1
|
Verma R, Kumar K, Bhatt S, Yadav M, Kumar M, Tagde P, Rajinikanth PS, Tiwari A, Tiwari V, Nagpal D, Mittal V, Kaushik D. Untangling Breast Cancer: Trailing Towards Nanoformulations-based Drug Development. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:76-98. [PMID: 37519201 DOI: 10.2174/1872210517666230731091046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
All over the world, cancer death and prevalence are increasing. Breast cancer (BC) is the major cause of cancer mortality (15%) which makes it the most common cancer in women. BC is defined as the furious progression and quick division of breast cells. Novel nanotechnology-based approaches helped in improving survival rate, metastatic BC is still facing obstacles to treat with an expected overall 23% survival rate. This paper represents epidemiology, classification (non-invasive, invasive and metastatic), risk factors (genetic and non-genetic) and treatment challenges of breast cancer in brief. This review paper focus on the importance of nanotechnology-based nanoformulations for treatment of BC. This review aims to deliver elementary insight and understanding of the novel nanoformulations in BC treatment and to explain to the readers for enduring designing novel nanomedicine. Later, we elaborate on several types of nanoformulations used in tumor therapeutics such as liposomes, dendrimers, polymeric nanomaterials and many others. Potential research opportunities for clinical application and current challenges related to nanoformulations utility for the treatment of BC are also highlighted in this review. The role of artificial intelligence is elaborated in detail. We also confer the existing challenges and perspectives of nanoformulations in effective tumor management, with emphasis on the various patented nanoformulations approved or progression of clinical trials retrieved from various search engines.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127021, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Shailendra Bhatt
- Shrinathji Institute of Pharmacy, Shrinathji Society for Higher Education, Upali Oden, Nathdwara, Rajasmand, Rajasthan, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, 142024, Punjab, India
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University Bhopal, 462026, Madhya Pradesh, India
- PRISAL Foundation, Pharmaceutical Royal International Society, New Dehli, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Amebdkar University, Lucknow, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
2
|
Umamaheswari T, Babu YMM. ViT-MAENB7: An innovative breast cancer diagnosis model from 3D mammograms using advanced segmentation and classification process. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108373. [PMID: 39276667 DOI: 10.1016/j.cmpb.2024.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 09/17/2024]
Abstract
Tumors are an important health concern in modern times. Breast cancer is one of the most prevalent causes of death for women. Breast cancer is rapidly becoming the leading cause of mortality among women globally. Early detection of breast cancer allows patients to obtain appropriate therapy, increasing their probability of survival. The adoption of 3-Dimensional (3D) mammography for the medical identification of abnormalities in the breast reduced the number of deaths dramatically. Classification and accurate detection of lumps in the breast in 3D mammography is especially difficult due to factors such as inadequate contrast and normal fluctuations in tissue density. Several Computer-Aided Diagnosis (CAD) solutions are under development to help radiologists accurately classify abnormalities in the breast. In this paper, a breast cancer diagnosis model is implemented to detect breast cancer in cancer patients to prevent death rates. The 3D mammogram images are gathered from the internet. Then, the gathered images are given to the preprocessing phase. The preprocessing is done using a median filter and image scaling method. The purpose of the preprocessing phase is to enhance the quality of the images and remove any noise or artifacts that may interfere with the detection of abnormalities. The median filter helps to smooth out any irregularities in the images, while the image scaling method adjusts the size and resolution of the images for better analysis. Once the preprocessing is complete, the preprocessed image is given to the segmentation phase. The segmentation phase is crucial in medical image analysis as it helps to identify and separate different structures within the image, such as organs or tumors. This process involves dividing the preprocessed image into meaningful regions or segments based on intensity, color, texture, or other features. The segmentation process is done using Adaptive Thresholding with Region Growing Fusion Model (AT-RGFM)". This model combines the advantages of both thresholding and region-growing techniques to accurately identify and delineate specific structures within the image. By utilizing AT-RGFM, the segmentation phase can effectively differentiate between different parts of the image, allowing for more precise analysis and diagnosis. It plays a vital role in the medical image analysis process, providing crucial insights for healthcare professionals. Here, the Modified Garter Snake Optimization Algorithm (MGSOA) is used to optimize the parameters. It helps to optimize parameters for accurately identifying and delineating specific structures within medical images and also helps healthcare professionals in providing more precise analysis and diagnosis, ultimately playing a vital role in the medical image analysis process. MGSOA enhances the segmentation phase by effectively differentiating between different parts of the image, leading to more accurate results. Then, the segmented image is fed into the detection phase. The tumor detection is performed by the Vision Transformer-based Multiscale Adaptive EfficientNetB7 (ViT-MAENB7) model. This model utilizes a combination of advanced algorithms and deep learning techniques to accurately identify and locate tumors within the segmented medical image. By incorporating a multiscale adaptive approach, the ViT-MAENB7 model can analyze the image at various levels of detail, improving the overall accuracy of tumor detection. This crucial step in the medical image analysis process allows healthcare professionals to make more informed decisions regarding patient treatment and care. Here, the created MGSOA algorithm is used to optimize the parameters for enhancing the performance of the model. The suggested breast cancer diagnosis performance is compared to conventional cancer diagnosis models and it showed high accuracy. The accuracy of the developed MGSOA-ViT-MAENB7 is 96.6 %, and others model like RNN, LSTM, EffNet, and ViT-MAENet given the accuracy to be 90.31 %, 92.79 %, 94.46 % and 94.75 %. The developed model's ability to analyze images at multiple scales, combined with the optimization provided by the MGSOA algorithm, results in a highly accurate and efficient system for detecting tumors in medical images. This cutting-edge technology not only improves the accuracy of diagnosis but also helps healthcare professionals tailor treatment plans to individual patients, ultimately leading to better outcomes. By outperforming traditional cancer diagnosis models, the proposed model is revolutionizing the field of medical imaging and setting a new standard for precision and effectiveness in healthcare.
