1
|
Chen D, Geevarghese A, Lee S, Plovnick C, Elgin C, Zhou R, Oermann E, Aphinyonaphongs Y, Al-Aswad LA. Transparency in Artificial Intelligence Reporting in Ophthalmology-A Scoping Review. OPHTHALMOLOGY SCIENCE 2024; 4:100471. [PMID: 38591048 PMCID: PMC11000111 DOI: 10.1016/j.xops.2024.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/18/2023] [Accepted: 01/12/2024] [Indexed: 04/10/2024]
Abstract
Topic This scoping review summarizes artificial intelligence (AI) reporting in ophthalmology literature in respect to model development and validation. We characterize the state of transparency in reporting of studies prospectively validating models for disease classification. Clinical Relevance Understanding what elements authors currently describe regarding their AI models may aid in the future standardization of reporting. This review highlights the need for transparency to facilitate the critical appraisal of models prior to clinical implementation, to minimize bias and inappropriate use. Transparent reporting can improve effective and equitable use in clinical settings. Methods Eligible articles (as of January 2022) from PubMed, Embase, Web of Science, and CINAHL were independently screened by 2 reviewers. All observational and clinical trial studies evaluating the performance of an AI model for disease classification of ophthalmic conditions were included. Studies were evaluated for reporting of parameters derived from reporting guidelines (CONSORT-AI, MI-CLAIM) and our previously published editorial on model cards. The reporting of these factors, which included basic model and dataset details (source, demographics), and prospective validation outcomes, were summarized. Results Thirty-seven prospective validation studies were included in the scoping review. Eleven additional associated training and/or retrospective validation studies were included if this information could not be determined from the primary articles. These 37 studies validated 27 unique AI models; multiple studies evaluated the same algorithms (EyeArt, IDx-DR, and Medios AI). Details of model development were variably reported; 18 of 27 models described training dataset annotation and 10 of 27 studies reported training data distribution. Demographic information of training data was rarely reported; 7 of the 27 unique models reported age and gender and only 2 reported race and/or ethnicity. At the level of prospective clinical validation, age and gender of populations was more consistently reported (29 and 28 of 37 studies, respectively), but only 9 studies reported race and/or ethnicity data. Scope of use was difficult to discern for the majority of models. Fifteen studies did not state or imply primary users. Conclusion Our scoping review demonstrates variable reporting of information related to both model development and validation. The intention of our study was not to assess the quality of the factors we examined, but to characterize what information is, and is not, regularly reported. Our results suggest the need for greater transparency in the reporting of information necessary to determine the appropriateness and fairness of these tools prior to clinical use. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Dinah Chen
- Department of Ophthalmology, NYU Langone Health, New York, New York
| | | | - Samuel Lee
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York
| | | | - Cansu Elgin
- Department of Ophthalmology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Raymond Zhou
- Department of Neurosurgery, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Eric Oermann
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York
- Department of Neurosurgery, NYU Langone Health, New York, New York
| | - Yindalon Aphinyonaphongs
- Department of Medicine, NYU Langone Health, New York, New York
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
| | - Lama A. Al-Aswad
- Department of Ophthalmology, NYU Langone Health, New York, New York
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
2
|
Khalilzad Z, Tadj C. Use of psychoacoustic spectrum warping, decision template fusion, and neighborhood component analysis in newborn cry diagnostic systems. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:901-914. [PMID: 38310608 DOI: 10.1121/10.0024618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Dealing with newborns' health is a delicate matter since they cannot express needs, and crying does not reflect their condition. Although newborn cries have been studied for various purposes, there is no prior research on distinguishing a certain pathology from other pathologies so far. Here, an unsophisticated framework is proposed for the study of septic newborns amid a collective of other pathologies. The cry was analyzed with music inspired and speech processing inspired features. Furthermore, neighborhood component analysis (NCA) feature selection was employed with two goals: (i) Exploring how the elements of each feature set contributed to classification outcome; (ii) investigating to what extent the feature space could be compacted. The attained results showed success of both experiments introduced in this study, with 88.66% for the decision template fusion (DTF) technique and a consistent enhancement in comparison to all feature sets in terms of accuracy and 86.22% for the NCA feature selection method by drastically downsizing the feature space from 86 elements to only 6 elements. The achieved results showed great potential for identifying a certain pathology from other pathologies that may have similar effects on the cry patterns as well as proving the success of the proposed framework.
Collapse
Affiliation(s)
- Zahra Khalilzad
- Department of Electrical Engineering, École de Technologie Supérieur, Université du Québec, Montréal, Québec H3C 1K3, Canada
| | - Chakib Tadj
- Department of Electrical Engineering, École de Technologie Supérieur, Université du Québec, Montréal, Québec H3C 1K3, Canada
| |
Collapse
|
3
|
An automated unsupervised deep learning–based approach for diabetic retinopathy detection. Med Biol Eng Comput 2022; 60:3635-3654. [DOI: 10.1007/s11517-022-02688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
|
4
|
Wang H, Zhou Y, Zhang J, Lei J, Sun D, Xu F, Xu X. Anomaly segmentation in retinal images with poisson-blending data augmentation. Med Image Anal 2022; 81:102534. [PMID: 35842977 DOI: 10.1016/j.media.2022.102534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/14/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022]
Abstract
Diabetic retinopathy (DR) is one of the most important complications of diabetes. Accurate segmentation of DR lesions is of great importance for the early diagnosis of DR. However, simultaneous segmentation of multi-type DR lesions is technically challenging because of 1) the lack of pixel-level annotations and 2) the large diversity between different types of DR lesions. In this study, first, we propose a novel Poisson-blending data augmentation (PBDA) algorithm to generate synthetic images, which can be easily utilized to expand the existing training data for lesion segmentation. We perform extensive experiments to recognize the important attributes in the PBDA algorithm. We show that position constraints are of great importance and that the synthesis density of one type of lesion has a joint influence on the segmentation of other types of lesions. Second, we propose a convolutional neural network architecture, named DSR-U-Net++ (i.e., DC-SC residual U-Net++), for the simultaneous segmentation of multi-type DR lesions. Ablation studies showed that the mean area under precision recall curve (AUPR) for all four types of lesions increased by >5% with PBDA. The proposed DSR-U-Net++ with PBDA outperformed the state-of-the-art methods by 1.7%-9.9% on the Indian Diabetic Retinopathy Image Dataset (IDRiD) and 67.3% on the e-ophtha dataset with respect to mean AUPR. The developed method would be an efficient tool to generate large-scale task-specific training data for other medical anomaly segmentation tasks.
Collapse
Affiliation(s)
- Hualin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhong Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiong Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Jianqin Lei
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dongke Sun
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Southeast University, Nanjing, 211189, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiayu Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Zhejiang Research Institute of Xi'an Jiaotong University, Hangzhou, 311215, China.
| |
Collapse
|
5
|
Gomez Rossi J, Rojas-Perilla N, Krois J, Schwendicke F. Cost-effectiveness of Artificial Intelligence as a Decision-Support System Applied to the Detection and Grading of Melanoma, Dental Caries, and Diabetic Retinopathy. JAMA Netw Open 2022; 5:e220269. [PMID: 35289862 PMCID: PMC8924723 DOI: 10.1001/jamanetworkopen.2022.0269] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To assess the cost-effectiveness of artificial intelligence (AI) for supporting clinicians in detecting and grading diseases in dermatology, dentistry, and ophthalmology. IMPORTANCE AI has been referred to as a facilitator for more precise, personalized, and safer health care, and AI algorithms have been reported to have diagnostic accuracies at or above the average physician in dermatology, dentistry, and ophthalmology. DESIGN, SETTING, AND PARTICIPANTS This economic evaluation analyzed data from 3 Markov models used in previous cost-effectiveness studies that were adapted to compare AI vs standard of care to detect melanoma on skin photographs, dental caries on radiographs, and diabetic retinopathy on retina fundus imaging. The general US and German population aged 50 and 12 years, respectively, as well as individuals with diabetes in Brazil aged 40 years were modeled over their lifetime. Monte Carlo microsimulations and sensitivity analyses were used to capture lifetime efficacy and costs. An annual cycle length was chosen. Data were analyzed between February 2021 and August 2021. EXPOSURE AI vs standard of care. MAIN OUTCOMES AND MEASURES Association of AI with tooth retention-years for dentistry and quality-adjusted life-years (QALYs) for individuals in dermatology and ophthalmology; diagnostic costs. RESULTS In 1000 microsimulations with 1000 random samples, AI as a diagnostic-support system showed limited cost-savings and gains in tooth retention-years and QALYs. In dermatology, AI showed mean costs of $750 (95% CI, $608-$970) and was associated with 86.5 QALYs (95% CI, 84.9-87.9 QALYs), while the control showed higher costs $759 (95% CI, $618-$970) with similar QALY outcome. In dentistry, AI accumulated costs of €320 (95% CI, €299-€341) (purchasing power parity [PPP] conversion, $429 [95% CI, $400-$458]) with 62.4 years per tooth retention (95% CI, 60.7-65.1 years). The control was associated with higher cost, €342 (95% CI, €318-€368) (PPP, $458; 95% CI, $426-$493) and fewer tooth retention-years (60.9 years; 95% CI, 60.5-63.1 years). In ophthalmology, AI accrued costs of R $1321 (95% CI, R $1283-R $1364) (PPP, $559; 95% CI, $543-$577) at 8.4 QALYs (95% CI, 8.0-8.7 QALYs), while the control was less expensive (R $1260; 95% CI, R $1222-R $1303) (PPP, $533; 95% CI, $517-$551) and associated with similar QALYs. Dominance in favor of AI was dependent on small differences in the fee paid for the service and the treatment assumed after diagnosis. The fee paid for AI was a factor in patient preferences in cost-effectiveness between strategies. CONCLUSIONS AND RELEVANCE The findings of this study suggest that marginal improvements in diagnostic accuracy when using AI may translate into a marginal improvement in outcomes. The current evidence supporting AI as decision support from a cost-effectiveness perspective is limited; AI should be evaluated on a case-specific basis to capture not only differences in costs and payment mechanisms but also treatment after diagnosis.
