1
|
Zhao Y, Bhosale AA, Zhang X. Multimodal surface coils for low field MR imaging. Magn Reson Imaging 2024; 112:107-115. [PMID: 38971265 DOI: 10.1016/j.mri.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Low field MRI is safer and more cost effective than the high field MRI. One of the inherent problems of low field MRI is its low signal-to-noise ratio or sensitivity. In this work, we introduce a multimodal surface coil technique for signal excitation and reception to improve the RF magnetic field (B1) efficiency and potentially improve MR sensitivity. The proposed multimodal surface coil consists of multiple identical resonators that are electromagnetically coupled to form a multimodal resonator. The field distribution of its lowest frequency mode is suitable for MR imaging applications. The prototype multimodal surface coils are built, and the performance is investigated and validated through numerical simulation, standard RF measurements and tests, and comparison with the conventional surface coil at low fields. Our results show that the B1 efficiency of the multimodal surface coil outperforms that of the conventional surface coil which is known to offer the highest B1 efficiency among all coil categories, i.e., volume coil, half-volume coil and surface coil. In addition, in low-field MRI, the required low-frequency coils often use large value capacitance to achieve the low resonant frequency which makes frequency tuning difficult. The proposed multimodal surface coil can be conveniently tuned to the required low frequency for low-field MRI with significantly reduced capacitance value, demonstrating excellent low-frequency operation capability over the conventional surface coil.
Collapse
Affiliation(s)
- Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
2
|
Bhosale AA, Zhao Y, Zhang X. Electric field and SAR reduction in high-impedance RF arrays by using high permittivity materials for 7T MR imaging. PLoS One 2024; 19:e0305464. [PMID: 38959266 PMCID: PMC11221758 DOI: 10.1371/journal.pone.0305464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
In the field of ultra-high field MR imaging, the challenges associated with higher frequencies and shorter wavelengths necessitate rigorous attention to multichannel array design. While the need for such arrays remains, and efforts to increase channel counts continue, a persistent impediment-inter-element coupling-constantly hinders development. This coupling degrades current and field distribution, introduces noise correlation between channels, and alters the frequency of array elements, affecting image quality and overall performance. The goal of optimizing ultra-high field MRI goes beyond resolving inter-element coupling and includes significant safety considerations related to the design changes required to achieve high-impedance coils. Although these coils provide excellent isolation, the higher impedance needs special design changes. However, such changes pose a significant safety risk in the form of strong electric fields across low-capacitance lumped components. This process may raise Specific Absorption Rate (SAR) values in the imaging subject, increasing power deposition and, as a result, the risk of tissue heating-related injury. To balance the requirement of inter-element decoupling with the critical need for safety, we suggest a new solution. Our method uses high-dielectric materials to efficiently reduce electric fields and SAR values in the imaging sample. This intervention tries to maintain B1 efficiency and inter-element decoupling within the existing array design, which includes high-impedance coils. Our method aims to promote the full potential of ultra-high field MRI by alleviating this critical safety concern with minimal changes to the existing array setup.
Collapse
Affiliation(s)
- Aditya A. Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
| |
Collapse
|
3
|
Payne K, Zhao Y, Bhosale AA, Zhang X. Dual-Tuned Coaxial-Transmission-Line RF Coils for Hyperpolarized 13C and Deuterium 2H Metabolic MRS Imaging at Ultrahigh Fields. IEEE Trans Biomed Eng 2024; 71:1521-1530. [PMID: 38090865 PMCID: PMC11095995 DOI: 10.1109/tbme.2023.3341760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
OBJECTIVE Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. METHODS Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. RESULTS Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. CONCLUSION The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. SIGNIFICANCE The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.
Collapse
|
4
|
Zhao Y, Bhosale AA, Zhang X. Multimodal surface coils for low field MR imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.14.24305802. [PMID: 38699318 PMCID: PMC11065021 DOI: 10.1101/2024.04.14.24305802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Low field MRI is safer and more cost effective than the high field MRI. One of the inherent problems of low field MRI is its low signal-to-noise ratio or sensitivity. In this work, we introduce a multimodal surface coil technique for signal excitation and reception to improve the RF magnetic field (B 1 ) efficiency and potentially improve MR sensitivity. The proposed multimodal surface coil consists of multiple identical resonators that are electromagnetically coupled to form a multimodal resonator. The field distribution of its lowest frequency mode is suitable for MR imaging applications. The prototype multimodal surface coils are built, and the performance is investigated and validated through numerical simulation, standard RF measurements and tests, and comparison with the conventional surface coil at low fields. Our results show that the B 1 efficiency of the multimodal surface coil outperforms that of the conventional surface coil which is known to offer the highest B 1 efficiency among all coil categories, i.e., volume coil, half-volume coil and surface coil. In addition, in low-field MRI, the required low-frequency coils often use large value capacitance to achieve the low resonant frequency which makes frequency tuning difficult. The proposed multimodal surface coil can be conveniently tuned to the required low frequency for low-field MRI with significantly reduced capacitance value, demonstrating excellent low-frequency operation capability over the conventional surface coil.
Collapse
|
5
|
Bhosale AA, Zhao Y, Zhang X. Electric Field and SAR Reduction in High Impedance RF Arrays by Using High Permittivity Materials for 7T MR Imaging. ARXIV 2023:arXiv:2312.04491v1. [PMID: 38106453 PMCID: PMC10723527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Higher frequencies and shorter wavelengths present significant design issues at ultra-high fields, making multi-channel array setup a critical component for ultra-high field MR imaging. The requirement for multi-channel arrays, as well as ongoing efforts to increase the number of channels in an array, are always limited by the major issue known as inter-element coupling. This coupling affects the current and field distribution, noise correlation between channels, and frequency of array elements, lowering imaging quality and performance. To realize the full potential of UHF MRI, we must ensure that the coupling between array elements is kept to a minimum. High-impedance coils allow array systems to completely realize their potential by providing optimal isolation while requiring minimal design modifications. These minor design changes, which demand the use of low capacitance on the conventional loop to induce elevated impedance, result in a significant safety hazard that cannot be overlooked. High electric fields are formed across these low capacitance lumped elements, which may result in higher SAR values in the imaging subject, depositing more power and, ultimately, providing a greater risk of tissue heating-related injury to the human sample. We propose an innovative method of utilizing high-dielectric material to effectively reduce electric fields and SAR values in the imaging sample while preserving the B1 efficiency and inter-element decoupling between the array elements to address this important safety concern with minimal changes to the existing array design comprising high-impedance coils.
Collapse
Affiliation(s)
- Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
6
|
Zhao Y, Bhosale AA, Zhang X. Coupled stack-up volume RF coils for low-field MR imaging. ARXIV 2023:arXiv:2311.09430v1. [PMID: 38013888 PMCID: PMC10680881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The advent of low field open magnetic resonance imaging (MRI) systems has greatly expanded the accessibility of MRI technology to meet a wide range of patient needs. However, the inherent challenges of low-field MRI, such as limited signal-to-noise ratios and limited availability of dedicated RF coil, have prompted the need for innovative coil designs that can improve imaging quality and diagnostic capabilities. In response to these challenges, we introduce the coupled stack-up volume coil, a novel RF coil design that addresses the shortcomings of conventional birdcage in the context of low field open MRI. The proposed coupled stack-up volume coil design utilizes a unique architecture that optimizes both transmit/receive efficiency and RF field homogeneity and offers the advantage of a simple design and construction, making it a practical and feasible solution for low field MRI applications. This paper presents a comprehensive exploration of the theoretical framework, design considerations, and experimental validation of this innovative coil design. Through rigorous analysis and empirical testing, we demonstrate the superior performance of the coupled stack-up volume coil in achieving improved transmit/receive efficiency and more uniform magnetic field distribution compared to traditional birdcage coils.