Collapse
Affiliation(s)
| | - Y Murali Mohan Babu
- N.B.K.R. Institute of Science and Technology, Vidhyanagar, Andhra Pradesh, India.
| |
Collapse
|
3
|
Chen M, Rong J, Zhao J, Teng Y, Jiang C, Chen J, Xu J. PET-based radiomic feature based on the cross-combination method for predicting the mid-term efficacy and prognosis in high-risk diffuse large B-cell lymphoma patients. Front Oncol 2024; 14:1394450. [PMID: 38903712 PMCID: PMC11188321 DOI: 10.3389/fonc.2024.1394450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Objectives This study aims to develop 7×7 machine-learning cross-combinatorial methods for selecting and classifying radiomic features used to construct Radiomics Score (RadScore) of predicting the mid-term efficacy and prognosis in high-risk patients with diffuse large B-cell lymphoma (DLBCL). Methods Retrospectively, we recruited 177 high-risk DLBCL patients from two medical centers between October 2012 and September 2022 and randomly divided them into a training cohort (n=123) and a validation cohort (n=54). We finally extracted 110 radiomic features along with SUVmax, MTV, and TLG from the baseline PET. The 49 features selection-classification pairs were used to obtain the optimal LASSO-LASSO model with 11 key radiomic features for RadScore. Logistic regression was employed to identify independent RadScore, clinical and PET factors. These models were evaluated using receiver operating characteristic (ROC) curves and calibration curves. Decision curve analysis (DCA) was conducted to assess the predictive power of the models. The prognostic power of RadScore was assessed using cox regression (COX) and Kaplan-Meier plots (KM). Results 177 patients (mean age, 63 ± 13 years,129 men) were evaluated. Multivariate analyses showed that gender (OR,2.760; 95%CI:1.196,6.368); p=0.017), B symptoms (OR,4.065; 95%CI:1.837,8.955; p=0.001), SUVmax (OR,2.619; 95%CI:1.107,6.194; p=0.028), and RadScore (OR,7.167; 95%CI:2.815,18.248; p<0.001) independently contributed to the risk factors for predicting mid-term outcome. The AUC values of the combined models in the training and validation groups were 0.846 and 0.724 respectively, outperformed the clinical model (0.714;0.556), PET based model (0.664; 0.589), NCCN-IPI model (0.523;0.406) and IPI model (0.510;0.412) in predicting mid-term treatment outcome. DCA showed that the combined model incorporating RadScore, clinical risk factors, and PET metabolic metrics has optimal net clinical benefit. COX indicated that the high RadScore group had worse prognosis and survival in progression-free survival (PFS) (HR, 2.1737,95%CI: 1.2983, 3.6392) and overall survival (OS) (HR,2.1356,95%CI: 1.2561, 3.6309) compared to the low RadScore group. KM survival analysis also showed the same prognosis prediction as Cox results. Conclusion The combined model incorporating RadScore, sex, B symptoms and SUVmax demonstrates a significant enhancement in predicting medium-term efficacy and prognosis in high-risk DLBCL patients. RadScore using 7×7 machine learning cross-combinatorial methods for selection and classification holds promise as a potential method for evaluating medium-term treatment outcome and prognosis in high-risk DLBCL patients.
Collapse
Affiliation(s)
- Man Chen
- Department of Hematology, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jian Rong
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jincheng Zhao
- Department of Hematology, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Teng
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chong Jiang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Chen
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Kufel J, Bargieł-Łączek K, Kocot S, Koźlik M, Bartnikowska W, Janik M, Czogalik Ł, Dudek P, Magiera M, Lis A, Paszkiewicz I, Nawrat Z, Cebula M, Gruszczyńska K. What Is Machine Learning, Artificial Neural Networks and Deep Learning?-Examples of Practical Applications in Medicine. Diagnostics (Basel) 2023; 13:2582. [PMID: 37568945 PMCID: PMC10417718 DOI: 10.3390/diagnostics13152582] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Machine learning (ML), artificial neural networks (ANNs), and deep learning (DL) are all topics that fall under the heading of artificial intelligence (AI) and have gained popularity in recent years. ML involves the application of algorithms to automate decision-making processes using models that have not been manually programmed but have been trained on data. ANNs that are a part of ML aim to simulate the structure and function of the human brain. DL, on the other hand, uses multiple layers of interconnected neurons. This enables the processing and analysis of large and complex databases. In medicine, these techniques are being introduced to improve the speed and efficiency of disease diagnosis and treatment. Each of the AI techniques presented in the paper is supported with an example of a possible medical application. Given the rapid development of technology, the use of AI in medicine shows promising results in the context of patient care. It is particularly important to keep a close eye on this issue and conduct further research in order to fully explore the potential of ML, ANNs, and DL, and bring further applications into clinical use in the future.
Collapse
Affiliation(s)
- Jakub Kufel
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland;
| | - Katarzyna Bargieł-Łączek
- Paediatric Radiology Students’ Scientific Association at the Division of Diagnostic Imaging, Department of Radiology and Nuclear Medicine, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.B.-Ł.); (W.B.)
| | - Szymon Kocot
- Bright Coders’ Factory, Technologiczna 2, 45-839 Opole, Poland
| | - Maciej Koźlik
- Division of Cardiology and Structural Heart Disease, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Wiktoria Bartnikowska
- Paediatric Radiology Students’ Scientific Association at the Division of Diagnostic Imaging, Department of Radiology and Nuclear Medicine, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.B.-Ł.); (W.B.)
| | - Michał Janik
- Student Scientific Association Named after Professor Zbigniew Religa at the Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland; (M.J.); (Ł.C.); (P.D.); (M.M.); (I.P.)
| | - Łukasz Czogalik
- Student Scientific Association Named after Professor Zbigniew Religa at the Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland; (M.J.); (Ł.C.); (P.D.); (M.M.); (I.P.)
| | - Piotr Dudek
- Student Scientific Association Named after Professor Zbigniew Religa at the Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland; (M.J.); (Ł.C.); (P.D.); (M.M.); (I.P.)
| | - Mikołaj Magiera
- Student Scientific Association Named after Professor Zbigniew Religa at the Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland; (M.J.); (Ł.C.); (P.D.); (M.M.); (I.P.)
| | - Anna Lis
- Cardiology Students’ Scientific Association at the III Department of Cardiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Iga Paszkiewicz
- Student Scientific Association Named after Professor Zbigniew Religa at the Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland; (M.J.); (Ł.C.); (P.D.); (M.M.); (I.P.)