Collapse
Affiliation(s)
- Jesus Gomez Rossi
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Natalia Rojas-Perilla
- Department of Economics, Freie Universität Berlin, Germany
- Department of Analytics in the Digital Era, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Joachim Krois
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Falk Schwendicke
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Basha SS, Ramanaiah KV. Optimal Feature Selection for Diagnosing Diabetic Retinopathy Using FireFly Migration Operator-Based Monarch Butterfly Optimization. Crit Rev Biomed Eng 2022; 50:21-37. [PMID: 36374821 DOI: 10.1615/critrevbiomedeng.2022041571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In recent years, diabetic retinopathy (DR) needs to be focused with the intention of developing accurate and effective approaches by accomplishing the existing challenges in the traditional models. With this objective, this paper aims to introduce an effective diagnosis system by utilizing retinal fundus images. The implementation of this diagnosis model incorporates 4 stages like (i) preprocessing, (ii) blood vessel segmentation, (iii) feature extraction, as well as (iv) classification. Originally, the median filter as well as contrast limited adaptive histogram equalization (CLAHE) help to preprocess the image. Moreover, the Fuzzy C Mean (FCM) thresholding is applied for blood vessel segmentation, which generates stochastic clustering of pixels to obtain enhanced threshold values. Further, feature extraction is accomplished by utilizing gray-level run-length matrix (GLRM), local, and morphological transformation-based features. Furthermore, a deep learning (DL) model known as convolutional neural network (CNN) is employed for the diagnosis or classification purpose. As a main novelty, this paper introduces an optimal feature selection as well as classification model. Further, the feature selection is done optimally by FireFly Migration Operator-based Monarch Butterfly Optimization (FM-MBO) which hybridized of the monarch butterfly optimization (MBO) and fire fly (FF) algorithms as the entire adopted extracted features attain higher feature length. Moreover, the proposed FM-MBO algorithm helps for optimizing the count of CNN's convolutional neurons to further improve the performance accuracy. At the end, the enhanced outcomes of the adopted diagnostic scheme are validated via a valuable comparative examination in terms of significant performance measures.
Collapse
Affiliation(s)
- S Shafiulla Basha
- Y.S.R. Engineering College of Yogi Vemana University, Korrapadu Road, Proddatur, Andhra Pradesh 516360, India
| | - K Venkata Ramanaiah
- Y.S.R. Engineering College of Yogi Vemana University, Korrapadu Road, Proddatur, Andhra Pradesh 516360, India
| |
Collapse
|
7
|
Nazari E, Biviji R, Roshandel D, Pour R, Shahriari MH, Mehrabian A, Tabesh H. Decision fusion in healthcare and medicine: a narrative review. Mhealth 2022; 8:8. [PMID: 35178439 PMCID: PMC8800206 DOI: 10.21037/mhealth-21-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE To provide an overview of the decision fusion (DF) technique and describe the applications of the technique in healthcare and medicine at prevention, diagnosis, treatment and administrative levels. BACKGROUND The rapid development of technology over the past 20 years has led to an explosion in data growth in various industries, like healthcare. Big data analysis within the healthcare systems is essential for arriving to a value-based decision over a period of time. Diversity and uncertainty in big data analytics have made it impossible to analyze data by using conventional data mining techniques and thus alternative solutions are required. DF is a form of data fusion techniques that could increase the accuracy of diagnosis and facilitate interpretation, summarization and sharing of information. METHODS We conducted a review of articles published between January 1980 and December 2020 from various databases such as Google Scholar, IEEE, PubMed, Science Direct, Scopus and web of science using the keywords decision fusion (DF), information fusion, healthcare, medicine and big data. A total of 141 articles were included in this narrative review. CONCLUSIONS Given the importance of big data analysis in reducing costs and improving the quality of healthcare; along with the potential role of DF in big data analysis, it is recommended to know the full potential of this technique including the advantages, challenges and applications of the technique before its use. Future studies should focus on describing the methodology and types of data used for its applications within the healthcare sector.
Collapse
Affiliation(s)
- Elham Nazari
- Department of Medical Informatics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rizwana Biviji
- Science of Healthcare Delivery, College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Danial Roshandel
- Centre for Ophthalmology and Visual Science (affiliated with the Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia
| | - Reza Pour
- Department of Computer Engineering, Azad University, Mashhad, Iran
| | - Mohammad Hasan Shahriari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mehrabian
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Hamed Tabesh
- Department of Medical Informatics, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Classification of diabetic retinopathy using unlabeled data and knowledge distillation. Artif Intell Med 2021; 121:102176. [PMID: 34763798 DOI: 10.1016/j.artmed.2021.102176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022]
Abstract
Over the last decade, advances in Machine Learning and Artificial Intelligence have highlighted their potential as a diagnostic tool in the healthcare domain. Despite the widespread availability of medical images, their usefulness is severely hampered by a lack of access to labeled data. For example, while Convolutional Neural Networks (CNNs) have emerged as an essential analytical tool in image processing, their impact is curtailed by training limitations due to insufficient labeled data availability. Transfer Learning enables models developed for one task to be reused for a second task. Knowledge distillation enables transferring knowledge from a pre-trained model to another. However, it suffers from limitations, and the two models' constraints need to be architecturally similar. Knowledge distillation addresses some of the shortcomings of transfer learning by generalizing a complex model to a lighter model. However, some parts of the knowledge may not be distilled by knowledge distillation sufficiently. In this paper, a novel knowledge distillation approach using transfer learning is proposed. The proposed approach transfers the complete knowledge of a model to a new smaller one. Unlabeled data are used in an unsupervised manner to transfer the new smaller model's maximum amount of knowledge. The proposed method can be beneficial in medical image analysis, where labeled data are typically scarce. The proposed approach is evaluated in classifying images for diagnosing Diabetic Retinopathy on two publicly available datasets, including Messidor and EyePACS. Simulation results demonstrate that the approach effectively transfers knowledge from a complex model to a lighter one. Furthermore, experimental results illustrate that different small models' performance is improved significantly using unlabeled data and knowledge distillation.
Collapse
|
9
|
Wang Y, Yu M, Hu B, Jin X, Li Y, Zhang X, Zhang Y, Gong D, Wu C, Zhang B, Yang J, Li B, Yuan M, Mo B, Wei Q, Zhao J, Ding D, Yang J, Li X, Yu W, Chen Y. Deep learning-based detection and stage grading for optimising diagnosis of diabetic retinopathy. Diabetes Metab Res Rev 2021; 37:e3445. [PMID: 33713564 DOI: 10.1002/dmrr.3445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/07/2022]
Abstract
AIMS To establish an automated method for identifying referable diabetic retinopathy (DR), defined as moderate nonproliferative DR and above, using deep learning-based lesion detection and stage grading. MATERIALS AND METHODS A set of 12,252 eligible fundus images of diabetic patients were manually annotated by 45 licenced ophthalmologists and were randomly split into training, validation, and internal test sets (ratio of 7:1:2). Another set of 565 eligible consecutive clinical fundus images was established as an external test set. For automated referable DR identification, four deep learning models were programmed based on whether two factors were included: DR-related lesions and DR stages. Sensitivity, specificity and the area under the receiver operating characteristic curve (AUC) were reported for referable DR identification, while precision and recall were reported for lesion detection. RESULTS Adding lesion information to the five-stage grading model improved the AUC (0.943 vs. 0.938), sensitivity (90.6% vs. 90.5%) and specificity (80.7% vs. 78.5%) of the model for identifying referable DR in the internal test set. Adding stage information to the lesion-based model increased the AUC (0.943 vs. 0.936) and sensitivity (90.6% vs. 76.7%) of the model for identifying referable DR in the internal test set. Similar trends were also seen in the external test set. DR lesion types with high precision results were preretinal haemorrhage, hard exudate, vitreous haemorrhage, neovascularisation, cotton wool spots and fibrous proliferation. CONCLUSIONS The herein described automated model employed DR lesions and stage information to identify referable DR and displayed better diagnostic value than models built without this information.
