as visually and quantitatively assessed.
Collapse
Affiliation(s)
- Jonghye Woo
- University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
8
|
Hojjatoleslami A, Avanaki MRN. OCT skin image enhancement through attenuation compensation. APPLIED OPTICS 2012; 51:4927-35. [PMID: 22858930 DOI: 10.1364/ao.51.004927] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/24/2012] [Indexed: 05/20/2023]
Abstract
The enhancement of optical coherence tomography (OCT) skin images can help dermatologists investigate the morphologic information of the images more effectively. In this paper, we propose an enhancement algorithm with the stages that includes speckle reduction, skin layer detection, and attenuation compensation. A weighted median filter is designed to reduce the level of speckle while preserving the contrast. A novel skin layer detection technique is then applied to outline the main skin layers: stratum corneum, epidermis, and dermis. The skin layer detection algorithm does not make any assumption about the structure of the skin. A model of the light attenuation is then used to estimate the attenuation coefficient of the stratum corneum, epidermis, and dermis layers. The performance of the algorithm has been evaluated qualitatively based on visual evaluation and quantitatively using two no-reference quality metrics: signal-to-noise ratio and contrast-to-noise ratio. The enhancement algorithm is tested on 35 different skin OCT images, which show significant improvements in the quality of the images, especially in the structures at deeper levels.
Collapse
Affiliation(s)
- Ali Hojjatoleslami
- Research and Development Centre, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | |
Collapse
|
9
|
Woo J, Bai Y, Roy S, Murano EZ, Stone M, Prince JL. Super-resolution Reconstruction for Tongue MR Images. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2012; 8314. [PMID: 27239084 DOI: 10.1117/12.911445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Magnetic resonance (MR) images of the tongue have been used in both clinical medicine and scientific research to reveal tongue structure and motion. In order to see different features of the tongue and its relation to the vocal tract it is beneficial to acquire three orthogonal image stacks-e.g., axial, sagittal and coronal volumes. In order to maintain both low noise and high visual detail, each set of images is typically acquired with in-plane resolution that is much better than the through-plane resolution. As a result, any one data set, by itself, is not ideal for automatic volumetric analyses such as segmentation and registration or even for visualization when oblique slices are required. This paper presents a method of super-resolution reconstruction of the tongue that generates an isotropic image volume using the three orthogonal image stacks. The method uses preprocessing steps that include intensity matching and registration and a data combination approach carried out by Markov random field optimization. The performance of the proposed method was demonstrated on five clinical datasets, yielding superior results when compared with conventional reconstruction methods.
Collapse
Affiliation(s)
- Jonghye Woo
- University of Maryland, Baltimore MD 21201; Johns Hopkins University, Baltimore MD 21218
| | - Ying Bai
- HeartFlow Inc., Redwood City CA 94063
| | | | | | | | | |
Collapse
|
10
|
Chao SM, Tsai DM. An improved anisotropic diffusion model for detail- and edge-preserving smoothing. Pattern Recognit Lett 2010. [DOI: 10.1016/j.patrec.2010.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Kadoury S, Cheriet F, Labelle H. Personalized X-ray 3-D reconstruction of the scoliotic spine from hybrid statistical and image-based models. IEEE TRANSACTIONS ON MEDICAL IMAGING 2009; 28:1422-1435. [PMID: 19336299 DOI: 10.1109/tmi.2009.2016756] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This paper presents a novel 3-D reconstruction method of the scoliotic spine using prior vertebra models with image-based information taken from biplanar X-ray images. We first propose a global modeling approach by exploiting the 3-D scoliotic curve reconstructed from a coronal and sagittal X-ray image in order to generate an approximate statistical model from a 3-D database of scoliotic patients based on a transformation algorithm which incorporates intuitive geometrical properties. The personalized 3-D reconstruction of the spine is then achieved with a novel segmentation method which takes into account the variable appearance of scoliotic vertebrae (rotation, wedging) from standard quality images in order to segment and isolate individual vertebrae on the radiographic planes. More specifically, it uses prior 3-D models regulated from 2-D image level set functionals to identify and match corresponding bone structures on the biplanar X-rays. An iterative optimization procedure integrating similarity measures such as deformable vertebral contours regulated from high-level anatomical primitives, morphological knowledge and epipolar constraints is then applied to globally refine the 3-D anatomical landmarks on each vertebra level of the spine. This method was validated on twenty scoliotic patients by comparing results to a standard manual approach. The qualitative evaluation of the retro-projection of the vertebral contours confirms that the proposed method can achieve better consistency to the X-ray image's natural content. A comparison to synthetic models and real patient data also yields good accuracy on the localization of low-level primitives such as anatomical landmarks identified by an expert on each vertebra. The experiments reported in this paper demonstrate that the proposed method offers a better matching accuracy on a set of landmarks from biplanar views when compared to a manual technique for each evaluated cases, and its precision is comparable to 3-D models generated from magnetic resonance images, thus suitable for routine 3-D clinical assessment of spinal deformities.
Collapse
Affiliation(s)
- Samuel Kadoury
- Department of Biomedical Engineering, Ecole Polytechnique de Montréal, Sainte-Justine Hospital Research Center, Montréal, QC, Canada.
| | | | | |
Collapse
|
12
|
Stochastic Resonance-Based Tomographic Transform for Computed Tomographic Image Enhancement of Brain Lesions. J Comput Assist Tomogr 2008; 32:966-74. [DOI: 10.1097/rct.0b013e318159c638] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Allain M, Idier J, Goussard Y. On global and local convergence of half-quadratic algorithms. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2006; 15:1130-42. [PMID: 16671294 DOI: 10.1109/tip.2005.864173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This paper provides original results on the global and local convergence properties of half-quadratic (HQ) algorithms resulting from the Geman and Yang (GY) and Geman and Reynolds (GR) primal-dual constructions. First, we show that the convergence domain of the GY algorithm can be extended with the benefit of an improved convergence rate. Second, we provide a precise comparison of the convergence rates for both algorithms. This analysis shows that the GR form does not benefit from a better convergence rate in general. Moreover, the GY iterates often take advantage of a low cost implementation. In this case, the GY form is usually faster than the GR form from the CPU time viewpoint.
Collapse
Affiliation(s)
- Marc Allain
- Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN), BP 92 101-44321 Nantes Cedex 03, France.
| | | | | |
Collapse
|