| | - Zbigniew Nawrat
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland;
| | - Maciej Cebula
- Individual Specialist Medical Practice Maciej Cebula, 40-754 Katowice, Poland;
| | - Katarzyna Gruszczyńska
- Department of Radiodiagnostics, Invasive Radiology and Nuclear Medicine, Department of Radiology and Nuclear Medicine, School of Medicine in Katowice, Medical University of Silesia, Medyków 14, 40-752 Katowice, Poland;
| |
Collapse
|
5
|
Luo Y, Lu Z, Liu L, Huang Q. Deep fusion of human-machine knowledge with attention mechanism for breast cancer diagnosis. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
6
|
A novel deep learning model for breast lesion classification using ultrasound Images: A multicenter data evaluation. Phys Med 2023; 107:102560. [PMID: 36878133 DOI: 10.1016/j.ejmp.2023.102560] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023] Open
Abstract
PURPOSE Breast cancer is one of the major reasons of death due to cancer in women. Early diagnosis is the most critical key for disease screening, control, and reducing mortality. A robust diagnosis relies on the correct classification of breast lesions. While breast biopsy is referred to as the "gold standard" in assessing both the activity and degree of breast cancer, it is an invasive and time-consuming approach. METHOD The current study's primary objective was to develop a novel deep-learning architecture based on the InceptionV3 network to classify ultrasound breast lesions. The main promotions of the proposed architecture were converting the InceptionV3 modules to residual inception ones, increasing their number, and altering the hyperparameters. In addition, we used a combination of five datasets (three public datasets and two prepared from different imaging centers) for training and evaluating the model. RESULTS The dataset was split into the train (80%) and test (20%) groups. The model achieved 0.83, 0.77, 0.8, 0.81, 0.81, 0.18, and 0.77 for the precision, recall, F1 score, accuracy, AUC, Root Mean Squared Error, and Cronbach's α in the test group, respectively. CONCLUSIONS This study illustrates that the improved InceptionV3 can robustly classify breast tumors, potentially reducing the need for biopsy in many cases.
Collapse
|
7
|
Liu S, Fan Y, Duan M, Wang Y, Su G, Ren Y, Huang L, Zhou F. AcneGrader: An ensemble pruning of the deep learning base models to grade acne. Skin Res Technol 2022; 28:677-688. [PMID: 35639819 PMCID: PMC9907630 DOI: 10.1111/srt.13166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Acne is one of the most common skin lesions in adolescents. Some severe or inflammatory acne leads to scars, which may have major impacts on patients' quality of life or even job prospects. Grading acne plays an important role in diagnosis, and the diagnosis is made by counting the number of acne. It is a labor-intensive job and it is easy for dermatologists to make mistakes, so it is very important to develop automatic diagnosis methods. Ensemble learning may improve the prediction results of the base models, but its time complexity is relatively high. The ensemble pruning strategy may solve this computational challenge by removing the redundant base models. MATERIALS AND METHODS This study proposed a novel ensemble pruning framework of deep learning models to accurately detect and grade acne using images. First, we train multi-base models and prune the redundancy models according to the performance and diversity of the models. Then, we construct the new features of the training data by the base models we select in the previous step. Next, we remove the redundancy models further by a feature selection algorithm. Finally, we integrate all the base models by classifiers. The ensemble pruning algorithm was proposed to prune the deep learning base models. RESULTS The experimental data showed that the ensemble pruned framework achieved a prediction accuracy of 85.82% on the acne dataset, better than the existing studies. To verify our method's effectiveness, we test our method in a skin cancer dataset and greatly outperform the state-of-the-art methods. CONCLUSION The method we proposed is used to grade acne. Our method's performance outperforms state-of-the-art methods on two datasets, and it can also remove redundancy models to reduce computational complexity.
Collapse
Affiliation(s)
- Shuai Liu
- College of Computer Science and TechnologyKey Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of EducationJilin UniversityChangchunJilinP.R. China
| | - Yusi Fan
- College of SoftwareKey Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of EducationJilin UniversityChangchunJilinP.R. China
| | - Meiyu Duan
- College of Computer Science and TechnologyKey Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of EducationJilin UniversityChangchunJilinP.R. China
| | - Yueying Wang
- College of Computer Science and TechnologyKey Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of EducationJilin UniversityChangchunJilinP.R. China
| | - Guoxiong Su
- Beijing Dr. of Acne Medical Research InstituteBeijingChina
| | - Yanjiao Ren
- College of Information Technology (Smart Agriculture Research Institute), Jilin Agricultural UniversityChangchunJilinChina
| | - Lan Huang
- College of Computer Science and TechnologyKey Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of EducationJilin UniversityChangchunJilinP.R. China
| | - Fengfeng Zhou
- College of Computer Science and TechnologyKey Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of EducationJilin UniversityChangchunJilinP.R. China
| |
Collapse
|
8
|
Liu H, Cui G, Luo Y, Guo Y, Zhao L, Wang Y, Subasi A, Dogan S, Tuncer T. Artificial Intelligence-Based Breast Cancer Diagnosis Using Ultrasound Images and Grid-Based Deep Feature Generator. Int J Gen Med 2022; 15:2271-2282. [PMID: 35256855 PMCID: PMC8898057 DOI: 10.2147/ijgm.s347491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 01/30/2023] Open
Abstract
Purpose Breast cancer is a prominent cancer type with high mortality. Early detection of breast cancer could serve to improve clinical outcomes. Ultrasonography is a digital imaging technique used to differentiate benign and malignant tumors. Several artificial intelligence techniques have been suggested in the literature for breast cancer detection using breast ultrasonography (BUS). Nowadays, particularly deep learning methods have been applied to biomedical images to achieve high classification performances. Patients and Methods This work presents a new deep feature generation technique for breast cancer detection using BUS images. The widely known 16 pre-trained CNN models have been used in this framework as feature generators. In the feature generation phase, the used input image is divided into rows and columns, and these deep feature generators (pre-trained models) have applied to each row and column. Therefore, this method is called a grid-based deep feature generator. The proposed grid-based deep feature generator can calculate the error value of each deep feature generator, and then it selects the best three feature vectors as a final feature vector. In the feature selection phase, iterative neighborhood component analysis (INCA) chooses 980 features as an optimal number of features. Finally, these features are classified by using a deep neural network (DNN). Results The developed grid-based deep feature generation-based image classification model reached 97.18% classification accuracy on the ultrasonic images for three classes, namely malignant, benign, and normal. Conclusion The findings obviously denoted that the proposed grid deep feature generator and INCA-based feature selection model successfully classified breast ultrasonic images.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Ultrasound, Cangzhou Central Hospital, Cangzhou, Hebei Province, 061000, People's Republic of China
| | - Guozhong Cui
- Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou, Hebei Province, 061000, People's Republic of China
| | - Yi Luo
- Medical Statistics Room, Cangzhou Central Hospital, Cangzhou, Hebei Province, 061000, People's Republic of China
| | - Yajie Guo
- Department of Ultrasound, Cangzhou Central Hospital, Cangzhou, Hebei Province, 061000, People's Republic of China
| | - Lianli Zhao
- Department of Internal Medicine teaching and research group, Cangzhou Central Hospital, Cangzhou, Hebei Province, 061000, China
| | - Yueheng Wang
- Department of Ultrasound, The Second Hospital of Hebei MedicalUniversity, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| | - Abdulhamit Subasi
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, 20520, Finland.,Department of Computer Science, College of Engineering, Effat University, Jeddah, 21478, Saudi Arabia
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, 23119, Turkey
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, 23119, Turkey
| |
Collapse
|
9
|
|
10
|
|
11
|
Wu C, Zhang Q, Cheng Y, Gao M, Wang G. Novel three-way generative classifier with weighted scoring distribution. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
A Perspective View of Cotton Leaf Image Classification Using Machine Learning Algorithms Using WEKA. ADVANCES IN HUMAN-COMPUTER INTERACTION 2021. [DOI: 10.1155/2021/9367778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cotton is one of the major crops in India, where 23% of cotton gets exported to other countries. The cotton yield depends on crop growth, and it gets affected by diseases. In this paper, cotton disease classification is performed using different machine learning algorithms. For this research, the cotton leaf image database was used to segment the images from the natural background using modified factorization-based active contour method. First, the color and texture features are extracted from segmented images. Later, it has to be fed to the machine learning algorithms such as multilayer perceptron, support vector machine, Naïve Bayes, Random Forest, AdaBoost, and K-nearest neighbor. Four color features and eight texture features were extracted, and experimentation was done using three cases: (1) only color features, (2) only texture features, and (3) both color and texture features. The performance of classifiers was better when color features are extracted compared to texture feature extraction. The color features are enough to classify the healthy and unhealthy cotton leaf images. The performance of the classifiers was evaluated using performance parameters such as precision, recall, F-measure, and Matthews correlation coefficient. The accuracies of classifiers such as support vector machine, Naïve Bayes, Random Forest, AdaBoost, and K-nearest neighbor are 93.38%, 90.91%, 95.86%, 92.56%, and 94.21%, respectively, whereas that of the multilayer perceptron classifier is 96.69%.