Collapse
Affiliation(s)
- Yuelin Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Lab of Ocular Fundus Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bojie Hu
- Department of Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yibin Li
- Department of Ophthalmology, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiao Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Lab of Ocular Fundus Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongpeng Zhang
- Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Di Gong
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Chan Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Lab of Ocular Fundus Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Bilei Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Lab of Ocular Fundus Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyuan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Lab of Ocular Fundus Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Lab of Ocular Fundus Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingzhen Yuan
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Lab of Ocular Fundus Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Mo
- Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qijie Wei
- Vistel AI Lab, Visionary Intelligence Ltd., Beijing, China
| | - Jianchun Zhao
- Vistel AI Lab, Visionary Intelligence Ltd., Beijing, China
| | - Dayong Ding
- Vistel AI Lab, Visionary Intelligence Ltd., Beijing, China
| | - Jingyun Yang
- Department of Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Xirong Li
- Key Lab of Data Engineering and Knowledge Engineering, Renmin University of China, Beijing, China
| | - Weihong Yu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Lab of Ocular Fundus Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Lab of Ocular Fundus Disease, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Stolte S, Fang R. A survey on medical image analysis in diabetic retinopathy. Med Image Anal 2020; 64:101742. [PMID: 32540699 DOI: 10.1016/j.media.2020.101742] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 01/12/2023]
Abstract
Diabetic Retinopathy (DR) represents a highly-prevalent complication of diabetes in which individuals suffer from damage to the blood vessels in the retina. The disease manifests itself through lesion presence, starting with microaneurysms, at the nonproliferative stage before being characterized by neovascularization in the proliferative stage. Retinal specialists strive to detect DR early so that the disease can be treated before substantial, irreversible vision loss occurs. The level of DR severity indicates the extent of treatment necessary - vision loss may be preventable by effective diabetes management in mild (early) stages, rather than subjecting the patient to invasive laser surgery. Using artificial intelligence (AI), highly accurate and efficient systems can be developed to help assist medical professionals in screening and diagnosing DR earlier and without the full resources that are available in specialty clinics. In particular, deep learning facilitates diagnosis earlier and with higher sensitivity and specificity. Such systems make decisions based on minimally handcrafted features and pave the way for personalized therapies. Thus, this survey provides a comprehensive description of the current technology used in each step of DR diagnosis. First, it begins with an introduction to the disease and the current technologies and resources available in this space. It proceeds to discuss the frameworks that different teams have used to detect and classify DR. Ultimately, we conclude that deep learning systems offer revolutionary potential to DR identification and prevention of vision loss.
Collapse
Affiliation(s)
- Skylar Stolte
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building JG56 P.O. Box 116131 Gainesville, FL 32611-6131, USA.
| | - Ruogu Fang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building JG56 P.O. Box 116131 Gainesville, FL 32611-6131, USA.
| |
Collapse
|
11
|
Application of deep learning image assessment software VeriSee™ for diabetic retinopathy screening. J Formos Med Assoc 2020; 120:165-171. [PMID: 32307321 DOI: 10.1016/j.jfma.2020.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/09/2019] [Accepted: 03/30/2020] [Indexed: 10/24/2022] Open
Abstract
PURPOSE To develop a deep learning image assessment software VeriSee™ and to validate its accuracy in grading the severity of diabetic retinopathy (DR). METHODS Diabetic patients who underwent single-field, nonmydriatic, 45-degree color retinal fundus photography at National Taiwan University Hospital between July 2007 and June 2017 were retrospectively recruited. A total of 7524 judgeable color fundus images were collected and were graded for the severity of DR by ophthalmologists. Among these pictures, 5649 along with another 31,612 color fundus images from the EyePACS dataset were used for model training of VeriSee™. The other 1875 images were used for validation and were graded for the severity of DR by VeriSee™, ophthalmologists, and internal physicians. Area under the receiver operating characteristic curve (AUC) for VeriSee™, and the sensitivities and specificities for VeriSee™, ophthalmologists, and internal physicians in diagnosing DR were calculated. RESULTS The AUCs for VeriSee™ in diagnosing any DR, referable DR and proliferative diabetic retinopathy (PDR) were 0.955, 0.955 and 0.984, respectively. VeriSee™ had better sensitivities in diagnosing any DR and PDR (92.2% and 90.9%, respectively) than internal physicians (64.3% and 20.6%, respectively) (P < 0.001 for both). VeriSee™ also had better sensitivities in diagnosing any DR and referable DR (92.2% and 89.2%, respectively) than ophthalmologists (86.9% and 71.1%, respectively) (P < 0.001 for both), while ophthalmologists had better specificities. CONCLUSION VeriSee™ had good sensitivity and specificity in grading the severity of DR from color fundus images. It may offer clinical assistance to non-ophthalmologists in DR screening with nonmydriatic retinal fundus photography.
Collapse
|
12
|
Porwal P, Pachade S, Kokare M, Deshmukh G, Son J, Bae W, Liu L, Wang J, Liu X, Gao L, Wu T, Xiao J, Wang F, Yin B, Wang Y, Danala G, He L, Choi YH, Lee YC, Jung SH, Li Z, Sui X, Wu J, Li X, Zhou T, Toth J, Baran A, Kori A, Chennamsetty SS, Safwan M, Alex V, Lyu X, Cheng L, Chu Q, Li P, Ji X, Zhang S, Shen Y, Dai L, Saha O, Sathish R, Melo T, Araújo T, Harangi B, Sheng B, Fang R, Sheet D, Hajdu A, Zheng Y, Mendonça AM, Zhang S, Campilho A, Zheng B, Shen D, Giancardo L, Quellec G, Mériaudeau F. IDRiD: Diabetic Retinopathy - Segmentation and Grading Challenge. Med Image Anal 2019; 59:101561. [PMID: 31671320 DOI: 10.1016/j.media.2019.101561] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, predominantly affecting the working-age population across the globe. Screening for DR, coupled with timely consultation and treatment, is a globally trusted policy to avoid vision loss. However, implementation of DR screening programs is challenging due to the scarcity of medical professionals able to screen a growing global diabetic population at risk for DR. Computer-aided disease diagnosis in retinal image analysis could provide a sustainable approach for such large-scale screening effort. The recent scientific advances in computing capacity and machine learning approaches provide an avenue for biomedical scientists to reach this goal. Aiming to advance the state-of-the-art in automatic DR diagnosis, a grand challenge on "Diabetic Retinopathy - Segmentation and Grading" was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI - 2018). In this paper, we report the set-up and results of this challenge that is primarily based on Indian Diabetic Retinopathy Image Dataset (IDRiD). There were three principal sub-challenges: lesion segmentation, disease severity grading, and localization of retinal landmarks and segmentation. These multiple tasks in this challenge allow to test the generalizability of algorithms, and this is what makes it different from existing ones. It received a positive response from the scientific community with 148 submissions from 495 registrations effectively entered in this challenge. This paper outlines the challenge, its organization, the dataset used, evaluation methods and results of top-performing participating solutions. The top-performing approaches utilized a blend of clinical information, data augmentation, and an ensemble of models. These findings have the potential to enable new developments in retinal image analysis and image-based DR screening in particular.
Collapse
Affiliation(s)
- Prasanna Porwal
- Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India; School of Biomedical Informatics, University of Texas Health Science Center at Houston, USA.