Collapse
Affiliation(s)
- Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
7
|
Payne K, Zhao Y, Bhosale AA, Zhang X. Dual-tuned Coaxial-transmission-line RF coils for Hyperpolarized 13C and Deuterium 2H Metabolic MRS Imaging at Ultrahigh Fields. ARXIV 2023:arXiv:2307.11221v3. [PMID: 37502626 PMCID: PMC10370217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Objective Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ 2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. Methods Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. Results Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. Conclusion The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. Significance The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.
Collapse
Affiliation(s)
- Komlan Payne
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Aditya Ashok Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Xiaoliang Zhang
- Departments of Biomedical Engineering and Electrical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| |
Collapse
|
8
|
Lu M, Zhang X, Chai S, Yan X. Improving Specific Absorption Rate Efficiency and Coil Robustness of Self-Decoupled Transmit/Receive Coils by Elevating Feed and Mode Conductors. SENSORS (BASEL, SWITZERLAND) 2023; 23:1800. [PMID: 36850397 PMCID: PMC9960379 DOI: 10.3390/s23041800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Self-decoupling technology was recently proposed for radio frequency (RF) coil array designs. Here, we propose a novel geometry to reduce the peak local specific absorption rate (SAR) and improve the robustness of the self-decoupled coil. We first demonstrate that B1 is determined by the arm conductors, while the maximum E-field and local SAR are determined by the feed conductor in a self-decoupled coil. Then, we investigate how the B1, E-field, local SAR, SAR efficiency, and coil robustness change with respect to different lift-off distances for feed and mode conductors. Next, the simulation of self-decoupled coils with optimal lift-off distances on a realistic human body is performed. Finally, self-decoupled coils with optimal lift-off distances are fabricated and tested on the workbench and MRI experiments. The peak 10 g-averaged SAR of the self-decoupled coil on the human body can be reduced by 34% by elevating the feed conductor. Less coil mismatching and less resonant frequency shift with respect to loadings were observed by elevating the mode conductor. Both the simulation and experimental results show that the coils with elevated conductors can preserve the high interelement isolation, B1+ efficiency, and SNR of the original self-decoupled coils.
Collapse
Affiliation(s)
- Ming Lu
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyang Zhang
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China
| | - Shuyang Chai
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
10
|
Gokyar S, Voss HU, Taracila V, Robb FJL, Bernico M, Kelley D, Ballon DJ, Winkler SA. A pathway towards a two-dimensional, bore-mounted, volume body coil concept for ultra high-field magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4802. [PMID: 35834176 DOI: 10.1002/nbm.4802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Lack of a body-sized, bore-mounted, radiofrequency (RF) body coil for ultrahigh field (UHF) magnetic resonance imaging (MRI) is one of the major drawbacks of UHF, hampering the clinical potential of the technology. Transmit field (B1 ) nonuniformity and low specific absorption rate (SAR) efficiencies in UHF MRI are two challenges to be overcome. To address these problems, and ultimately provide a pathway for the full clinical potential of the modality, we have designed and simulated two-dimensional cylindrical high-pass ladder (2D c-HPL) architectures for clinical bore-size dimensions, and demonstrated a simplified proof of concept with a head-sized prototype at 7 T. A new dispersion relation has been derived and electromagnetic simulations were used to verify coil modes. The coefficient of variation (CV) for brain, cerebellum, heart, and prostate tissues after B1 + shimming in silico is reported and compared with previous works. Three prototypes were designed in simulation: a head-sized, body-sized, and long body-sized coil. The head-sized coil showed a CV of 12.3%, a B1 + efficiency of 1.33 μT/√W, and a SAR efficiency of 2.14 μT/√(W/kg) for brain simulations. The body-sized 2D c-HPL coil was compared with same-sized transverse electromagnetic (TEM) and birdcage coils in silico with a four-port circularly polarized mode excitation. Improved B1 + uniformity (26.9%) and SAR efficiency (16% and 50% better than birdcage and TEM coils, respectively) in spherical phantoms was observed. We achieved a CV of 12.3%, 4.9%, 16.7%, and 2.8% for the brain, cerebellum, heart, and prostate, respectively. Preliminary imaging results for the head-sized coil show good agreement between simulation and experiment. Extending the 1D birdcage coil concept to 2D c-HPLs provides improved B1 + uniformity and SAR efficiency.
Collapse
Affiliation(s)
- Sayim Gokyar
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Henning U Voss
- College of Human Ecology, Cornell University, Ithaca, New York, USA
| | | | | | | | | | - Douglas J Ballon
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
11
|
Payne K, Ying LL, Zhang X. Hairpin RF resonators for MR imaging transceiver arrays with high inter-channel isolation and B 1 efficiency at ultrahigh field 7 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107321. [PMID: 36335877 DOI: 10.1016/j.jmr.2022.107321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 06/03/2023]
Abstract
Electromagnetic decoupling among a close-fitting or high-density transceiver RF array elements is required to maintain the integrity of the magnetic flux density from individual channel for enhanced performance in detection sensitivity and parallel imaging. High-impedance RF coils have demonstrated to be a prominent design method to circumvent these coupling issues. Yet, inherent characteristics of these coils have ramification on the B1 field efficiency and SNR. In this work, we propose a hairpin high impedance RF resonator design for highly decoupled multichannel transceiver arrays at ultrahigh magnetic fields. Due to the high impedance property of the hairpin resonators, the proposed transceiver array can provide high decoupling performance without using any dedicated decoupling circuit among the resonant elements. Because of elimination of lumped inductors in the resonator circuit, higher B1 field efficiency in imaging subjects can be expected. In order to validate the feasibility of the proposed hairpin RF coils, systematical studies on decoupling performance, field distribution, and SNR are performed, and the results are compared with those obtained from existing high-impedance RF coil, e.g., "self-decoupled RF coil". To further investigate its performance, an 8-channel head coil array using the proposed hairpin resonators loaded with a cylindrical phantom is designed, demonstrating a 19 % increase of the B1+ field intensity compared to the self-decoupled coils at 7 T. Furthermore, the characteristics of the hairpin RF coils are evaluated using a more realistic human head voxel model numerically. The proposed hairpin RF coil provides excellent decoupling performance and superior RF magnetic field efficiency compared to the "self-decoupled" high impedance coils. Bench test of a pair of fabricated hairpin coils prove to be in good accordance with numerical results.
Collapse
Affiliation(s)
- Komlan Payne
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Leslie L Ying
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA; Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA; Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
12
|
Zhu Y, Lu M, Yan X. Resistor-free and one-board-fits-all ratio adjustable power splitter for add-on RF shimming in high field MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 338:107194. [PMID: 35316747 PMCID: PMC9050946 DOI: 10.1016/j.jmr.2022.107194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 05/03/2023]
Abstract
Ratio adjustable power splitter (RAPS) circuits were recently proposed for add-on RF shimming. Previous RAPSs split the input RF signal with a Wilkinson splitter or 50-Ω-terminated hybrid coupler into two branches, delay these two signals with cable/microstrip line phase shifters, and recombine them with another hybrid coupler. They require resistors to provide high output isolation and a cable/microstrip line library to realize desired splitting ratios. Here we propose a novel resistor-free RAPS circuit in which the Wilkinson splitter/50-Ω-terminated hybrid is replaced with a resistor-free T-junction splitter. A novel sliding mechanism was employed to further combine the T-junction's output arms with subsequent phase shifters and realize a one-board-fits-all design. The resistor-free RAPS was theoretically analyzed, simulated, and validated on workbench and MRI experiments. The resistor-free RAPS's splitting ratio has a tan/cot dependence on the phase/length difference between the T-junction output arms. The ratio can be continuously adjusted to any value by sliding the input arm without additional cable/microstrip libraries, largely saving time and effort when determining the best RF weights in practice. The fabricated resistor-free RAPS has a compact size, excellent input impedance matching, and a low insertion loss. Potential safety concerns caused by unwanted power dissipation on RF resistors are eliminated. The simulation and MRI experiments demonstrated that the resistor-free RAPS functions well on a widely-used Tx coil.