Collapse
|
13
|
Cao W, Liang Z, Gao Y, Pomeroy MJ, Han F, Abbasi A, Pickhardt PJ. A dynamic lesion model for differentiation of malignant and benign pathologies. Sci Rep 2021; 11:3485. [PMID: 33568762 PMCID: PMC7875978 DOI: 10.1038/s41598-021-83095-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores the 2nd order derivatives at each image voxel, which reflect the rate of change of image intensity, as a quantitative measure of the tendency. The 2nd order derivatives at each image voxel are usually represented by the Hessian matrix, but it is difficult to quantify a matrix field (or image) through the lesion space as a measure of the tendency. We conjecture that the three eigenvalues contain important information of the Hessian matrix and are chosen as the surrogate representation of the Hessian matrix. By treating the three eigenvalues as a vector, called Hessian vector, which is defined in a local coordinate formed by three orthogonal Hessian eigenvectors and further adapting the gray level occurrence computing method to extract the vector texture descriptors (or measures) from the Hessian vector, a quantitative presentation for the dynamic lesion model is completed. The vector texture descriptors were applied to differentiate malignant from benign lesions from two pathologically proven datasets: colon polyps and lung nodules. The classification results not only outperform four state-of-the-art methods but also three radiologist experts.
Collapse
Affiliation(s)
- Weiguo Cao
- Department of Radiology, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Zhengrong Liang
- Department of Radiology, State University of New York at Stony Brook, Stony Brook, NY, USA.
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA.
| | - Yongfeng Gao
- Department of Radiology, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Marc J Pomeroy
- Department of Radiology, State University of New York at Stony Brook, Stony Brook, NY, USA
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Fangfang Han
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Almas Abbasi
- Department of Radiology, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Perry J Pickhardt
- Department of Radiology, School of Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
14
|
Li S, Zeng Y, Chapman WC, Erfanzadeh M, Nandy S, Mutch M, Zhu Q. Adaptive Boosting (AdaBoost)-based multiwavelength spatial frequency domain imaging and characterization for ex vivo human colorectal tissue assessment. JOURNAL OF BIOPHOTONICS 2020; 13:e201960241. [PMID: 32125775 PMCID: PMC7593835 DOI: 10.1002/jbio.201960241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/13/2020] [Accepted: 02/29/2020] [Indexed: 05/05/2023]
Abstract
The current gold standard diagnostic test for colorectal cancer remains histological inspections of endoluminal neoplasia in biopsy specimens. However, biopsy site selection requires visual inspection of the bowel, typically with a white-light endoscope. Therefore, this technique is poorly suited to detect small or innocuous-appearing lesions. We hypothesize that an alternative modality-multiwavelength spatial frequency domain imaging (SFDI)-would be able to differentiate various colorectal neoplasia from normal tissue. In this ex vivo study of human colorectal tissues, we report the optical absorption and scattering signatures of normal, adenomatous polyp and cancer specimens. An abnormal vs. normal adaptive boosting (AdaBoost) classifier is trained to dichotomize tissue based on SFDI imaging characteristics, and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.95 is achieved. We conclude that AdaBoost-based multiwavelength SFDI can differentiate abnormal from normal colorectal tissues, potentially improving endoluminal screening of the distal gastrointestinal tract in the future.
Collapse
Affiliation(s)
- Shuying Li
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Yifeng Zeng
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - William C. Chapman
- Department of Surgery, Section of Colon and Rectal Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Mohsen Erfanzadeh
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Sreyankar Nandy
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Matthew Mutch
- Department of Surgery, Section of Colon and Rectal Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
15
|
Automatic Identification of Breast Ultrasound Image Based on Supervised Block-Based Region Segmentation Algorithm and Features Combination Migration Deep Learning Model. IEEE J Biomed Health Inform 2020; 24:984-993. [DOI: 10.1109/jbhi.2019.2960821] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Cai H, Pang X, Dong D, Ma Y, Huang Y, Fan X, Wu P, Chen H, He F, Cheng Y, Liu S, Yu Y, Hong M, Xiao J, Wan X, Lv Y, Zheng J. Molecular Decision Tree Algorithms Predict Individual Recurrence Pattern for Locally Advanced Nasopharyngeal Carcinoma. J Cancer 2019; 10:3323-3332. [PMID: 31293635 PMCID: PMC6603411 DOI: 10.7150/jca.29693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/25/2019] [Indexed: 11/05/2022] Open
Abstract
Background: Recurrence remains one of the key reasons of relapse after the radical radiation for locally advanced nasopharyngeal carcinoma (NPC). Here, the multiple molecular and clinical variables integrated decision tree algorithms were designed to predict individual recurrence patterns (with VS without recurrence) for locally advanced NPC. Methods: A total of 136 locally advanced NPC patients retrieved from a randomized controlled phase III trial, were included. For each patient, the expression levels of 33 clinicopathological biomarkers in tumor specimen, 3 Epstein-Barr virus related serological antibody titer and 5 clinicopathological variables, were detected and collected to construct the decision tree algorithm. The expression level of 33 clinicopathological biomarkers in tumor specimen was evaluated by immunohistochemistry staining. Results: Three algorithm classifiers, augmented by the adaptive boosting algorithm for variable selection and classification, were designed to predict individual recurrence pattern. The classifiers were trained in the training subset and further tested using a 10-fold cross-validation scheme in the validation subset. In total, 13 molecules expression level in tumor specimen, including AKT1, Aurora-A, Bax, Bcl-2, N-Cadherin, CENP-H, HIF-1α, LMP-1, C-Met, MMP-2, MMP-9, Pontin and Stathmin, and N stage were selected to construct three 10-fold cross-validation decision tree classifiers. These classifiers showed high predictive sensitivity (87.2-93.3%), specificity (69.0-100.0%), and overall accuracy (84.5-95.2%) to predict recurrence pattern individually. Multivariate analyses confirmed the decision tree classifier was an independent prognostic factor to predict individual recurrence (algorithm 1: hazard ration (HR) 0.07, 95% confidence interval (CI) 0.03-0.16, P < 0.01; algorithm 2: HR 0.13, 95% CI 0.04-0.44, P < 0.01; algorithm 3: HR 0.13, 95% CI 0.03-0.68, P = 0.02). Conclusion: Multiple molecular and clinicopathological variables integrated decision tree algorithms may individually predict the recurrence pattern for locally advanced NPC. This decision tree algorism provides a potential tool to select patients with high recurrence risk for intensive follow-up, and to diagnose recurrence at an earlier stage for salvage treatment in the NPC endemic region.