| | - Samiksha Pachade
- Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India; School of Biomedical Informatics, University of Texas Health Science Center at Houston, USA
| | - Manesh Kokare
- Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India
| | | | | | | | - Lihong Liu
- Ping An Technology (Shenzhen) Co.,Ltd, China
| | | | - Xinhui Liu
- Ping An Technology (Shenzhen) Co.,Ltd, China
| | | | - TianBo Wu
- Ping An Technology (Shenzhen) Co.,Ltd, China
| | - Jing Xiao
- Ping An Technology (Shenzhen) Co.,Ltd, China
| | | | | | - Yunzhi Wang
- School of Electrical and Computer Engineering, University of Oklahoma, USA
| | - Gopichandh Danala
- School of Electrical and Computer Engineering, University of Oklahoma, USA
| | - Linsheng He
- School of Electrical and Computer Engineering, University of Oklahoma, USA
| | - Yoon Ho Choi
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Yeong Chan Lee
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Sang-Hyuk Jung
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Zhongyu Li
- Department of Computer Science, University of North Carolina at Charlotte, USA
| | - Xiaodan Sui
- School of Information Science and Engineering, Shandong Normal University, China
| | - Junyan Wu
- Cleerly Inc., New York, United States
| | | | - Ting Zhou
- University at Buffalo, New York, United States
| | - Janos Toth
- University of Debrecen, Faculty of Informatics 4002 Debrecen, POB 400, Hungary
| | - Agnes Baran
- University of Debrecen, Faculty of Informatics 4002 Debrecen, POB 400, Hungary
| | | | | | | | | | - Xingzheng Lyu
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China; Machine Learning for Bioimage Analysis Group, Bioinformatics Institute, A*STAR, Singapore
| | - Li Cheng
- Machine Learning for Bioimage Analysis Group, Bioinformatics Institute, A*STAR, Singapore; Department of Electric and Computer Engineering, University of Alberta, Canada
| | - Qinhao Chu
- School of Computing, National University of Singapore, Singapore
| | - Pengcheng Li
- School of Computing, National University of Singapore, Singapore
| | - Xin Ji
- Beijing Shanggong Medical Technology Co., Ltd., China
| | - Sanyuan Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Yaxin Shen
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | - Ling Dai
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | | | | | - Tânia Melo
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| | - Teresa Araújo
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal; FEUP - Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Balazs Harangi
- University of Debrecen, Faculty of Informatics 4002 Debrecen, POB 400, Hungary
| | - Bin Sheng
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | - Ruogu Fang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, USA
| | | | - Andras Hajdu
- University of Debrecen, Faculty of Informatics 4002 Debrecen, POB 400, Hungary
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, China
| | - Ana Maria Mendonça
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal; FEUP - Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Shaoting Zhang
- Department of Computer Science, University of North Carolina at Charlotte, USA
| | - Aurélio Campilho
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal; FEUP - Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Bin Zheng
- School of Electrical and Computer Engineering, University of Oklahoma, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Luca Giancardo
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, USA
| | | | - Fabrice Mériaudeau
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Malaysia; ImViA/IFTIM, Université de Bourgogne, Dijon, France
| |
Collapse
|
13
|
Randive SN, Senapati RK, Rahulkar AD. A review on computer-aided recent developments for automatic detection of diabetic retinopathy. J Med Eng Technol 2019; 43:87-99. [PMID: 31198073 DOI: 10.1080/03091902.2019.1576790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Diabetic retinopathy is a serious microvascular disorder that might result in loss of vision and blindness. It seriously damages the retinal blood vessels and reduces the light-sensitive inner layer of the eye. Due to the manual inspection of retinal fundus images on diabetic retinopathy to detect the morphological abnormalities in Microaneurysms (MAs), Exudates (EXs), Haemorrhages (HMs), and Inter retinal microvascular abnormalities (IRMA) is very difficult and time consuming process. In order to avoid this, the regular follow-up screening process, and early automatic Diabetic Retinopathy detection are necessary. This paper discusses various methods of analysing automatic retinopathy detection and classification of different grading based on the severity levels. In addition, retinal blood vessel detection techniques are also discussed for the ultimate detection and diagnostic procedure of proliferative diabetic retinopathy. Furthermore, the paper elaborately discussed the systematic review accessed by authors on various publicly available databases collected from different medical sources. In the survey, meta-analysis of several methods for diabetic feature extraction, segmentation and various types of classifiers have been used to evaluate the system performance metrics for the diagnosis of DR. This survey will be helpful for the technical persons and researchers who want to focus on enhancing the diagnosis of a system that would be more powerful in real life.
Collapse
Affiliation(s)
- Santosh Nagnath Randive
- a Department of Electronics & Communication Engineering , Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram , Guntur , Andhra Pradesh , India
| | - Ranjan K Senapati
- a Department of Electronics & Communication Engineering , Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram , Guntur , Andhra Pradesh , India
| | - Amol D Rahulkar
- b Department of Electrical and Electronics Engineering , National Institute of Technology , Goa , India
| |
Collapse
|
14
|
Diabetic retinopathy techniques in retinal images: A review. Artif Intell Med 2018; 97:168-188. [PMID: 30448367 DOI: 10.1016/j.artmed.2018.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022]
Abstract
The diabetic retinopathy is the main reason of vision loss in people. Medical experts recognize some clinical, geometrical and haemodynamic features of diabetic retinopathy. These features include the blood vessel area, exudates, microaneurysm, hemorrhages and neovascularization, etc. In Computer Aided Diagnosis (CAD) systems, these features are detected in fundus images using computer vision techniques. In this paper, we review the methods of low, middle and high level vision for automatic detection and classification of diabetic retinopathy.We give a detailed review of 79 algorithms for detecting different features of diabetic retinopathy during the last eight years.
Collapse
|
15
|
Nielsen KB, Lautrup ML, Andersen JKH, Savarimuthu TR, Grauslund J. Deep Learning-Based Algorithms in Screening of Diabetic Retinopathy: A Systematic Review of Diagnostic Performance. Ophthalmol Retina 2018; 3:294-304. [PMID: 31014679 DOI: 10.1016/j.oret.2018.10.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/29/2023]
Abstract
TOPIC Diagnostic performance of deep learning-based algorithms in screening patients with diabetes for diabetic retinopathy (DR). The algorithms were compared with the current gold standard of classification by human specialists. CLINICAL RELEVANCE Because DR is a common cause of visual impairment, screening is indicated to avoid irreversible vision loss. Automated DR classification using deep learning may be a suitable new screening tool that could improve diagnostic performance and reduce manpower. METHODS For this systematic review, we aimed to identify studies that incorporated the use of deep learning in classifying full-scale DR in retinal fundus images of patients with diabetes. The studies had to provide a DR grading scale, a human grader as a reference standard, and a deep learning performance score. A systematic search on April 5, 2018, through MEDLINE and Embase yielded 304 publications. To identify potentially missed publications, the reference lists of the final included studies were manually screened, yielding no additional publications. The Quality Assessment of Diagnostic Accuracy Studies 2 tool was used for risk of bias and applicability assessment. RESULTS By using objective selection, we included 11 diagnostic accuracy studies that validated the performance of their deep learning method using a new group of patients or retrospective datasets. Eight studies reported sensitivity and specificity of 80.28% to 100.0% and 84.0% to 99.0%, respectively. Two studies report accuracies of 78.7% and 81.0%. One study provides an area under the receiver operating curve of 0.955. In addition to diagnostic performance, one study also reported on patient satisfaction, showing that 78% of patients preferred an automated deep learning model over manual human grading. CONCLUSIONS Advantages of implementing deep learning-based algorithms in DR screening include reduction in manpower, cost of screening, and issues relating to intragrader and intergrader variability. However, limitations that may hinder such an implementation particularly revolve around ethical concerns regarding lack of trust in the diagnostic accuracy of computers. Considering both strengths and limitations, as well as the high performance of deep learning-based algorithms, automated DR classification using deep learning could be feasible in a real-world screening scenario.
Collapse
Affiliation(s)
- Katrine B Nielsen
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark; Research Unit of Ophthalmology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Mie L Lautrup
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark; Research Unit of Ophthalmology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jakob K H Andersen
- Steno Diabetes Center Odense, Odense, Denmark; SDU Robotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark
| | - Thiusius R Savarimuthu
- SDU Robotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark
| | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark; Research Unit of Ophthalmology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Steno Diabetes Center Odense, Odense, Denmark.
| |
Collapse
|
16
|
Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 2018; 1:39. [PMID: 31304320 PMCID: PMC6550188 DOI: 10.1038/s41746-018-0040-6] [Citation(s) in RCA: 713] [Impact Index Per Article: 101.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 02/08/2023] Open
Abstract
Artificial Intelligence (AI) has long promised to increase healthcare affordability, quality and accessibility but FDA, until recently, had never authorized an autonomous AI diagnostic system. This pivotal trial of an AI system to detect diabetic retinopathy (DR) in people with diabetes enrolled 900 subjects, with no history of DR at primary care clinics, by comparing to Wisconsin Fundus Photograph Reading Center (FPRC) widefield stereoscopic photography and macular Optical Coherence Tomography (OCT), by FPRC certified photographers, and FPRC grading of Early Treatment Diabetic Retinopathy Study Severity Scale (ETDRS) and Diabetic Macular Edema (DME). More than mild DR (mtmDR) was defined as ETDRS level 35 or higher, and/or DME, in at least one eye. AI system operators underwent a standardized training protocol before study start. Median age was 59 years (range, 22–84 years); among participants, 47.5% of participants were male; 16.1% were Hispanic, 83.3% not Hispanic; 28.6% African American and 63.4% were not; 198 (23.8%) had mtmDR. The AI system exceeded all pre-specified superiority endpoints at sensitivity of 87.2% (95% CI, 81.8–91.2%) (>85%), specificity of 90.7% (95% CI, 88.3–92.7%) (>82.5%), and imageability rate of 96.1% (95% CI, 94.6–97.3%), demonstrating AI’s ability to bring specialty-level diagnostics to primary care settings. Based on these results, FDA authorized the system for use by health care providers to detect more than mild DR and diabetic macular edema, making it, the first FDA authorized autonomous AI diagnostic system in any field of medicine, with the potential to help prevent vision loss in thousands of people with diabetes annually. ClinicalTrials.gov NCT02963441
Collapse
Affiliation(s)
- Michael D Abràmoff
- 1Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242 USA.,2Veterans Administration Medical Center, Iowa City, IA 52242 USA.,IDx LLC, Coralville, IA 52241 USA.,4Institute for Vision Research, University of Iowa, Iowa City, IA 52242 USA
| | - Philip T Lavin
- Boston Biostatistics Research Foundation, Inc., 3 Cahill Park Drive, Framingham, MA 01702 USA
| | - Michele Birch
- 6Department of Family Medicine, Director of Academic Services, University of North Carolina School of Medicine, Charlotte, NC 28204 USA
| | - Nilay Shah
- 7The Emmes Corporation, 401 North Washington Street, Suite 700, Rockville, MD 20850 USA
| | - James C Folk
- 1Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242 USA.,2Veterans Administration Medical Center, Iowa City, IA 52242 USA.,IDx LLC, Coralville, IA 52241 USA
| |
Collapse
|
17
|
A Random Forest classifier-based approach in the detection of abnormalities in the retina. Med Biol Eng Comput 2018; 57:193-203. [PMID: 30076537 DOI: 10.1007/s11517-018-1878-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Classification of abnormalities from medical images using computer-based approaches is of growing interest in medical imaging. Timely detection of abnormalities due to diabetic retinopathy and age-related macular degeneration is required in order to prevent the prognosis of the disease. Computer-aided systems using machine learning are becoming interesting to ophthalmologists and researchers. We present here one such technique, the Random Forest classifier, to aid medical practitioners in accurate diagnosis of the diseases. A computer-aided diagnosis system is proposed for detecting retina abnormalities, which combines K means-based segmentation of the retina image, after due preprocessing, followed by machine learning techniques, using several low level and statistical features. Abnormalities in the retina that are classified are caused by age-related macular degeneration and diabetic retinopathy. Performance measures used in the analysis are accuracy, sensitivity, specificity, F-measure, and Mathew correlation coefficient. A comparison with another machine learning technique, the Naïve Bayes classifier shows that the classification achieved by Random Forest classifier is 93.58% and it outperforms Naïve Bayes classifier which yields an accuracy of 83.63%. Graphical abstract Random Forest classifier for abnormality detection in retina images.