Collapse
Affiliation(s)
- Yue Zhu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ming Lu
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai, Shandong, China
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
13
|
A Novel Mono-surface Antisymmetric 8Tx/16Rx Coil Array for Parallel Transmit Cardiac MRI in Pigs at 7T. Sci Rep 2020; 10:3117. [PMID: 32080274 PMCID: PMC7033245 DOI: 10.1038/s41598-020-59949-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/30/2020] [Indexed: 02/01/2023] Open
Abstract
A novel mono-surface antisymmetric 16-element transmit/receive (Tx/Rx) coil array was designed, simulated, constructed, and tested for cardiac magnetic resonance imaging (cMRI) in pigs at 7 T. The cardiac array comprised of a mono-surface 16-loops with two central elements arranged anti-symmetrically and flanked by seven elements on either side. The array was configured for parallel transmit (pTx) mode to have an eight channel transmit and 16-channel receive (8Tx/16Rx) coil array. Electromagnetic (EM) simulations, bench-top measurements, phantom, and MRI experiments with two pig cadavers (68 and 46 kg) were performed. Finally, the coil was used in pilot in-vivo measurements with a 60 kg pig. Flip angle (FA), geometry factor (g-factor), signal-to-noise ratio (SNR) maps, and high-resolution cardiac images were acquired with an in-plane resolution of 0.6 mm × 0.6 mm (in-vivo) and 0.3 mm × 0.3 mm (ex-vivo). The mean g-factor over the heart was 1.26 (R = 6). Static phase [Formula: see text] shimming in a pig body phantom with the optimal phase vectors makes possible to improve the [Formula: see text] homogeneity by factor > 2 and transmit efficiency by factor > 3 compared to zero phases (before RF shimming). Parallel imaging performed in the in-vivo measurements demonstrated well preserved diagnostic quality of the resulting images at acceleration factors up to R = 6. The described hardware design can be adapted for arrays optimized for animals and humans with a larger number of elements (32-64) while maintaining good decoupling for various MRI applications at UHF (e.g., cardiac, head, and spine).
Collapse
|
14
|
Li Y, Chen Q, Wei Z, Zhang L, Tie C, Zhu Y, Jia S, Xia J, Liang D, He Q, Zhang X, Liu X, Zhang B, Zheng H. One-Stop MR Neurovascular Vessel Wall Imaging With a 48-Channel Coil System at 3 T. IEEE Trans Biomed Eng 2019; 67:2317-2327. [PMID: 31831406 DOI: 10.1109/tbme.2019.2959030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The purpose of this article was to build a radio frequency (RF) coil system to achieve high vessel wall image quality with coverage extending from the aortic arch to the intracranial vessels. METHODS A 48-channel coil system was built and characterized at a 3 tesla (T) Magnetic Resonance Imaging (MRI) scanner (uMR 790, Shanghai United Imaging Healthcare, Shanghai, China). The coil's performance was compared with a commercially available 36-channel coil system. By human studies, signal-to-noise ratio (SNR) units were evaluated and g-factors were calculated in the transverse planes of the brain and neck regions. RESULTS The SNR was increased by at least 28% in the brain region and up to fourfold in the neck region. The average g-factor with the acceleration factor, R = 3, was lowered by 21% in the transverse plane of the neck region. Intracranial and carotid arterial wall images with an isotropic spatial resolution of 0.63 mm were acquired within 7.7 minutes and thoracic aorta wall images with an isotropic spatial resolution of 1.1 mm were acquired within 2.7 minutes with the 48-channel coil system. The vessel wall can be more clearly visualized with the 48-channel coil system compared with the 36-channel coil system. CONCLUSION A 48-channel coil system was developed and demonstrated superior performance for vessel wall imaging at the intracranial and cervical carotid arteries compared with a commercial 36-channel coil. SIGNIFICANCE The 48-channel coil system is potentially useful for clinical diagnostics, especially when attempting to diagnose ischemic stroke.
Collapse
|
15
|
Cao Z, Yan X, Gore JC, Grissom WA. Designing parallel transmit head coil arrays based on radiofrequency pulse performance. Magn Reson Med 2019; 83:2331-2342. [PMID: 31722120 DOI: 10.1002/mrm.28068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/23/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE A new approach to design parallel transmit (pTx) head arrays is proposed that integrates transmit radiofrequency pulse designs with electromagnetic modeling of array coil elements. THEORY AND METHODS An approach to design pTx head arrays is proposed that finds optimal groupings of a large number of coils into a small number of channels. An algorithm is proposed to extend array-compressed parallel transmit pulse design by adding the ability to optimally select and prune coil elements, in addition to optimizing compression weights. The performance of the method is demonstrated in simulations of dynamic multislice shimming of the human brain in axial, coronal, and sagittal directions, and of reduced field-of-view excitation targeting the human occipital lobe, with simulated electromagnetic field maps from a group of 5 human head models at 7T. RESULTS For both dynamic multislice shimming and reduced field-of-view excitation, the method successfully designed pTx arrays that simultaneously achieved in general 15% lower mean excitation errors with 20% lower SDs, along with 20% lower mean global averaged specific absorption rate and 50% lower SD than previously reported pTx head array designs. CONCLUSION With the proposed optimal coil element selection algorithm, the array-compressed parallel transmit pulse design can be extended to design pTx transmit head arrays with joint consideration of the fields within the sample and the radiofrequency pulse. The pTx arrays from such an approach achieved higher transmit excitation accuracy, lower radiofrequency heating in subjects, and more robust performance across subjects compared with previously reported pTx head arrays with the same number of channels.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee
| | - Xinqiang Yan
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee
| | - John C Gore
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
16
|
Elabyad IA, Terekhov M, Stefanescu MR, Lohr D, Fischer M, Schreiber LM. Design of a novel antisymmetric coil array for parallel transmit cardiac MRI in pigs at 7 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:195-208. [PMID: 31306985 DOI: 10.1016/j.jmr.2019.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/12/2019] [Accepted: 07/04/2019] [Indexed: 05/12/2023]
Abstract
The design, simulation, assembly and testing of a novel dedicated antisymmetric transmit/receive (Tx/Rx) coil array to demonstrate the feasibility of cardiac magnetic resonance imaging (cMRI) in pigs at 7 T was described. The novel antisymmetric array is composed of eight elements based on mirrored and reversed loop orientations to generate varying B1+ field harmonics for RF shimming. The central four loop elements formed together a pair of antisymmetric L-shaped channels to allow good decoupling between all neighboring elements of the entire array. The antisymmetric array was compared to a standard symmetric rectilinear loop array with an identical housing dimension. Both arrays were driven in the parallel transmit (pTx) mode forming an 8-channel transmit and 16-channel receive (8Tx/16Rx) coil array, where the same posterior array was combined with both anterior arrays. The hardware and imaging performance of the dedicated cardiac arrays were validated and compared by means of electromagnetic (EM) simulations, bench-top measurements, phantom, and ex-vivo MRI experiments with 46 kg female pig. Combined signal-to-noise ratio (SNR), geometry factor (g-factor), noise correlation maps, and high resolution ex-vivo cardiac images were acquired with an in-plane resolution of 0.3 mm × 0.3 mm using both arrays. The novel antisymmetric array enhanced the SNR within the heart by about two times and demonstrated good decoupling and improved control of the B1+ field distributions for RF shimming compared to the standard coil array. Parallel imaging with acceleration factor (R) up to 4 was possible using the novel antisymmetric coil array while maintaining the mean g-factor within the heart region of 1.13.