Collapse
Affiliation(s)
- Hongmin Cai
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.,School of Computer Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaolin Pang
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Dong Dong
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yan Ma
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yan Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Xinjuan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Peihuang Wu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Haiyang Chen
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Fang He
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yikan Cheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Shuai Liu
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yizhen Yu
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Minghuang Hong
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiangbo Wan
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yanchun Lv
- Department of Medical Radiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| |
Collapse
|
17
|
Kriti, Virmani J, Agarwal R. Effect of despeckle filtering on classification of breast tumors using ultrasound images. Biocybern Biomed Eng 2019. [DOI: 10.1016/j.bbe.2019.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Bharti P, Mittal D, Ananthasivan R. Preliminary Study of Chronic Liver Classification on Ultrasound Images Using an Ensemble Model. ULTRASONIC IMAGING 2018; 40:357-379. [PMID: 30015593 DOI: 10.1177/0161734618787447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chronic liver diseases are fifth leading cause of fatality in developing countries. Their early diagnosis is extremely important for timely treatment and salvage life. To examine abnormalities of liver, ultrasound imaging is the most frequently used modality. However, the visual differentiation between chronic liver and cirrhosis, and presence of heptocellular carcinomas (HCC) evolved over cirrhotic liver is difficult, as they appear almost similar in ultrasound images. In this paper, to deal with this difficult visualization problem, a method has been developed for classifying four liver stages, that is, normal, chronic, cirrhosis, and HCC evolved over cirrhosis. The method is formulated with selected set of "handcrafted" texture features obtained after hierarchal feature fusion. These multiresolution and higher order features, which are able to characterize echotexture and roughness of liver surface, are extracted by using ranklet, gray-level difference matrix and gray-level co-occurrence matrix methods. Thereafter, these features are applied on proposed ensemble classifier that is designed with voting algorithm in conjunction with three classifiers, namely, k-nearest neighbor (k-NN), support vector machine (SVM), and rotation forest. The experiments are conducted to evaluate the (a) effectiveness of "handcrafted" texture features, (b) performance of proposed ensemble model, (c) effectiveness of proposed ensemble strategy, (d) performance of different classifiers, and (e) performance of proposed ensemble model based on Convolutional Neural Networks (CNN) features to differentiate four liver stages. These experiments are carried out on database of 754 segmented regions of interest formed by clinically acquired ultrasound images. The results show that classification accuracy of 96.6% is obtained by use of proposed classifier model.
Collapse
Affiliation(s)
- Puja Bharti
- 1 Thapar Institute of Engineering & Technology, Patiala, India
| | - Deepti Mittal
- 1 Thapar Institute of Engineering & Technology, Patiala, India
| | | |
Collapse
|
19
|
Comparison of Transferred Deep Neural Networks in Ultrasonic Breast Masses Discrimination. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4605191. [PMID: 30035122 PMCID: PMC6033250 DOI: 10.1155/2018/4605191] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/24/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Abstract
This research aims to address the problem of discriminating benign cysts from malignant masses in breast ultrasound (BUS) images based on Convolutional Neural Networks (CNNs). The biopsy-proven benchmarking dataset was built from 1422 patient cases containing a total of 2058 breast ultrasound masses, comprising 1370 benign and 688 malignant lesions. Three transferred models, InceptionV3, ResNet50, and Xception, a CNN model with three convolutional layers (CNN3), and traditional machine learning-based model with hand-crafted features were developed for differentiating benign and malignant tumors from BUS data. Cross-validation results have demonstrated that the transfer learning method outperformed the traditional machine learning model and the CNN3 model, where the transferred InceptionV3 achieved the best performance with an accuracy of 85.13% and an AUC of 0.91. Moreover, classification models based on deep features extracted from the transferred models were also built, where the model with combined features extracted from all three transferred models achieved the best performance with an accuracy of 89.44% and an AUC of 0.93 on an independent test set.
Collapse
|
20
|
Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5137904. [PMID: 29687000 PMCID: PMC5857346 DOI: 10.1155/2018/5137904] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/12/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system.
Collapse
|
21
|
Xie X, Shi F, Niu J, Tang X. Breast Ultrasound Image Classification and Segmentation Using Convolutional Neural Networks. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING – PCM 2018 2018. [DOI: 10.1007/978-3-030-00764-5_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Xi X, Xu H, Shi H, Zhang C, Ding HY, Zhang G, Tang Y, Yin Y. Robust texture analysis of multi-modal images using Local Structure Preserving Ranklet and multi-task learning for breast tumor diagnosis. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.06.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
A Theoretical Analysis of Why Hybrid Ensembles Work. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2017; 2017:1930702. [PMID: 28255296 PMCID: PMC5307253 DOI: 10.1155/2017/1930702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 11/23/2022]
Abstract
Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles.