Collapse
|
18
|
Randive SN, Rahulkar AD, Senapati RK. LVP extraction and triplet-based segmentation for diabetic retinopathy recognition. EVOLUTIONARY INTELLIGENCE 2018. [DOI: 10.1007/s12065-018-0158-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Adal KM, van Etten PG, Martinez JP, Rouwen KW, Vermeer KA, van Vliet LJ. An Automated System for the Detection and Classification of Retinal Changes Due to Red Lesions in Longitudinal Fundus Images. IEEE Trans Biomed Eng 2018; 65:1382-1390. [DOI: 10.1109/tbme.2017.2752701] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Nørgaard MF, Grauslund J. Automated Screening for Diabetic Retinopathy - A Systematic Review. Ophthalmic Res 2018; 60:9-17. [PMID: 29339646 DOI: 10.1159/000486284] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/12/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE Worldwide ophthalmologists are challenged by the rapid rise in the prevalence of diabetes. Diabetic retinopathy (DR) is the most common complication in diabetes, and possible consequences range from mild visual impairment to blindness. Repetitive screening for DR is cost-effective, but it is also a costly and strenuous affair. Several studies have examined the application of automated image analysis to solve this problem. Large populations are needed to assess the efficacy of such programs, and a standardized and rigorous methodology is important to give an indication of system performance in actual clinical settings. METHODS In a systematic review, we aimed to identify studies with methodology and design that are similar or replicate actual screening scenarios. A total of 1,231 publications were identified through PubMed, Cochrane Library, and Embase searches. Three manual search strategies were carried out to identify publications missed in the primary search. Four levels of screening identified 7 studies applicable for inclusion. RESULTS Seven studies were included. The detection of DR had high sensitivities (87.0-95.2%) but lower specificities (49.6-68.8%). False-negative results were related to mild DR with a low risk of progression within 1 year. Several studies reported missed cases of diabetic macular edema. A meta-analysis was not conducted as studies were not suitable for direct comparison or statistical analysis. CONCLUSION The study demonstrates that despite limited specificity, automated retinal image analysis may potentially be valuable in different DR screening scenarios with a relatively high sensitivity and a substantial workload reduction.
Collapse
Affiliation(s)
- Mads Fonager Nørgaard
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark.,Research Unit of Ophthalmology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark.,Research Unit of Ophthalmology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
21
|
An exudate detection method for diagnosis risk of diabetic macular edema in retinal images using feature-based and supervised classification. Med Biol Eng Comput 2018; 56:1379-1390. [DOI: 10.1007/s11517-017-1771-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/13/2017] [Indexed: 12/30/2022]
|
22
|
Koh JEW, Ng EYK, Bhandary SV, Hagiwara Y, Laude A, Acharya UR. Automated retinal health diagnosis using pyramid histogram of visual words and Fisher vector techniques. Comput Biol Med 2017; 92:204-209. [PMID: 29227822 DOI: 10.1016/j.compbiomed.2017.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022]
Abstract
Untreated age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma may lead to irreversible vision loss. Hence, it is essential to have regular eye screening to detect these eye diseases at an early stage and to offer treatment where appropriate. One of the simplest, non-invasive and cost-effective techniques to screen the eyes is by using fundus photo imaging. But, the manual evaluation of fundus images is tedious and challenging. Further, the diagnosis made by ophthalmologists may be subjective. Therefore, an objective and novel algorithm using the pyramid histogram of visual words (PHOW) and Fisher vectors is proposed for the classification of fundus images into their respective eye conditions (normal, AMD, DR, and glaucoma). The proposed algorithm extracts features which are represented as words. These features are built and encoded into a Fisher vector for classification using random forest classifier. This proposed algorithm is validated with both blindfold and ten-fold cross-validation techniques. An accuracy of 90.06% is achieved with the blindfold method, and highest accuracy of 96.79% is obtained with ten-fold cross-validation. The highest classification performance of our system shows the potential of deploying it in polyclinics to assist healthcare professionals in their initial diagnosis of the eye. Our developed system can reduce the workload of ophthalmologists significantly.
Collapse
Affiliation(s)
- Joel E W Koh
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Eddie Y K Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | | | - Yuki Hagiwara
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | - Augustinus Laude
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Malaysia
| |
Collapse
|
23
|
Gegundez-Arias ME, Marin D, Ponte B, Alvarez F, Garrido J, Ortega C, Vasallo MJ, Bravo JM. A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis. Comput Biol Med 2017; 88:100-109. [DOI: 10.1016/j.compbiomed.2017.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/23/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
24
|
Mansour RF. Evolutionary Computing Enriched Computer-Aided Diagnosis System for Diabetic Retinopathy: A Survey. IEEE Rev Biomed Eng 2017; 10:334-349. [PMID: 28534786 DOI: 10.1109/rbme.2017.2705064] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Complications caused due to diabetes mellitus result in significant microvasculature that eventually causes diabetic retinopathy (DR) that keeps on increasing with time, and eventually causes complete vision loss. Identifying subtle variations in morphological changes in retinal blood vessels, optic disk, exudates, microaneurysms, hemorrhage, etc., is complicated and requires a robust computer-aided diagnosis (CAD) system so as to enable earlier and efficient DR diagnosis practices. In the majority of the existing CAD systems, functional enhancements have been realized time and again to ensure accurate and efficient diagnosis of DR. In this survey paper, a number of existing literature presenting DR CAD systems are discussed and analyzed. Both traditional and varoius evolutionary approaches, including genetic algorithm, particle swarm optimization, ant colony optimization, bee colony optimization, etc., based DR CAD have also been studied and their respective efficiencies have been discussed. Our survey revealed that evolutionary computing methods can play a vital role for optimizing DR-CAD functional components, such as proprocessing by enhancing filters coefficient, segmentation by enriching clustering, feature extraction, feature selection, and dimensional reduction, as well as classification.
Collapse
|
25
|
Srivastava R, Duan L, Wong DWK, Liu J, Wong TY. Detecting retinal microaneurysms and hemorrhages with robustness to the presence of blood vessels. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 138:83-91. [PMID: 27886718 DOI: 10.1016/j.cmpb.2016.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/05/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Diabetic Retinopathy is the leading cause of blindness in developed countries in the age group 20-74 years. It is characterized by lesions on the retina and this paper focuses on detecting two of these lesions, Microaneurysms and Hemorrhages, which are also known as red lesions. This paper attempts to deal with two problems in detecting red lesions from retinal fundus images: (1) false detections on blood vessels; and (2) different size of red lesions. METHODS To deal with false detections on blood vessels, novel filters have been proposed which can distinguish between red lesions and blood vessels. This distinction is based on the fact that vessels are elongated while red lesions are usually circular blob-like structures. The second problem of the different size of lesions is dealt with by applying the proposed filters on patches of different sizes instead of filtering the full image. These patches are obtained by dividing the original image using a grid whose size determines the patch size. Different grid sizes were used and lesion detection results for these grid sizes were combined using Multiple Kernel Learning. RESULTS Experiments on a dataset of 143 images showed that proposed filters detected Microaneurysms and Hemorrhages successfully even when these lesions were close to blood vessels. In addition, using Multiple Kernel Learning improved the results when compared to using a grid of one size only. The areas under receiver operating characteristic curve were found to be 0.97 and 0.92 for Microaneurysms and Hemorrhages respectively which are better than the existing related works. CONCLUSIONS Proposed filters are robust to the presence of blood vessels and surpass related works in detecting red lesions from retinal fundus images. Improved lesion detection using the proposed approach can help in automatic detection of Diabetic Retinopathy.