Collapse
Affiliation(s)
- Ibrahim A Elabyad
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany; Department of Electronics and Communications Engineering, Thebes Higher Institute of Engineering, Cairo, Egypt.
| | - M Terekhov
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - M R Stefanescu
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - D Lohr
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - M Fischer
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - L M Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| |
Collapse
|
17
|
Bluem P, Van de Moortele PF, Adriany G, Popović Z. Excitation and RF Field Control of a Human-Size 10.5-T MRI System. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2019; 67:1184-1196. [PMID: 31749460 PMCID: PMC6867708 DOI: 10.1109/tmtt.2018.2884405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper presents an investigation of methods for improving homogeneity inside various dielectric phantoms situated in a 10.5 T human-sized MRI. The transmit B1 (B 1 + ) field is excited with a quadrature fed circular patch-probe and a 12 element capacitively-loaded microstrip array. Both simulations and measurements show improved homogeneity in a cylindrical water phantom, an inhomogeneous phantom (pineapple), and a NIST standard phantom. The simulations are performed using a full-wave finite-difference time-domain solver (Sim4Life) in order to find theB 1 + field distribution and compared to the gradient recalled echo image and efficiency result. For additional field uniformity, the wall electromagnetic boundary conditions are modified with a passive quadrifilar helix. Finally, these methods are applied in simulation to head imaging of an anatomically correct human body model (Duke, IT'IS Virtual Population) showing improved homogeneity and specific absorption rate for various excitations.
Collapse
Affiliation(s)
- Patrick Bluem
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 USA
| | | | - Gregor Adriany
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455
| | - Zoya Popović
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 USA
| |
Collapse
|
18
|
Chen Q, Xie G, Luo C, Yang X, Zhu J, Lee J, Su S, Liang D, Zhang X, Liu X, Li Y, Zheng H. A Dedicated 36-Channel Receive Array for Fetal MRI at 3T. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2290-2297. [PMID: 29994303 PMCID: PMC6312740 DOI: 10.1109/tmi.2018.2839191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Due to a lack of fetal imaging coils, the standard commercial abdominal coil is often used for fetal imaging, the performance of which is limited by its insufficient coverage, element number, and Signal-to-noise ratio (SNR). In this paper, a dedicated 36-channel coil array, of which size can best fit the body sizes of pregnancy gestation from 20 to 37+ weeks, was designed for fetal imaging at 3T. SNR with full phase encoding and G-factor denoted as noise amplification for parallel imaging were quantitatively evaluated by phantom studies. Compared with a commercial abdominal coil array, the proposed 36-channel fetal array provides not only SNR improvements in full phase encoding (with 10% in the region where the whole fetal body was located, and up to 40% in the edge region where the fetal brain and heart may appear) but also an augmented parallel imaging capability and remarkable SNR improvements at high acceleration factors.
Collapse
Affiliation(s)
- Qiaoyan Chen
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Guoxi Xie
- School of Basic Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Chao Luo
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Xing Yang
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Chengdu 610054, China
| | - Jin Zhu
- Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Jo Lee
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Shi Su
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Dong Liang
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158 USA, and also with the UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA 94158 USA
| | - Xin Liu
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Ye Li
- Corresponding authors: Ye Li, and Hairong Zheng. ; .
| | - Hairong Zheng
- Corresponding authors: Ye Li, and Hairong Zheng. ; .
| |
Collapse
|
19
|
Zhang X. Sensitivity enhancement of traveling wave MRI using free local resonators: an experimental demonstration. Quant Imaging Med Surg 2017; 7:170-176. [PMID: 28516042 DOI: 10.21037/qims.2017.02.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Traveling wave MR uses the far fields in signal excitation and reception, therefore its acquisition efficiency is low in contrast to the conventional near field magnetic resonance (MR). Here we show a simple and efficient method based on the local resonator to improving sensitivity of traveling wave MR technique. The proposed method utilizes a standalone or free local resonator to amplify the radio frequency magnetic fields in the interested target. The resonators have no wire connections to the MR system and thus can be conveniently placed to any place around imaging simples. METHODS A rectangular loop L/C resonator to be used as the free local resonator was tuned to the proton Larmor frequency at 7T. Traveling wave MR experiments with and without the wireless free local resonator were performed on a living rat using a 7T whole body MR scanner. The signal-to-noise ratio (SNR) or sensitivity of the images acquired was compared and evaluated. RESULTS In vivo 7T imaging results show that traveling wave MR with a wireless free local resonator placed near the head of a living rat achieves at least 10-fold SNR gain over the images acquired on the same rat using conventional traveling wave MR method, i.e. imaging with no free local resonators. CONCLUSIONS The proposed free local resonator technique is able to enhance the MR sensitivity and acquisition efficiency of traveling wave MR at ultrahigh fields in vivo. This method can be a simple solution to alleviating low sensitivity problem of traveling wave MRI.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California, San Francisco, CA, USA.,UC Berkeley/UCSF Joint Graduate Group in Bioengineering, University of California, San Francisco, CA, USA.,California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| |
Collapse
|
20
|
Milshteyn E, Zhang X. The Need and Initial Practice of Parallel Imaging and Compressed Sensing in Hyperpolarized 13C MRI in vivo. ACTA ACUST UNITED AC 2015; 4. [PMID: 26900533 DOI: 10.4172/2167-7964.1000e133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eugene Milshteyn
- University of California Berkeley and University of California San Francisco Joint Bioengineering Program, USA; Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco (UCSF), USA
| | - Xiaoliang Zhang
- University of California Berkeley and University of California San Francisco Joint Bioengineering Program, USA; Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco (UCSF), USA
| |
Collapse
|
21
|
Cui J, Bosshard JC, Rispoli JV, Dimitrov IE, Cheshkov S, McDougall MP, Malloy C, Wright SM. A Switched-Mode Breast Coil for 7 T MRI Using Forced-Current Excitation. IEEE Trans Biomed Eng 2015; 62:1777-83. [PMID: 25706501 DOI: 10.1109/tbme.2015.2403850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In high-field magnetic resonance imaging, the radio frequency wavelength within the human body is comparable to anatomical dimensions, resulting in B1 inhomogeneity and nonuniform sensitivity patterns. Thus, this relatively short wavelength presents engineering challenges for RF coil design. In this study, a bilateral breast coil for (1)H imaging at 7 T was designed and constructed using forced-current excitation. By forcing equal current through the coil elements, we reduce the effects of coupling between the elements to simplify tuning and to ensure a uniform field across both breasts. To combine the benefits of the higher power efficiency of a unilateral coil with the bilateral coverage of a bilateral coil, a switching circuit was implemented to allow the coil to be reconfigured for imaging the left, right, or both breasts.
Collapse
|
22
|
Pang Y, Wu B, Jiang X, Vigneron DB, Zhang X. Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging. Medicine (Baltimore) 2014; 93:e311. [PMID: 25526481 PMCID: PMC4603100 DOI: 10.1097/md.0000000000000311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T.