Collapse
|
24
|
Mathieson L, Mendes A, Marsden J, Pond J, Moscato P. Computer-Aided Breast Cancer Diagnosis with Optimal Feature Sets: Reduction Rules and Optimization Techniques. Methods Mol Biol 2017; 1526:299-325. [PMID: 27896749 DOI: 10.1007/978-1-4939-6613-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter introduces a new method for knowledge extraction from databases for the purpose of finding a discriminative set of features that is also a robust set for within-class classification. Our method is generic and we introduce it here in the field of breast cancer diagnosis from digital mammography data. The mathematical formalism is based on a generalization of the k-Feature Set problem called (α, β)-k-Feature Set problem, introduced by Cotta and Moscato (J Comput Syst Sci 67(4):686-690, 2003). This method proceeds in two steps: first, an optimal (α, β)-k-feature set of minimum cardinality is identified and then, a set of classification rules using these features is obtained. We obtain the (α, β)-k-feature set in two phases; first a series of extremely powerful reduction techniques, which do not lose the optimal solution, are employed; and second, a metaheuristic search to identify the remaining features to be considered or disregarded. Two algorithms were tested with a public domain digital mammography dataset composed of 71 malignant and 75 benign cases. Based on the results provided by the algorithms, we obtain classification rules that employ only a subset of these features.
Collapse
Affiliation(s)
- Luke Mathieson
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine (CIBM), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Alexandre Mendes
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine (CIBM), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - John Marsden
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine (CIBM), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jeffrey Pond
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine (CIBM), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine (CIBM), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
25
|
Dinakaran S, Thangaiah PRJ. Ensemble Method of Effective AdaBoost Algorithm for Decision Tree Classifiers. INT J ARTIF INTELL T 2016. [DOI: 10.1142/s0218213017500075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This article introduces a novel ensemble method named eAdaBoost (Effective Adaptive Boosting) is a meta classifier which is developed by enhancing the existing AdaBoost algorithm and to handle the time complexity and also to produce the best classification accuracy. The eAdaBoost reduces the error rate when compared with the existing methods and generates the best accuracy by reweighing each feature for further process. The comparison results of an extensive experimental evaluation of the proposed method are explained using the UCI machine learning repository datasets. The accuracy of the classifiers and statistical test comparisons are made with various boosting algorithms. The proposed eAdaBoost has been also implemented with different decision tree classifiers like C4.5, Decision Stump, NB Tree and Random Forest. The algorithm has been computed with various dataset, with different weight thresholds and the performance is analyzed. The proposed method produces better results using random forest and NB tree as base classifier than the decision stump and C4.5 classifiers for few datasets. The eAdaBoost gives better classification accuracy, and prediction accuracy, and execution time is also less when compared with other classifiers.
Collapse
Affiliation(s)
- S. Dinakaran
- Department of Computer Applications, Karunya University, Coimbatore, India
| | | |
Collapse
|
26
|
Moon WK, Huang YS, Lo CM, Huang CS, Bae MS, Kim WH, Chen JH, Chang RF. Computer-aided diagnosis for distinguishing between triple-negative breast cancer and fibroadenomas based on ultrasound texture features. Med Phys 2016; 42:3024-35. [PMID: 26127055 DOI: 10.1118/1.4921123] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC), an aggressive subtype, is frequently misclassified as fibroadenoma due to benign morphologic features on breast ultrasound (US). This study aims to develop a computer-aided diagnosis (CAD) system based on texture features for distinguishing between TNBC and benign fibroadenomas in US images. METHODS US images of 169 pathology-proven tumors (mean size, 1.65 cm; range, 0.7-3.0 cm) composed of 84 benign fibroadenomas and 85 TNBC tumors are used in this study. After a tumor is segmented out using the level-set method, morphological, conventional texture, and multiresolution gray-scale invariant texture feature sets are computed using a best-fitting ellipse, gray-level co-occurrence matrices, and the ranklet transform, respectively. The linear support vector machine with leave-one-out cross-validation schema is used as a classifier, and the diagnostic performance is assessed with receiver operating characteristic curve analysis. RESULTS The Az values of the morphology, conventional texture, and multiresolution gray-scale invariant texture feature sets are 0.8470 [95% confidence intervals (CIs), 0.7826-0.8973], 0.8542 (95% CI, 0.7911-0.9030), and 0.9695 (95% CI, 0.9376-0.9865), respectively. The Az of the CAD system based on the combined feature sets is 0.9702 (95% CI, 0.9334-0.9882). CONCLUSIONS The CAD system based on texture features extracted via the ranklet transform may be useful for improving the ability to discriminate between TNBC and benign fibroadenomas.
Collapse
Affiliation(s)
- Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul 110-744, South Korea
| | - Yao-Sian Huang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Chung-Ming Lo
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10041, Taiwan, Republic of China and Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Min Sun Bae
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul 110-744, South Korea
| | - Won Hwa Kim
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul 110-744, South Korea
| | - Jeon-Hor Chen
- Center for Functional Onco-Imaging and Department of Radiological Science, University of California, Irvine, California 92868 and Department of Radiology, E-Da Hospital and I-Shou University, Kaohsiung 82445, Taiwan, Republic of China
| | - Ruey-Feng Chang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China and Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| |
Collapse
|
27
|
Venkatesh SS, Levenback BJ, Sultan LR, Bouzghar G, Sehgal CM. Going beyond a First Reader: A Machine Learning Methodology for Optimizing Cost and Performance in Breast Ultrasound Diagnosis. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:3148-3162. [PMID: 26354997 DOI: 10.1016/j.ultrasmedbio.2015.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/16/2015] [Accepted: 07/16/2015] [Indexed: 06/05/2023]
Abstract
The goal of this study was to devise a machine learning methodology as a viable low-cost alternative to a second reader to help augment physicians' interpretations of breast ultrasound images in differentiating benign and malignant masses. Two independent feature sets consisting of visual features based on a radiologist's interpretation of images and computer-extracted features when used as first and second readers and combined by adaptive boosting (AdaBoost) and a pruning classifier resulted in a very high level of diagnostic performance (area under the receiver operating characteristic curve = 0.98) at a cost of pruning a fraction (20%) of the cases for further evaluation by independent methods. AdaBoost also improved the diagnostic performance of the individual human observers and increased the agreement between their analyses. Pairing AdaBoost with selective pruning is a principled methodology for achieving high diagnostic performance without the added cost of an additional reader for differentiating solid breast masses by ultrasound.