Collapse
Affiliation(s)
| | - Lixin Duan
- Institute for Infocomm Research, Singapore 138632
| | | | - Jiang Liu
- Institute for Infocomm Research, Singapore 138632
| | | |
Collapse
|
26
|
Pires R, Avila S, Jelinek HF, Wainer J, Valle E, Rocha A. Beyond Lesion-Based Diabetic Retinopathy: A Direct Approach for Referral. IEEE J Biomed Health Inform 2017; 21:193-200. [DOI: 10.1109/jbhi.2015.2498104] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
van Grinsven MJJP, Theelen T, Witkamp L, van der Heijden J, van de Ven JPH, Hoyng CB, van Ginneken B, Sánchez CI. Automatic differentiation of color fundus images containing drusen or exudates using a contextual spatial pyramid approach. BIOMEDICAL OPTICS EXPRESS 2016; 7:709-25. [PMID: 27231583 PMCID: PMC4866450 DOI: 10.1364/boe.7.000709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/22/2016] [Accepted: 01/23/2016] [Indexed: 05/11/2023]
Abstract
We developed an automatic system to identify and differentiate color fundus images containing no lesions, drusen or exudates. Drusen and exudates are lesions with a bright appearance, associated with age-related macular degeneration and diabetic retinopathy, respectively. The system consists of three lesion detectors operating at pixel-level, combining their outputs using spatial pooling and classification with a random forest classifier. System performance was compared with ratings of two independent human observers using human-expert annotations as reference. Kappa agreements of 0.89, 0.97 and 0.92 and accuracies of 0.93, 0.98 and 0.95 were obtained for the system and observers, respectively.
Collapse
Affiliation(s)
- Mark J. J. P. van Grinsven
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The
Netherlands
| | - Thomas Theelen
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The
Netherlands
| | | | | | | | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The
Netherlands
| | - Bram van Ginneken
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The
Netherlands
| | - Clara I. Sánchez
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The
Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The
Netherlands
| |
Collapse
|
28
|
Zaki WMDW, Zulkifley MA, Hussain A, Halim WHW, Mustafa NBA, Ting LS. Diabetic retinopathy assessment: Towards an automated system. Biomed Signal Process Control 2016. [DOI: 10.1016/j.bspc.2015.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Saha R, Chowdhury AR, Banerjee S. Diabetic Retinopathy Related Lesions Detection and Classification Using Machine Learning Technology. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING 2016. [DOI: 10.1007/978-3-319-39384-1_65] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Quellec G, Lamard M, Erginay A, Chabouis A, Massin P, Cochener B, Cazuguel G. Automatic detection of referral patients due to retinal pathologies through data mining. Med Image Anal 2015; 29:47-64. [PMID: 26774796 DOI: 10.1016/j.media.2015.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/29/2022]
Abstract
With the increased prevalence of retinal pathologies, automating the detection of these pathologies is becoming more and more relevant. In the past few years, many algorithms have been developed for the automated detection of a specific pathology, typically diabetic retinopathy, using eye fundus photography. No matter how good these algorithms are, we believe many clinicians would not use automatic detection tools focusing on a single pathology and ignoring any other pathology present in the patient's retinas. To solve this issue, an algorithm for characterizing the appearance of abnormal retinas, as well as the appearance of the normal ones, is presented. This algorithm does not focus on individual images: it considers examination records consisting of multiple photographs of each retina, together with contextual information about the patient. Specifically, it relies on data mining in order to learn diagnosis rules from characterizations of fundus examination records. The main novelty is that the content of examination records (images and context) is characterized at multiple levels of spatial and lexical granularity: 1) spatial flexibility is ensured by an adaptive decomposition of composite retinal images into a cascade of regions, 2) lexical granularity is ensured by an adaptive decomposition of the feature space into a cascade of visual words. This multigranular representation allows for great flexibility in automatically characterizing normality and abnormality: it is possible to generate diagnosis rules whose precision and generalization ability can be traded off depending on data availability. A variation on usual data mining algorithms, originally designed to mine static data, is proposed so that contextual and visual data at adaptive granularity levels can be mined. This framework was evaluated in e-ophtha, a dataset of 25,702 examination records from the OPHDIAT screening network, as well as in the publicly-available Messidor dataset. It was successfully applied to the detection of patients that should be referred to an ophthalmologist and also to the specific detection of several pathologies.
Collapse
Affiliation(s)
| | - Mathieu Lamard
- Inserm, UMR 1101, SFR ScInBioS, F-29200 Brest, France; Univ Bretagne Occidentale, F-29200 Brest, France
| | - Ali Erginay
- Service d'Ophtalmologie, Hôpital Lariboisière, APHP, F-75475 Paris, France
| | - Agnès Chabouis
- Service d'Ophtalmologie, Hôpital Lariboisière, APHP, F-75475 Paris, France
| | - Pascale Massin
- Service d'Ophtalmologie, Hôpital Lariboisière, APHP, F-75475 Paris, France
| | - Béatrice Cochener
- Inserm, UMR 1101, SFR ScInBioS, F-29200 Brest, France; Univ Bretagne Occidentale, F-29200 Brest, France; Service d'Ophtalmologie, CHRU Brest, F-29200 Brest, France
| | - Guy Cazuguel
- Inserm, UMR 1101, SFR ScInBioS, F-29200 Brest, France; Institut Mines-Telecom; Telecom Bretagne; UEB; Dpt ITI, F-29200 Brest, France
| |
Collapse
|
31
|
Sim DA, Keane PA, Tufail A, Egan CA, Aiello LP, Silva PS. Automated retinal image analysis for diabetic retinopathy in telemedicine. Curr Diab Rep 2015; 15:14. [PMID: 25697773 DOI: 10.1007/s11892-015-0577-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There will be an estimated 552 million persons with diabetes globally by the year 2030. Over half of these individuals will develop diabetic retinopathy, representing a nearly insurmountable burden for providing diabetes eye care. Telemedicine programmes have the capability to distribute quality eye care to virtually any location and address the lack of access to ophthalmic services. In most programmes, there is currently a heavy reliance on specially trained retinal image graders, a resource in short supply worldwide. These factors necessitate an image grading automation process to increase the speed of retinal image evaluation while maintaining accuracy and cost effectiveness. Several automatic retinal image analysis systems designed for use in telemedicine have recently become commercially available. Such systems have the potential to substantially improve the manner by which diabetes eye care is delivered by providing automated real-time evaluation to expedite diagnosis and referral if required. Furthermore, integration with electronic medical records may allow a more accurate prognostication for individual patients and may provide predictive modelling of medical risk factors based on broad population data.
Collapse
Affiliation(s)
- Dawn A Sim
- Department of Ophthalmology, Harvard Medical School and Beetham Eye Institute, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
| | | | | | | | | | | |
Collapse
|
32
|
Bolster NM, Giardini ME, Livingstone IAT, Bastawrous A. How the smartphone is driving the eye-health imaging revolution. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.2014.981532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Zhang Z, Srivastava R, Liu H, Chen X, Duan L, Kee Wong DW, Kwoh CK, Wong TY, Liu J. A survey on computer aided diagnosis for ocular diseases. BMC Med Inform Decis Mak 2014; 14:80. [PMID: 25175552 PMCID: PMC4163681 DOI: 10.1186/1472-6947-14-80] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 08/12/2014] [Indexed: 12/12/2022] Open
Abstract
Background Computer Aided Diagnosis (CAD), which can automate the detection process for ocular diseases, has attracted extensive attention from clinicians and researchers alike. It not only alleviates the burden on the clinicians by providing objective opinion with valuable insights, but also offers early detection and easy access for patients. Method We review ocular CAD methodologies for various data types. For each data type, we investigate the databases and the algorithms to detect different ocular diseases. Their advantages and shortcomings are analyzed and discussed. Result We have studied three types of data (i.e., clinical, genetic and imaging) that have been commonly used in existing methods for CAD. The recent developments in methods used in CAD of ocular diseases (such as Diabetic Retinopathy, Glaucoma, Age-related Macular Degeneration and Pathological Myopia) are investigated and summarized comprehensively. Conclusion While CAD for ocular diseases has shown considerable progress over the past years, the clinical importance of fully automatic CAD systems which are able to embed clinical knowledge and integrate heterogeneous data sources still show great potential for future breakthrough.