Collapse
Affiliation(s)
- Yong Pang
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (YP, BW, DBV, XZ); Department of Electrical Engineering, Tsinghua University, Beijing, China (XJ); UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley (DBV, XZ); and California Institute for Quantitative Biosciences (QB3), San Francisco, CA (DBV, XZ)
| | | | | | | | | |
Collapse
|
23
|
Yan X, Zhang X, Feng B, Ma C, Wei L, Xue R. 7T transmit/receive arrays using ICE decoupling for human head MR imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1781-1787. [PMID: 24710826 DOI: 10.1109/tmi.2014.2313879] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In designing large-sized volume type phased array coils for human head imaging at ultrahigh fields, e.g., 7T, minimizing electromagnetic coupling among array elements is technically challenging. A new decoupling method based on induced current compensation or elimination (ICE) for a microstrip line planar array has recently been proposed. In this study, an eight-channel transmit/receive volume array with ICE-decoupled loop elements was built and investigated to demonstrate its feasibility and robustness for human head imaging at 7T. Isolation between adjacent loop elements was better than - 25 dB with a human head load. The worst-case of the isolation between all of the elements was about - 17.5 dB. All of the MRI experiments were performed on a 7T whole-body human MR scanner. Images of the phantom and human head were acquired and g-factor maps were measured and calculated to evaluate the performance of the coil array. Compared with the conventional capacitively decoupled array, the ICE-decoupled array demonstrated improved parallel imaging ability and had a higher SNR. The experimental results indicate that the transceiver array design with ICE decoupling technique might be a promising solution to designing high performance transmit/receive coil arrays for human head imaging at ultrahigh fields.
Collapse
|
24
|
Pang Y, Wong EWH, Yu B, Zhang X. Design and numerical evaluation of a volume coil array for parallel MR imaging at ultrahigh fields. Quant Imaging Med Surg 2014; 4:50-6. [PMID: 24649435 DOI: 10.3978/j.issn.2223-4292.2014.02.07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 11/14/2022]
Abstract
In this work, we propose and investigate a volume coil array design method using different types of birdcage coils for MR imaging. Unlike the conventional radiofrequency (RF) coil arrays of which the array elements are surface coils, the proposed volume coil array consists of a set of independent volume coils including a conventional birdcage coil, a transverse birdcage coil, and a helix birdcage coil. The magnetic fluxes of these three birdcage coils are intrinsically cancelled, yielding a highly decoupled volume coil array. In contrast to conventional non-array type volume coils, the volume coil array would be beneficial in improving MR signal-to-noise ratio (SNR) and also gain the capability of implementing parallel imaging. The volume coil array is evaluated at the ultrahigh field of 7T using FDTD numerical simulations, and the g-factor map at different acceleration rates was also calculated to investigate its parallel imaging performance.
Collapse
Affiliation(s)
- Yong Pang
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Agilent Technologies, Santa Clara, CA, USA ; 3 Magwale, Palo Alto, CA, USA ; 4 UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA ; 5 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| | - Ernest W H Wong
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Agilent Technologies, Santa Clara, CA, USA ; 3 Magwale, Palo Alto, CA, USA ; 4 UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA ; 5 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| | - Baiying Yu
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Agilent Technologies, Santa Clara, CA, USA ; 3 Magwale, Palo Alto, CA, USA ; 4 UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA ; 5 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| | - Xiaoliang Zhang
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Agilent Technologies, Santa Clara, CA, USA ; 3 Magwale, Palo Alto, CA, USA ; 4 UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA ; 5 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| |
Collapse
|
25
|
Pang Y, Yu B, Vigneron DB, Zhang X. Quadrature transmit array design using single-feed circularly polarized patch antenna for parallel transmission in MR imaging. Quant Imaging Med Surg 2014; 4:11-8. [PMID: 24649430 DOI: 10.3978/j.issn.2223-4292.2014.02.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/14/2014] [Indexed: 11/14/2022]
Abstract
Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than -35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla.
Collapse
Affiliation(s)
- Yong Pang
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Magwale, Palo Alto, CA, USA ; 3 UCSF/UC Berkeley Joint Bioengineering Program, San Francisco & Berkeley, CA, USA
| | - Baiying Yu
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Magwale, Palo Alto, CA, USA ; 3 UCSF/UC Berkeley Joint Bioengineering Program, San Francisco & Berkeley, CA, USA
| | - Daniel B Vigneron
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Magwale, Palo Alto, CA, USA ; 3 UCSF/UC Berkeley Joint Bioengineering Program, San Francisco & Berkeley, CA, USA
| | - Xiaoliang Zhang
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Magwale, Palo Alto, CA, USA ; 3 UCSF/UC Berkeley Joint Bioengineering Program, San Francisco & Berkeley, CA, USA
| |
Collapse
|
26
|
Hu X, Chen X, Liu X, Zheng H, Li Y, Zhang X. Parallel imaging performance investigation of an 8-channel common-mode differential-mode (CMDM) planar array for 7T MRI. Quant Imaging Med Surg 2014; 4:33-42. [PMID: 24649433 DOI: 10.3978/j.issn.2223-4292.2014.02.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/24/2014] [Indexed: 11/14/2022]
Abstract
An 8-channel planar phased array was proposed based on the common-mode differential-mode (CMDM) structure for ultrahigh field MRI. The parallel imaging performance of the 8-channel CMDM planar array was numerically investigated based on electromagnetic simulations and Cartesian sensitivity encoding (SENSE) reconstruction. The signal-to-noise ratio (SNR) of multichannel images combined using root-sum-of-squares (rSoS) and covariance weighted root-sum-of-squares (Cov-rSoS) at various reduction factors were compared between 8-channel CMDM array and 4-channel CM and DM array. The results of the study indicated the 8-channel CMDM array excelled the 4-channel CM and DM in SNR. The g-factor maps and artifact power were calculated to evaluate parallel imaging performance of the proposed 8-channel CMDM array. The artifact power of 8-channel CMDM array was reduced dramatically compared with the 4-channel CM and DM arrays demonstrating the parallel imaging feasibility of the CMDM array.
Collapse
Affiliation(s)
- Xiaoqing Hu
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Xiao Chen
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Xin Liu
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Hairong Zheng
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Ye Li
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Xiaoliang Zhang
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| |
Collapse
|
27
|
Li Y, Yu B, Pang Y, Vigneron DB, Zhang X. Planar quadrature RF transceiver design using common-mode differential-mode (CMDM) transmission line method for 7T MR imaging. PLoS One 2013; 8:e80428. [PMID: 24265823 PMCID: PMC3827179 DOI: 10.1371/journal.pone.0080428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022] Open
Abstract
The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.
Collapse
Affiliation(s)
- Ye Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Baiying Yu
- Magwale, Palo Alto, California, United States of America
| | - Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- UC Berkeley/UCSF Joint Graduate Group in Bioengineering, Berkeley & San Francisco, California, United States of America
- California Institute for Quantitative Biosciences (QB3), San Francisco, California, United States of America
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- UC Berkeley/UCSF Joint Graduate Group in Bioengineering, Berkeley & San Francisco, California, United States of America
- California Institute for Quantitative Biosciences (QB3), San Francisco, California, United States of America
| |
Collapse
|
28
|
Avdievich NI, Pan JW, Hetherington HP. Resonant inductive decoupling (RID) for transceiver arrays to compensate for both reactive and resistive components of the mutual impedance. NMR IN BIOMEDICINE 2013; 26:1547-54. [PMID: 23775840 PMCID: PMC3800502 DOI: 10.1002/nbm.2989] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/17/2013] [Accepted: 05/17/2013] [Indexed: 05/16/2023]
Abstract
Transceiver surface coil arrays improve transmit performance (B1/√kW) and B1 homogeneity for head imaging up to 9.4 T. To further improve reception performance and parallel imaging, the number of array elements must be increased with a corresponding decrease in their size. With a large number of small interacting antennas, decoupling is one of the most challenging aspects in the design and construction of transceiver arrays. Previously described decoupling techniques using geometric overlap, inductive or capacitive decoupling have focused on the elimination of the reactance of the mutual impedance only, which can limit the obtainable decoupling to -10 dB as a result of residual mutual resistance. A novel resonant inductive decoupling (RID) method, which allows compensation for both reactive and resistive components of the mutual impedance between the adjacent surface coils, has been developed and verified experimentally. This method provides an easy way to adjust the decoupling remotely by changing the resonance frequency of the RID circuit through the adjustment of a variable capacitor. As an example, a single-row (1 × 16) 7-T transceiver head array of n = 16 small overlapped surface coils using RID decoupling between adjacent coils was built. In combination with overlapped coils, the RID technique achieved better than -24 dB of decoupling for all adjacent coils.