Collapse
Affiliation(s)
- Santosh S Venkatesh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin J Levenback
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laith R Sultan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ghizlane Bouzghar
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chandra M Sehgal
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
28
|
|
29
|
Yu Z, Li L, Liu J, Han G. Hybrid adaptive classifier ensemble. IEEE TRANSACTIONS ON CYBERNETICS 2015; 45:177-190. [PMID: 24860045 DOI: 10.1109/tcyb.2014.2322195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Traditional random subspace-based classifier ensemble approaches (RSCE) have several limitations, such as viewing the same importance for the base classifiers trained in different subspaces, not considering how to find the optimal random subspace set. In this paper, we design a general hybrid adaptive ensemble learning framework (HAEL), and apply it to address the limitations of RSCE. As compared with RSCE, HAEL consists of two adaptive processes, i.e., base classifier competition and classifier ensemble interaction, so as to adjust the weights of the base classifiers in each ensemble and to explore the optimal random subspace set simultaneously. The experiments on the real-world datasets from the KEEL dataset repository for the classification task and the cancer gene expression profiles show that: 1) HAEL works well on both the real-world KEEL datasets and the cancer gene expression profiles and 2) it outperforms most of the state-of-the-art classifier ensemble approaches on 28 out of 36 KEEL datasets and 6 out of 6 cancer datasets.
Collapse
|
30
|
Lin LC, Ouyang CS, Chiang CT, Wu HC, Yang RC. Early evaluation of the therapeutic effectiveness in children with epilepsy by quantitative EEG: A model of Mozart K.448 listening—a preliminary study. Epilepsy Res 2014; 108:1417-26. [DOI: 10.1016/j.eplepsyres.2014.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/03/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
|
31
|
Lin LC, Ouyang CS, Chiang CT, Yang RC, Wu RC, Wu HC. Early prediction of medication refractoriness in children with idiopathic epilepsy based on scalp EEG analysis. Int J Neural Syst 2014; 24:1450023. [PMID: 25164248 DOI: 10.1142/s0129065714500233] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Refractory epilepsy often has deleterious effects on an individual's health and quality of life. Early identification of patients whose seizures are refractory to antiepileptic drugs is important in considering the use of alternative treatments. Although idiopathic epilepsy is regarded as having a significantly lower risk factor of developing refractory epilepsy, still a subset of patients with idiopathic epilepsy might be refractory to medical treatment. In this study, we developed an effective method to predict the refractoriness of idiopathic epilepsy. Sixteen EEG segments from 12 well-controlled patients and 14 EEG segments from 11 refractory patients were analyzed at the time of first EEG recordings before antiepileptic drug treatment. Ten crucial EEG feature descriptors were selected for classification. Three of 10 were related to decorrelation time, and four of 10 were related to relative power of delta/gamma. There were significantly higher values in these seven feature descriptors in the well-controlled group as compared to the refractory group. On the contrary, the remaining three feature descriptors related to spectral edge frequency, kurtosis, and energy of wavelet coefficients demonstrated significantly lower values in the well-controlled group as compared to the refractory group. The analyses yielded a weighted precision rate of 94.2%, and a 93.3% recall rate. Therefore, the developed method is a useful tool in identifying the possibility of developing refractory epilepsy in patients with idiopathic epilepsy.
Collapse
Affiliation(s)
- Lung-Chang Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Departments of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd., Kaohsiung City 80708, Taiwan
| | | | | | | | | | | |
Collapse
|
32
|
Hizukuri A, Nakayama R, Kashikura Y, Takase H, Kawanaka H, Ogawa T, Tsuruoka S. Computerized determination scheme for histological classification of breast mass using objective features corresponding to clinicians' subjective impressions on ultrasonographic images. J Digit Imaging 2014; 26:958-70. [PMID: 23546774 DOI: 10.1007/s10278-013-9594-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
It is often difficult for clinicians to decide correctly on either biopsy or follow-up for breast lesions with masses on ultrasonographic images. The purpose of this study was to develop a computerized determination scheme for histological classification of breast mass by using objective features corresponding to clinicians' subjective impressions for image features on ultrasonographic images. Our database consisted of 363 breast ultrasonographic images obtained from 363 patients. It included 150 malignant (103 invasive and 47 noninvasive carcinomas) and 213 benign masses (87 cysts and 126 fibroadenomas). We divided our database into 65 images (28 malignant and 37 benign masses) for training set and 298 images (122 malignant and 176 benign masses) for test set. An observer study was first conducted to obtain clinicians' subjective impression for nine image features on mass. In the proposed method, location and area of the mass were determined by an experienced clinician. We defined some feature extraction methods for each of nine image features. For each image feature, we selected the feature extraction method with the highest correlation coefficient between the objective features and the average clinicians' subjective impressions. We employed multiple discriminant analysis with the nine objective features for determining histological classification of mass. The classification accuracies of the proposed method were 88.4 % (76/86) for invasive carcinomas, 80.6 % (29/36) for noninvasive carcinomas, 86.0 % (92/107) for fibroadenomas, and 84.1 % (58/69) for cysts, respectively. The proposed method would be useful in the differential diagnosis of breast masses on ultrasonographic images as diagnosis aid.
Collapse
Affiliation(s)
- Akiyoshi Hizukuri
- Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan,
| | | | | | | | | | | | | |
Collapse
|
33
|
Xu JW, Suzuki K. Max-AUC feature selection in computer-aided detection of polyps in CT colonography. IEEE J Biomed Health Inform 2014; 18:585-93. [PMID: 24608058 PMCID: PMC4283828 DOI: 10.1109/jbhi.2013.2278023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We propose a feature selection method based on a sequential forward floating selection (SFFS) procedure to improve the performance of a classifier in computerized detection of polyps in CT colonography (CTC). The feature selection method is coupled with a nonlinear support vector machine (SVM) classifier. Unlike the conventional linear method based on Wilks' lambda, the proposed method selected the most relevant features that would maximize the area under the receiver operating characteristic curve (AUC), which directly maximizes classification performance, evaluated based on AUC value, in the computer-aided detection (CADe) scheme. We presented two variants of the proposed method with different stopping criteria used in the SFFS procedure. The first variant searched all feature combinations allowed in the SFFS procedure and selected the subsets that maximize the AUC values. The second variant performed a statistical test at each step during the SFFS procedure, and it was terminated if the increase in the AUC value was not statistically significant. The advantage of the second variant is its lower computational cost. To test the performance of the proposed method, we compared it against the popular stepwise feature selection method based on Wilks' lambda for a colonic-polyp database (25 polyps and 2624 nonpolyps). We extracted 75 morphologic, gray-level-based, and texture features from the segmented lesion candidate regions. The two variants of the proposed feature selection method chose 29 and 7 features, respectively. Two SVM classifiers trained with these selected features yielded a 96% by-polyp sensitivity at false-positive (FP) rates of 4.1 and 6.5 per patient, respectively. Experiments showed a significant improvement in the performance of the classifier with the proposed feature selection method over that with the popular stepwise feature selection based on Wilks' lambda that yielded 18.0 FPs per patient at the same sensitivity level.