Collapse
Affiliation(s)
- Zhuo Zhang
- Institute for Infocomm Research, 1 Fusionopolis Way, Singapore, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ganjee R, Azmi R, Gholizadeh B. An Improved Retinal Vessel Segmentation Method Based on High Level Features for Pathological Images. J Med Syst 2014; 38:108. [DOI: 10.1007/s10916-014-0108-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/07/2014] [Indexed: 11/28/2022]
|
35
|
Oloumi F, Rangayyan RM, Ells AL. Computer-aided diagnosis of proliferative diabetic retinopathy via modeling of the major temporal arcade in retinal fundus images. J Digit Imaging 2014; 26:1124-30. [PMID: 23579735 DOI: 10.1007/s10278-013-9592-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Monitoring the openness of the major temporal arcade (MTA) and how it changes over time could facilitate diagnosis and treatment of proliferative diabetic retinopathy (PDR). We present methods for user-guided semiautomated modeling and measurement of the openness of the MTA based on Gabor filters for the detection of retinal vessels, morphological image processing, and a form of the generalized Hough transform for the detection of parabolas. The methods, implemented via a graphical user interface, were tested with retinal fundus images of 11 normal individuals and 11 patients with PDR in the present pilot study on potential clinical application. A method of arcade angle measurement was used for comparative analysis. The results using the openness parameters of single- and dual-parabolic models as well as the arcade angle measurements indicate areas under the receiver operating characteristics of A z = 0.87, 0.82, and 0.80, respectively. The proposed methods are expected to facilitate quantitative analysis of the architecture of the MTA, as well as assist in detection and diagnosis of PDR.
Collapse
Affiliation(s)
- Faraz Oloumi
- Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | | | | |
Collapse
|
36
|
Veiga D, Pereira C, Ferreira M, Gonçalves L, Monteiro J. Quality evaluation of digital fundus images through combined measures. J Med Imaging (Bellingham) 2014; 1:014001. [PMID: 26158021 DOI: 10.1117/1.jmi.1.1.014001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/14/2014] [Accepted: 03/10/2014] [Indexed: 11/14/2022] Open
Abstract
The evaluation of image quality is an important step before an automatic analysis of retinal images. Several conditions can impair the acquisition of a good image, and minimum image quality requirements should be present to ensure that an automatic or semiautomatic system provides an accurate diagnosis. A method to classify fundus images as low or good quality is presented. The method starts with the detection of regions of uneven illumination and evaluates if the segmented noise masks affect a clinically relevant area (around the macula). Afterwards, focus is evaluated through a fuzzy classifier. An input vector is created extracting three focus features. The system was validated in a large dataset (1454 fundus images), obtained from an online database and an eye clinic and compared with the ratings of three observers. The system performance was close to optimal with an area under the receiver operating characteristic curve of 0.9943.
Collapse
Affiliation(s)
- Diana Veiga
- University of Minho , Centro Algoritmi, Azurém, Guimarães 4800-025, Portugal ; ENERMETER , Parque Industrial de Celeirós 2ª Fase, Lugar de Gaião, Lotes 5/6, Braga 4705-025, Portugal
| | - Carla Pereira
- ENERMETER , Parque Industrial de Celeirós 2ª Fase, Lugar de Gaião, Lotes 5/6, Braga 4705-025, Portugal
| | - Manuel Ferreira
- University of Minho , Centro Algoritmi, Azurém, Guimarães 4800-025, Portugal ; ENERMETER , Parque Industrial de Celeirós 2ª Fase, Lugar de Gaião, Lotes 5/6, Braga 4705-025, Portugal
| | - Luís Gonçalves
- Oftalmocenter , Rua Francisco Ribeiro de Castro, n° 205, Azurém, Guimarães 4800-045, Portugal
| | - João Monteiro
- University of Minho , Centro Algoritmi, Azurém, Guimarães 4800-025, Portugal
| |
Collapse
|
37
|
|
38
|
Mookiah MRK, Acharya UR, Chua CK, Lim CM, Ng EYK, Laude A. Computer-aided diagnosis of diabetic retinopathy: a review. Comput Biol Med 2013; 43:2136-55. [PMID: 24290931 DOI: 10.1016/j.compbiomed.2013.10.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/27/2013] [Accepted: 10/04/2013] [Indexed: 11/29/2022]
Abstract
Diabetes mellitus may cause alterations in the retinal microvasculature leading to diabetic retinopathy. Unchecked, advanced diabetic retinopathy may lead to blindness. It can be tedious and time consuming to decipher subtle morphological changes in optic disk, microaneurysms, hemorrhage, blood vessels, macula, and exudates through manual inspection of fundus images. A computer aided diagnosis system can significantly reduce the burden on the ophthalmologists and may alleviate the inter and intra observer variability. This review discusses the available methods of various retinal feature extractions and automated analysis.
Collapse
|
39
|
Oloumi F, Rangayyan RM, Ells AL. Computer-aided diagnosis of proliferative diabetic retinopathy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:1438-41. [PMID: 23366171 DOI: 10.1109/embc.2012.6346210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Monitoring the openness of the major temporal arcade (MTA) and how it changes over time could facilitate improved diagnosis and timely treatment of proliferative diabetic retinopathy (PDR). We present methods for user-guided modeling and measurement of the openness of the MTA based on a form of the generalized Hough transform for the detection of parabolas, and to compare it with a method of arcade angle measurement. The methods, implemented via a graphical user interface, were tested with retinal fundus images of 10 normal individuals and 15 patients with PDR. The results using the openness parameters of single- and dual-parabolic models as well as the arcade angle measurements indicate areas under the receiver operating characteristics of A(z)= 0.94, 0.87, and 0.84, respectively. The proposed methods should facilitate improved quantitative analysis of the architecture of the MTA, as well as assist in detection, diagnosis, and improved treatment of PDR.
Collapse
Affiliation(s)
- Faraz Oloumi
- Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
40
|
Usman Akram M, Khalid S, Tariq A, Younus Javed M. Detection of neovascularization in retinal images using multivariate m-Mediods based classifier. Comput Med Imaging Graph 2013; 37:346-57. [DOI: 10.1016/j.compmedimag.2013.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 06/26/2013] [Accepted: 06/29/2013] [Indexed: 10/26/2022]
|
41
|
Abstract
PURPOSE To compare diabetic retinopathy (DR) referral recommendations made by viewing fundus images using a tablet computer with those made using a standard desktop display. METHODS A tablet computer (iPad) and a desktop computer with a high-definition color display were compared. For each platform, 2 retinal specialists independently rated 1,200 color fundus images from patients at risk for DR using an annotation program Truthseeker. The specialists determined whether each image had referable DR and also how urgently each patient should be referred for medical examination. Graders viewed and rated the randomly presented images independently and were masked to their ratings on the alternative platform. Tablet-based and desktop display-based referral ratings were compared using cross-platform intraobserver kappa as the primary outcome measure. Additionally, interobserver kappa, sensitivity, specificity, and area under the receiver operating characteristic were determined. RESULTS A high level of cross-platform intraobserver agreement was found for the DR referral ratings between the platforms (κ = 0.778) and for the 2 graders (κ = 0.812). Interobserver agreement was similar for the 2 platforms (κ = 0.544 and κ = 0.625 for tablet and desktop, respectively). The tablet-based ratings achieved a sensitivity of 0.848, a specificity of 0.987, and an area under the receiver operating characteristic of 0.950 compared with desktop display-based ratings. CONCLUSION In this pilot study, tablet-based rating of color fundus images for subjects at risk for DR was consistent with desktop display-based rating. These results indicate that tablet computers can be reliably used for clinical evaluation of fundus images for DR.
Collapse
|
42
|
A multiple-instance learning framework for diabetic retinopathy screening. Med Image Anal 2012; 16:1228-40. [DOI: 10.1016/j.media.2012.06.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/23/2012] [Accepted: 06/11/2012] [Indexed: 11/21/2022]
|
43
|
Velikova M, Lucas PJ, Samulski M, Karssemeijer N. A probabilistic framework for image information fusion with an application to mammographic analysis. Med Image Anal 2012; 16:865-75. [DOI: 10.1016/j.media.2012.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 11/20/2011] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
|
44
|
Fleming AD, Olson JA, Sharp PF, Goatman KA, Philip S. Response to ‘Improved Automated Screening of Diabetic Retinopathy’ by Carlos M. Oliveira et al. Ophthalmologica 2012; 227:173; author reply 174. [DOI: 10.1159/000334922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Garg S, Tobin KW, Chaum E. Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med Image Anal 2012; 16:216-26. [PMID: 21865074 PMCID: PMC10729314 DOI: 10.1016/j.media.2011.07.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 01/14/2023]
Abstract
Diabetic macular edema (DME) is a common vision threatening complication of diabetic retinopathy. In a large scale screening environment DME can be assessed by detecting exudates (a type of bright lesions) in fundus images. In this work, we introduce a new methodology for diagnosis of DME using a novel set of features based on colour, wavelet decomposition and automatic lesion segmentation. These features are employed to train a classifier able to automatically diagnose DME through the presence of exudation. We present a new publicly available dataset with ground-truth data containing 169 patients from various ethnic groups and levels of DME. This and other two publicly available datasets are employed to evaluate our algorithm. We are able to achieve diagnosis performance comparable to retina experts on the MESSIDOR (an independently labelled dataset with 1200 images) with cross-dataset testing (e.g., the classifier was trained on an independent dataset and tested on MESSIDOR). Our algorithm obtained an AUC between 0.88 and 0.94 depending on the dataset/features used. Additionally, it does not need ground truth at lesion level to reject false positives and is computationally efficient, as it generates a diagnosis on an average of 4.4s (9.3s, considering the optic nerve localisation) per image on an 2.6 GHz platform with an unoptimised Matlab implementation.