Collapse
|
29
|
Pang Y, Zhang X. Precompensation for mutual coupling between array elements in parallel excitation. Quant Imaging Med Surg 2012; 1:4-10. [PMID: 23243630 DOI: 10.3978/j.issn.2223-4292.2011.11.02] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/09/2011] [Indexed: 11/14/2022]
Abstract
Parallel transmission or excitation has been suggested to perform multi-dimensional spatial selective excitation to shorten the pulse width using a coil array and the sensitivity information. The mutual coupling between array elements has been a critical technical issue in RF array designs, which can cause artifacts on the excitation profile, leading to degraded excitation performance and image quality. In this work, a precompensation method is proposed to address the mutual coupling effect in parallel transmission by introducing the mutual coupling coefficient matrix into the RF pulses design procedure of the parallel transmission. 90° RF pulses have been designed using both the original transmit SENSE method and the proposed precompensation method for RF arrays with non-negligible mutual coupling, and their excitation profiles are generated by simulating the Bloch equation. The results show that the mutual coupling effect can be effectively compensated by using the proposed method, yielding enhanced tolerance to insufficient mutual decoupling of RF arrays in parallel excitation, ultimately, providing improved performance and accuracy of parallel excitation.
Collapse
Affiliation(s)
- Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | | |
Collapse
|
30
|
Kim KN, Jeong H, Heo P, Kim YB, Cho ZH. Improving RF field strength and uniformity in a local region by controlling individual transmitting RF phase in a 7T tranceive array coil. Biomed Eng Lett 2012. [DOI: 10.1007/s13534-012-0075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
31
|
Multi-reception strategy with improved SNR for multichannel MR imaging. PLoS One 2012; 7:e42237. [PMID: 22879921 PMCID: PMC3411773 DOI: 10.1371/journal.pone.0042237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 07/04/2012] [Indexed: 12/03/2022] Open
Abstract
A multi-reception strategy with extended GRAPPA is proposed in this work to improve MR imaging performance at ultra-high field MR systems with limited receiver channels. In this method, coil elements are separated to two or more groups under appropriate grouping criteria. Those groups are enabled in sequence for imaging first, and then parallel acquisition is performed to compensate for the redundant scan time caused by the multiple receptions. To efficiently reconstruct the data acquired from elements of each group, a specific extended GRAPPA was developed. This approach was evaluated by using a 16-element head array on a 7 Tesla whole-body MRI scanner with 8 receive channels. The in-vivo experiments demonstrate that with the same scan time, the 16-element array with twice receptions and acceleration rate of 2 can achieve significant SNR gain in the periphery area of the brain and keep nearly the same SNR in the center area over an eight-element array, which indicates the proposed multi-reception strategy and extended GRAPPA are feasible to improve image quality for MRI systems with limited receive channels. This study also suggests that it is advantageous for a MR system with N receiver channels to utilize a coil array with more than N elements if an appropriate acquisition strategy is applied.
Collapse
|
32
|
Zhang X, Pang Y. Parallel Excitation in Ultrahigh Field Human MR Imaging and Multi-Channel Transmit System. OMICS JOURNAL OF RADIOLOGY 2012; 1:e110. [PMID: 24069578 PMCID: PMC3779920 DOI: 10.4172/2167-79641000e110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, CA, USA
| | - Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
33
|
Wu B, Wang C, Lu J, Pang Y, Nelson SJ, Vigneron DB, Zhang X. Multi-channel microstrip transceiver arrays using harmonics for high field MR imaging in humans. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:183-91. [PMID: 21878410 PMCID: PMC3277810 DOI: 10.1109/tmi.2011.2166273] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Radio-frequency (RF) transceiver array design using primary and higher order harmonics for in vivo parallel magnetic resonance imaging imaging (MRI) and spectroscopic imaging is proposed. The improved electromagnetic decoupling performance, unique magnetic field distributions and high-frequency operation capabilities of higher-order harmonics of resonators would benefit transceiver arrays for parallel MRI, especially for ultrahigh field parallel MRI. To demonstrate this technique, microstrip transceiver arrays using first and second harmonic resonators were developed for human head parallel imaging at 7T. Phantom and human head images were acquired and evaluated using the GRAPPA reconstruction algorithm. The higher-order harmonic transceiver array design technique was also assessed numerically using FDTD simulation. Compared with regular primary-resonance transceiver designs, the proposed higher-order harmonic technique provided an improved g-factor and increased decoupling among resonant elements without using dedicated decoupling circuits, which would potentially lead to a better parallel imaging performance and ultimately faster and higher quality imaging. The proposed technique is particularly suitable for densely spaced transceiver array design where the increased mutual inductance among the elements becomes problematic. In addition, it also provides a simple approach to readily upgrade the channels of a conventional primary resonator microstrip array to a larger number for faster imaging.
Collapse
Affiliation(s)
- Bing Wu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Wu B, Zhang X, Wang C, Li Y, Pang Y, Lu J, Xu D, Majumdar S, Nelson SJ, Vigneron DB. Flexible transceiver array for ultrahigh field human MR imaging. Magn Reson Med 2012; 68:1332-8. [PMID: 22246803 DOI: 10.1002/mrm.24121] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 11/05/2022]
Abstract
A flexible transceiver array, capable of multiple-purpose imaging applications in vivo at ultrahigh magnetic fields was designed, implemented and tested on a 7 T MR scanner. By alternately placing coil elements with primary and secondary harmonics, improved decoupling among coil elements was accomplished without requiring decoupling circuitry between resonant elements, which is commonly required in high-frequency transceiver arrays to achieve sufficient element-isolation during radiofrequency excitation. This flexible array design is capable of maintaining the required decoupling among resonant elements in different array size and geometry and is scalable in coil size and number of resonant elements (i.e., number of channels), yielding improved filling factors for various body parts with different geometry and size. To investigate design feasibility, flexibility, and array performance, a multichannel, 16-element transceiver array was designed and constructed, and in vivo images of the human head, knee, and hand were acquired using a whole-body 7 T MR system. Seven Tesla parallel imaging with generalized autocalibrating partially parallel acquisitions (GRAPPA) performed using this flexible transceiver array was also presented.
Collapse
Affiliation(s)
- Bing Wu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ipek O, Raaijmakers AJE, Klomp DWJ, Lagendijk JJW, Luijten PR, van den Berg CAT. Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip. Phys Med Biol 2011; 57:343-55. [PMID: 22170777 DOI: 10.1088/0031-9155/57/2/343] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ultra-high field magnetic resonance (≥7 tesla) imaging (MRI) faces challenges with respect to efficient spin excitation and signal reception from deeply situated organs. Traditional radio frequency surface coil designs relying on near-field coupling are suboptimal at high field strengths. Better signal penetration can be obtained by designing a radiative antenna in which the energy flux is directed to the target location. In this paper, two different radiative antenna designs are investigated to be used as transceive elements, which employ different dielectric permittivities for the antenna substrate. Their transmit and receive performances in terms of B(+)(1), local SAR (specific absorption rate) and SNR (signal-to-noise ratio) were compared using extensive electromagnetic simulations and MRI measurements with traditional surface microstrip coils. Both simulations and measurements demonstrated that the radiative element shows twofold gain in B(+)(1) and SNR at 10 cm depth, and additionally a comparable SAR peak value. In terms of transmit performance, the radiative antenna with a dielectric permittivity of 37 showed a 24% more favorable local SAR(10g avg)/(B(+)(1))(2) ratio than the radiative antenna with a dielectric permittivity of 90. In receive, the radiative element with a dielectric permittivity of 90 resulted in a 20% higher SNR for shallow depths, but for larger depths this difference diminished compared to the radiative element with a dielectric permittivity of 37. Therefore, to image deep anatomical regions effectively, the radiative antenna with a dielectric permittivity of 37 is favorable.