Collapse
Affiliation(s)
- Jian-Wu Xu
- Department of Radiology, University of Chicago, Chicago, IL 60637 USA
| | - Kenji Suzuki
- Department of Radiology, University of Chicago, Chicago, IL 60637 USA
| |
Collapse
|
34
|
Wang YCF. Robust Texture Analysis Using Multi-Resolution Gray-Scale Invariant Features for Breast Sonographic Tumor Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:2262-2273. [PMID: 24001985 DOI: 10.1109/tmi.2013.2279938] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Computer-aided diagnosis (CAD) systems in gray-scale breast ultrasound images have the potential to reduce unnecessary biopsy of breast masses. The purpose of our study is to develop a robust CAD system based on the texture analysis. First, gray-scale invariant features are extracted from ultrasound images via multi-resolution ranklet transform. Thus, one can apply linear support vector machines (SVMs) on the resulting gray-level co-occurrence matrix (GLCM)-based texture features for discriminating the benign and malignant masses. To verify the effectiveness and robustness of the proposed texture analysis, breast ultrasound images obtained from three different platforms are evaluated based on cross-platform training/testing and leave-one-out cross-validation (LOO-CV) schemes. We compare our proposed features with those extracted by wavelet transform in terms of receiver operating characteristic (ROC) analysis. The AUC values derived from the area under the curve for the three databases via ranklet transform are 0.918 (95% confidence interval [CI], 0.848 to 0.961), 0.943 (95% CI, 0.906 to 0.968), and 0.934 (95% CI, 0.883 to 0.961), respectively, while those via wavelet transform are 0.847 (95% CI, 0.762 to 0.910), 0.922 (95% CI, 0.878 to 0.958), and 0.867 (95% CI, 0.798 to 0.914), respectively. Experiments with cross-platform training/testing scheme between each database reveal that the diagnostic performance of our texture analysis using ranklet transform is less sensitive to the sonographic ultrasound platforms. Also, we adopt several co-occurrence statistics in terms of quantization levels and orientations (i.e., descriptor settings) for computing the co-occurrence matrices with 0.632+ bootstrap estimators to verify the use of the proposed texture analysis. These experiments suggest that the texture analysis using multi-resolution gray-scale invariant features via ranklet transform is useful for designing a robust CAD system.
Collapse
|
35
|
Suzuki K. Machine Learning in Computer-aided Diagnosis of the Thorax and Colon in CT: A Survey. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS 2013; E96-D:772-783. [PMID: 24174708 PMCID: PMC3810349 DOI: 10.1587/transinf.e96.d.772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Computer-aided detection (CADe) and diagnosis (CAD) has been a rapidly growing, active area of research in medical imaging. Machine leaning (ML) plays an essential role in CAD, because objects such as lesions and organs may not be represented accurately by a simple equation; thus, medical pattern recognition essentially require "learning from examples." One of the most popular uses of ML is the classification of objects such as lesion candidates into certain classes (e.g., abnormal or normal, and lesions or non-lesions) based on input features (e.g., contrast and area) obtained from segmented lesion candidates. The task of ML is to determine "optimal" boundaries for separating classes in the multidimensional feature space which is formed by the input features. ML algorithms for classification include linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), multilayer perceptrons, and support vector machines (SVM). Recently, pixel/voxel-based ML (PML) emerged in medical image processing/analysis, which uses pixel/voxel values in images directly, instead of features calculated from segmented lesions, as input information; thus, feature calculation or segmentation is not required. In this paper, ML techniques used in CAD schemes for detection and diagnosis of lung nodules in thoracic CT and for detection of polyps in CT colonography (CTC) are surveyed and reviewed.
Collapse
Affiliation(s)
- Kenji Suzuki
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
36
|
A novel approach to segment and classify regional lymph nodes on computed tomography images. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012. [PMID: 23193427 PMCID: PMC3502010 DOI: 10.1155/2012/145926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Morphology of lymph nodal metastasis is critical for diagnosis and prognosis of cancer patients. However, accurate prediction of lymph node type based on morphological information is rarely available due to lack of pathological validation. To obtain correct morphological information, lymph nodes must be segmented from computed tomography (CT) image accurately. In this paper we described a novel approach to segment and predict the status of lymph nodes from CT images and confirmed the diagnostic performance by clinical pathological results. We firstly removed noise and preserved edge details using a revised nonlinear diffusion equation, and secondly we used a repulsive-force-based snake method to segment the lymph nodes. Morphological measurements for the characterization of the node status were obtained from the segmented node image. These measurements were further selected to derive a highly representative set of node status, called feature vector. Finally, classical classification scheme based on support vector machine model was employed to simulate the prediction of nodal status. Experiments on real clinical rectal cancer data showed that the prediction performance with the proposed framework is highly consistent with pathological results. Therefore, this novel algorithm is promising for status prediction of lymph nodes.
Collapse
|
37
|
Accurate Prediction of Coronary Artery Disease Using Reliable Diagnosis System. J Med Syst 2012; 36:3353-73. [DOI: 10.1007/s10916-012-9828-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
|
38
|
Padilla P, López M, Górriz JM, Ramírez J, Salas-González D, Álvarez I. NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer's disease. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:207-216. [PMID: 21914569 DOI: 10.1109/tmi.2011.2167628] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper presents a novel computer-aided diagnosis (CAD) technique for the early diagnosis of the Alzheimer's disease (AD) based on nonnegative matrix factorization (NMF) and support vector machines (SVM) with bounds of confidence. The CAD tool is designed for the study and classification of functional brain images. For this purpose, two different brain image databases are selected: a single photon emission computed tomography (SPECT) database and positron emission tomography (PET) images, both of them containing data for both Alzheimer's disease (AD) patients and healthy controls as a reference. These databases are analyzed by applying the Fisher discriminant ratio (FDR) and nonnegative matrix factorization (NMF) for feature selection and extraction of the most relevant features. The resulting NMF-transformed sets of data, which contain a reduced number of features, are classified by means of a SVM-based classifier with bounds of confidence for decision. The proposed NMF-SVM method yields up to 91% classification accuracy with high sensitivity and specificity rates (upper than 90%). This NMF-SVM CAD tool becomes an accurate method for SPECT and PET AD image classification.
Collapse
Affiliation(s)
- P Padilla
- Department of Signal Theory, Telematics and Communications, University of Granada, 18071 Granada, Spain.
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
A cost-sensitive extension of AdaBoost with markov random field priors for automated segmentation of breast tumors in ultrasonic images. Int J Comput Assist Radiol Surg 2010; 5:537-47. [DOI: 10.1007/s11548-010-0411-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
|