Collapse
Affiliation(s)
- Luca Giancardo
- Oak Ridge National Laboratory/University of Burgundy Imaging, Signals, and Machine Learning (ISML), PO Box 2008, MS6075 Oak Ridge, TN 37831-6075, United States.
| | | | | | | | | | | | | |
Collapse
|
46
|
Automated Detection of Dark and Bright Lesions in Retinal Images for Early Detection of Diabetic Retinopathy. J Med Syst 2011; 36:3151-62. [PMID: 22090037 DOI: 10.1007/s10916-011-9802-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|
47
|
Niemeijer M, Xu X, Dumitrescu AV, Gupta P, van Ginneken B, Folk JC, Abramoff MD. Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:1941-1950. [PMID: 21690008 DOI: 10.1109/tmi.2011.2159619] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A decreased ratio of the width of retinal arteries to veins [arteriolar-to-venular diameter ratio (AVR)], is well established as predictive of cerebral atrophy, stroke and other cardiovascular events in adults. Tortuous and dilated arteries and veins, as well as decreased AVR are also markers for plus disease in retinopathy of prematurity. This work presents an automated method to estimate the AVR in retinal color images by detecting the location of the optic disc, determining an appropriate region of interest (ROI), classifying vessels as arteries or veins, estimating vessel widths, and calculating the AVR. After vessel segmentation and vessel width determination, the optic disc is located and the system eliminates all vessels outside the AVR measurement ROI. A skeletonization operation is applied to the remaining vessels after which vessel crossings and bifurcation points are removed, leaving a set of vessel segments consisting of only vessel centerline pixels. Features are extracted from each centerline pixel in order to assign these a soft label indicating the likelihood that the pixel is part of a vein. As all centerline pixels in a connected vessel segment should be the same type, the median soft label is assigned to each centerline pixel in the segment. Next, artery vein pairs are matched using an iterative algorithm, and the widths of the vessels are used to calculate the AVR. We trained and tested the algorithm on a set of 65 high resolution digital color fundus photographs using a reference standard that indicates for each major vessel in the image whether it is an artery or vein. We compared the AVR values produced by our system with those determined by a semi-automated reference system. We obtained a mean unsigned error of 0.06 (SD 0.04) in 40 images with a mean AVR of 0.67. A second observer using the semi-automated system obtained the same mean unsigned error of 0.06 (SD 0.05) on the set of images with a mean AVR of 0.66. The testing data and reference standard used in this study has been made publicly available.
Collapse
|
48
|
Bernardes R, Serranho P, Lobo C. Digital ocular fundus imaging: a review. ACTA ACUST UNITED AC 2011; 226:161-81. [PMID: 21952522 DOI: 10.1159/000329597] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 01/09/2023]
Abstract
Ocular fundus imaging plays a key role in monitoring the health status of the human eye. Currently, a large number of imaging modalities allow the assessment and/or quantification of ocular changes from a healthy status. This review focuses on the main digital fundus imaging modality, color fundus photography, with a brief overview of complementary techniques, such as fluorescein angiography. While focusing on two-dimensional color fundus photography, the authors address the evolution from nondigital to digital imaging and its impact on diagnosis. They also compare several studies performed along the transitional path of this technology. Retinal image processing and analysis, automated disease detection and identification of the stage of diabetic retinopathy (DR) are addressed as well. The authors emphasize the problems of image segmentation, focusing on the major landmark structures of the ocular fundus: the vascular network, optic disk and the fovea. Several proposed approaches for the automatic detection of signs of disease onset and progression, such as microaneurysms, are surveyed. A thorough comparison is conducted among different studies with regard to the number of eyes/subjects, imaging modality, fundus camera used, field of view and image resolution to identify the large variation in characteristics from one study to another. Similarly, the main features of the proposed classifications and algorithms for the automatic detection of DR are compared, thereby addressing computer-aided diagnosis and computer-aided detection for use in screening programs.
Collapse
Affiliation(s)
- Rui Bernardes
- Institute of Biomedical Research on Light and Image, Faculty of Medicine, University of Coimbra, and Coimbra University Hospital, Coimbra, Portugal.
| | | | | |
Collapse
|
49
|
Agurto C, Barriga ES, Murray V, Nemeth S, Crammer R, Bauman W, Zamora G, Pattichis MS, Soliz P. Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images. Invest Ophthalmol Vis Sci 2011; 52:5862-71. [PMID: 21666234 DOI: 10.1167/iovs.10-7075] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To describe and evaluate the performance of an algorithm that automatically classifies images with pathologic features commonly found in diabetic retinopathy (DR) and age-related macular degeneration (AMD). METHODS Retinal digital photographs (N = 2247) of three fields of view (FOV) were obtained of the eyes of 822 patients at two centers: The Retina Institute of South Texas (RIST, San Antonio, TX) and The University of Texas Health Science Center San Antonio (UTHSCSA). Ground truth was provided for the presence of pathologic conditions, including microaneurysms, hemorrhages, exudates, neovascularization in the optic disc and elsewhere, drusen, abnormal pigmentation, and geographic atrophy. The algorithm was used to report on the presence or absence of disease. A detection threshold was applied to obtain different values of sensitivity and specificity with respect to ground truth and to construct a receiver operating characteristic (ROC) curve. RESULTS The system achieved an average area under the ROC curve (AUC) of 0.89 for detection of DR and of 0.92 for detection of sight-threatening DR (STDR). With a fixed specificity of 0.50, the system's sensitivity ranged from 0.92 for all DR cases to 1.00 for clinically significant macular edema (CSME). CONCLUSIONS A computer-aided algorithm was trained to detect different types of pathologic retinal conditions. The cases of hard exudates within 1 disc diameter (DD) of the fovea (surrogate for CSME) were detected with very high accuracy (sensitivity = 1, specificity = 0.50), whereas mild nonproliferative DR was the most challenging condition (sensitivity = 0.92, specificity = 0.50). The algorithm was also tested on images with signs of AMD, achieving a performance of AUC of 0.84 (sensitivity = 0.94, specificity = 0.50).
Collapse
Affiliation(s)
- Carla Agurto
- VisionQuest Biomedical LLC, Albuquerque, New Mexico 87131, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Quellec G, Russell SR, Abramoff MD. Optimal filter framework for automated, instantaneous detection of lesions in retinal images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:523-533. [PMID: 21292586 DOI: 10.1109/tmi.2010.2089383] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Automated detection of lesions in retinal images is a crucial step towards efficient early detection, or screening, of large at-risk populations. In particular, the detection of microaneurysms, usually the first sign of diabetic retinopathy (DR), and the detection of drusen, the hallmark of age-related macular degeneration (AMD), are of primary importance. In spite of substantial progress made, detection algorithms still produce 1) false positives-target lesions are mixed up with other normal or abnormal structures in the eye, and 2) false negatives-the large variability in the appearance of the lesions causes a subset of these target lesions to be missed. We propose a general framework for detecting and characterizing target lesions almost instantaneously. This framework relies on a feature space automatically derived from a set of reference image samples representing target lesions, including atypical target lesions, and those eye structures that are similar looking but are not target lesions. The reference image samples are obtained either from an expert- or a data-driven approach. Factor analysis is used to derive the filters generating this feature space from reference samples. Previously unseen image samples are then classified in this feature space. We tested this approach by training it to detect microaneurysms. On a set of images from 2739 patients including 67 with referable DR, DR detection area under the receiver-operating characteristic curve (AUC) was comparable (AUC=0.927) to our previously published red lesion detection algorithm (AUC=0.929). We also tested the approach on the detection of AMD, by training it to differentiate drusen from Stargardt's disease lesions, and achieved an AUC=0.850 on a set of 300 manually detected drusen and 300 manually detected flecks. The entire image processing sequence takes less than a second on a standard PC compared to minutes in our previous approach, allowing instantaneous detection. Free-response receiver-operating characteristic analysis showed the superiority of this approach over a framework where false positives and the atypical lesions are not explicitly modeled. A greater performance was achieved by the expert-driven approach for DR detection, where the designer had sound expert knowledge. However, for both problems, a comparable performance was obtained for both expert- and data-driven approaches. This indicates that annotation of a limited number of lesions suffices for building a detection system for any type of lesion in retinal images, if no expert-knowledge is available. We are studying whether the optimal filter framework also generalizes to the detection of any structure in other domains.
Collapse
Affiliation(s)
- Gwénolé Quellec
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|