Collapse
Affiliation(s)
- O Ipek
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
36
|
Wang C, Li Y, Wu B, Xu D, Nelson SJ, Vigneron DB, Zhang X. A practical multinuclear transceiver volume coil for in vivo MRI/MRS at 7 T. Magn Reson Imaging 2011; 30:78-84. [PMID: 22055858 DOI: 10.1016/j.mri.2011.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 07/13/2011] [Accepted: 08/13/2011] [Indexed: 10/15/2022]
Abstract
A practical multinuclear transceiver RF volume coil with improved efficiency for in vivo small animal (1)H/(13)C/(23)Na MR applications at the ultrahigh magnetic field of 7 T is reported. In the proposed design, the coil's resonance frequencies for (1)H and (13)C are realized by using a traditional double-tuned approach, while the resonant frequency for (23)Na, which is only some 4 MHz away from the (13)C frequency, is tuned based upon (13)C channel by easy-operating capacitive "frequency switches". In contrast to the traditional triple-tuned volume coil, the volume coil with the proposed design possesses less number of resonances, which helps improve the coil efficiency and alleviate the design and operation difficulties. This coil design strategy is advantageous and well suitable for multinuclear MR imaging and spectroscopy studies, particularly in the case where Larmor frequencies of nuclei in question are not separate enough. The prototype multinuclear coil was demonstrated in the desired unshielded design for easy construction and experiment implementation at 7 T. The design method may provide a practical and robust solution to designing multinuclear RF volume coils for in vivo MR imaging and spectroscopy at ultrahigh fields. Finite difference time domain method simulations for evaluating the design and 7-T MR experiment results acquired using the prototype coil are presented.
Collapse
Affiliation(s)
- Chunsheng Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Pang Y, Xie Z, Xu D, Kelley DA, Nelson SJ, Vigneron DB, Zhang X. A dual-tuned quadrature volume coil with mixed λ/2 and λ/4 microstrip resonators for multinuclear MRSI at 7 T. Magn Reson Imaging 2011; 30:290-8. [PMID: 22055851 DOI: 10.1016/j.mri.2011.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 08/29/2011] [Accepted: 09/18/2011] [Indexed: 11/24/2022]
Abstract
In this work, an eight-element by eight-element dual-tuned quadrature volume coil with a mix of capacitor terminated half-wavelength (λ/2) and quarter-wavelength (λ/4) microstrip resonators is proposed for multinuclear magnetic resonance imaging/spectroscopy studies at 7 T. In the proton channel, λ/2 microstrip resonators with capacitive terminations on both ends are employed for operation at higher frequency of 298.1 MHz; in the heteronucleus channel, capacitor-terminated λ/4 resonators, suitable for low frequency operations, are used to meet the low frequency requirement. This mixed structure design is particularly advantageous for high field heteronuclei magnetic resonance applications with large difference in Larmor frequency of the nuclei in question. The proposed design method makes it much easier to perform frequency tuning for heteronucleus channel using a variable capacitor with a practical capacitance range. As an example, a dual-tuned volume coil for (1)H/(13)C mouse spectroscopic imaging was proposed to demonstrate the feasibility of this method. The finite-difference time-domain method is first used to model this dual-tuned volume coil and calculate the B(1) field distributions at two frequencies. Transmission parameters (S(21)) measured between the proton channel and the carbon channel are -50 dB at 75 MHz and -35 dB at 298 MHz, showing the excellent isolation between the two channels at 7 T. The proton image and (13)C FIDCSI image of a corn oil phantom on the axial plane at 7 T demonstrate the feasibility of the proposed method. A preliminary proton image of a mouse on the sagittal plane is also acquired using the proposed dual-tuned volume coil at 7 T, illustrating a fairly uniform B(1) field and sufficient image coverage for imaging in mice.
Collapse
Affiliation(s)
- Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158-2330, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Pang Y, Zhang X, Xie Z, Wang C, Vigneron DB. Common-mode differential-mode (CMDM) method for double-nuclear MR signal excitation and reception at ultrahigh fields. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:1965-73. [PMID: 21693414 PMCID: PMC3277813 DOI: 10.1109/tmi.2011.2160192] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Double-tuned radio-frequency (RF) coils for heteronuclear mangentic resonance (MR) require sufficient electromagnetic isolation between the two resonators operating at two Larmor frequencies and independent tuning in order to attain highly efficient signal acquisition at each frequency. In this work, a novel method for double-tuned coil design at 7T based on the concept of common-mode differential-mode (CMDM) was developed and tested. Common mode (CM) and differential mode (DM) currents exist within two coupled parallel transmission lines, e.g., microstrip lines, yielding two different current distributions. The electromagnetic (EM) fields of the CM and DM are orthogonal to each other, and thus, the two modes are intrinsically EM decoupled. The modes can be tuned independently to desired frequencies, thus satisfying the requirement of dual-frequency MR applications. To demonstrate the feasibility and efficiency of the proposed CMDM technique, CMDM surface coils and volume coils using microstrip transmission line for (1)H and (13)C MRI/MRSI were designed, constructed, and tested at 7T. Bench test results showed that the isolations between the two frequency channels of the CMDM surface coil and volume coil were better than -30 and -25 dB, respectively. High quality MR phantom images were also obtained using the CMDM coils. The performance of the CMDM technique was validated through a comparison with the conventional two-pole design method at 7T. The proposed CMDM technique can be also implemented by using other coil techniques such as lumped element method, and can be applied to designing double-tuned parallel imaging coil arrays. Furthermore, if the two resonant modes of a CMDM coil were tuned to the same frequency, the CMDM coil becomes a quadrature coil due to the intrinsic orthogonal field distribution of CM and DM.
Collapse
Affiliation(s)
- Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158 USA
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158 USA, and with UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA 94720 USA, and also with the California Institute for Quantitative Biosciences (QB3), San Francisco, CA 94158 USA
| | - Zhentian Xie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158 USA
| | - Chunsheng Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158 USA
| | - Daniel. B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158 USA, and with UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA 94720 USA, and also with the California Institute for Quantitative Biosciences (QB3), San Francisco, CA 94158 USA
| |
Collapse
|
39
|
Pang Y, Wu B, Wang C, Vigneron DB, Zhang X. Numerical Analysis of Human Sample Effect on RF Penetration and Liver MR Imaging at Ultrahigh Field. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2011; 39B:206-216. [PMID: 22337345 PMCID: PMC3277816 DOI: 10.1002/cmr.b.20209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Magnetic resonance imaging (MRI) can provide clinically-valuable images for hepatic diseases and has become one of the most promising noninvasive methods in evaluating liver lesions. To facilitate the ultrahigh field human liver MRI, in this work, the RF penetration behavior in the conductive and high dielectric human body at the ultrahigh field of 7 Tesla (7T) is investigated and evaluated using the finite-difference time-domain numerical analysis. The study shows that in brain imaging at the ultrahigh field of 7T, the "dielectric resonance" effect dominates among other factors, resulting in improved B(1) penetration; while in liver imaging, due to its irregular geometry of the liver, the "dielectric resonance" effect is not readily to be established, leading to a reduced B(1) penetration or limited image coverage comparing to that in the brain. Therefore, it is necessary to build a large size coil to have deeper penetration to image human liver although the coil design may become more challenging due to the required high frequency. Based on this study, a bisected microstrip coil operating at 300 MHz range is designed and constructed. Three-dimensional in vivo liver images in axial, sagittal and coronal orientations are then acquired from healthy volunteers using this dedicated RF coil on a 7T whole body MR scanner.
Collapse
Affiliation(s)
- Yong Pang
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Bing Wu
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Chunsheng Wang
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Daniel B. Vigneron
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA
| | - Xiaoliang Zhang
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA
| |
Collapse
|
40
|
Pang Y, Vigneron DB, Zhang X. Parallel traveling-wave MRI: a feasibility study. Magn Reson Med 2011; 67:965-78. [PMID: 21858863 DOI: 10.1002/mrm.23073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 05/18/2011] [Accepted: 06/06/2011] [Indexed: 01/23/2023]
Abstract
Traveling-wave magnetic resonance imaging utilizes far fields of a single-piece patch antenna in the magnet bore to generate radio frequency fields for imaging large-size samples, such as the human body. In this work, the feasibility of applying the "traveling-wave" technique to parallel imaging is studied using microstrip patch antenna arrays with both the numerical analysis and experimental tests. A specific patch array model is built and each array element is a microstrip patch antenna. Bench tests show that decoupling between two adjacent elements is better than -26-dB while matching of each element reaches -36-dB, demonstrating excellent isolation performance and impedance match capability. The sensitivity patterns are simulated and g-factors are calculated for both unloaded and loaded cases. The results on B 1- sensitivity patterns and g-factors demonstrate the feasibility of the traveling-wave parallel imaging. Simulations also suggest that different array configuration such as patch shape, position and orientation leads to different sensitivity patterns and g-factor maps, which provides a way to manipulate B(1) fields and improve the parallel imaging performance. The proposed method is also validated by using 7T MR imaging experiments.
Collapse
Affiliation(s)
- Yong Pang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
41
|
Gilbert KM, Belliveau JG, Curtis AT, Gati JS, Klassen LM, Menon RS. A conformal transceive array for 7 T neuroimaging. Magn Reson Med 2011; 67:1487-96. [DOI: 10.1002/mrm.23124] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/21/2011] [Accepted: 07/07/2011] [Indexed: 01/06/2023]
|
42
|
Gilbert KM, Curtis AT, Gati JS, Klassen LM, Menon RS. A radiofrequency coil to facilitate B₁⁺ shimming and parallel imaging acceleration in three dimensions at 7 T. NMR IN BIOMEDICINE 2011; 24:815-823. [PMID: 21834005 DOI: 10.1002/nbm.1627] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 07/29/2010] [Accepted: 09/21/2010] [Indexed: 05/31/2023]
Abstract
A 15-channel transmit-receive (transceive) radiofrequency (RF) coil was developed to image the human brain at 7 T. A hybrid decoupling scheme was implemented that used both capacitive decoupling and the partial geometric overlapping of adjacent coil elements. The decoupling scheme allowed coil elements to be arrayed along all three Cartesian axes; this facilitated shimming of the transmit field, B₁⁺, and parallel imaging acceleration along the longitudinal direction in addition to the standard transverse directions. Each channel was independently controlled during imaging using a 16-channel console and a 16 × 1-kW RF amplifier-matrix. The mean isolation between all combinations of coil elements was 18 ± 7 dB. After B₁⁺ shimming, the standard deviation of the transmit field uniformity was 11% in an axial plane and 32% over the entire brain superior to the mid-cerebellum. Transmit uniformity was sufficient to acquire fast spin echo images of this region of the brain with a single B₁⁺ shim solution. Signal-to-noise ratio (SNR) maps showed higher SNR in the periphery vs center of the brain, and higher SNR in the occipital and temporal lobes vs the frontal lobe. Parallel imaging acceleration in a rostral-caudal oblique plane was demonstrated. The implication of the number of channels in a transmit-receive coil was discussed: it was determined that improvements in SNR and B₁⁺ shimming can be expected when using more than 15 independently controlled transmit-receive channels.
Collapse
Affiliation(s)
- Kyle M Gilbert
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada.
| | | | | | | | | |
Collapse
|
43
|
Resonant Mode Reduction in Radiofrequency Volume Coils for Ultrahigh Field Magnetic Resonance Imaging. MATERIALS 2011; 4:1333-1344. [PMID: 22081791 PMCID: PMC3212035 DOI: 10.3390/ma4081333] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In a multimodal volume coil, only one mode can generate homogeneous Radiofrequency (RF) field for Magnetic Resonance Imaging. The existence of other modes may increase the volume coil design difficulties and potentially decreases coil performance. In this study, we introduce common-mode resonator technique to high and ultrahigh field volume coil designs to reduce the resonant mode while maintain the homogeneity of the RF field. To investigate the design method, the common-mode resonator was realized by using a microstrip line which was split along the central to become a pair of parallel transmission lines within which common-mode currents exist. Eight common-mode resonators were placed equidistantly along the circumference of a low loss dielectric cylinder to form a volume coil. Theoretical analysis and comparison between the 16-strut common-mode volume coil and a conventional 16-strut volume coil in terms of RF field homogeneity and efficiency was performed using Finite-Difference Time-Domain (FDTD) method at 298.2 MHz. MR imaging experiments were performed by using a prototype of the common-mode volume coil on a whole body 7 Tesla scanner. FDTD simulation results showed the reduced number of resonant modes of the common-mode volume coil over the conventional volume coil, while the RF field homogeneity of the two type volume coils was kept at the same level. MR imaging of a water phantom and a kiwi fruit showing the feasibility of the proposed method for simplifying the volume coil design is also presented.
Collapse
|
44
|
Lu J, Pang Y, Wang C, Wu B, Vigneron DB, Zhang X. Evaluation of Common RF Coil Setups for MR Imaging at Ultrahigh Magnetic Field: A Numerical Study. ... INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMUNICATION TECHNOLOGIES. INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMUNICATION TECHNOLOGIES 2011; 2011. [PMID: 28966929 DOI: 10.1145/2093698.2093768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study is an evaluation of the ratio of electric field to magnetic field (E/B1), specific absorption rate (SAR) and signal-to-noise ratio (SNR) generated by three different RF transceiver coil setups: surface coil, surface coil with shielding, and microstrip using a finite discrete time domain (FDTD) simulation in the presence of a head phantom. One of our main focuses in this study is to better understand coil designs that would improve patient safety at high fields by studying a coil type that may potentially minimize SAR while examining potential changes in SNR. In the presence of a human head load, the microstrip's E/B1 ratio was on average smallest while its SAR was also on average smallest of the three setups, suggesting the microstrip may be a better RF coil choice for MRI concerning patient safety and parallel excitation applications than the other two coils. In addition, the study suggests that the microstrip also has a higher SNR compared with the other two coils demonstrating the possibility that the microstrip could lead to higher quality MRI images.
Collapse
Affiliation(s)
- Jonathan Lu
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF)
| | - Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF)
| | - Chunsheng Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF)
| | - Bing Wu
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF)
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF).,UCB/UCSF Joint Graduate Group in Bioengineering, University of California- San Francisco, San Francisco, CA, USA
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF).,UCB/UCSF Joint Graduate Group in Bioengineering, University of California- San Francisco, San Francisco, CA, USA
| |
Collapse
|
45
|
Gilbert KM, Curtis AT, Gati JS, Martyn Klassen L, Villemaire LE, Menon RS. Transmit/receive radiofrequency coil with individually shielded elements. Magn Reson Med 2010; 64:1640-51. [DOI: 10.1002/mrm.22574] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 06/06/2010] [Accepted: 06/17/2010] [Indexed: 11/09/2022]
|