1
|
Zhao Y, Bhosale AA, Zhang X. Multimodal surface coils for low field MR imaging. Magn Reson Imaging 2024; 112:107-115. [PMID: 38971265 DOI: 10.1016/j.mri.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Low field MRI is safer and more cost effective than the high field MRI. One of the inherent problems of low field MRI is its low signal-to-noise ratio or sensitivity. In this work, we introduce a multimodal surface coil technique for signal excitation and reception to improve the RF magnetic field (B1) efficiency and potentially improve MR sensitivity. The proposed multimodal surface coil consists of multiple identical resonators that are electromagnetically coupled to form a multimodal resonator. The field distribution of its lowest frequency mode is suitable for MR imaging applications. The prototype multimodal surface coils are built, and the performance is investigated and validated through numerical simulation, standard RF measurements and tests, and comparison with the conventional surface coil at low fields. Our results show that the B1 efficiency of the multimodal surface coil outperforms that of the conventional surface coil which is known to offer the highest B1 efficiency among all coil categories, i.e., volume coil, half-volume coil and surface coil. In addition, in low-field MRI, the required low-frequency coils often use large value capacitance to achieve the low resonant frequency which makes frequency tuning difficult. The proposed multimodal surface coil can be conveniently tuned to the required low frequency for low-field MRI with significantly reduced capacitance value, demonstrating excellent low-frequency operation capability over the conventional surface coil.
Collapse
Affiliation(s)
- Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
2
|
Bhosale AA, Zhao Y, Zhang X. Electric field and SAR reduction in high-impedance RF arrays by using high permittivity materials for 7T MR imaging. PLoS One 2024; 19:e0305464. [PMID: 38959266 PMCID: PMC11221758 DOI: 10.1371/journal.pone.0305464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
In the field of ultra-high field MR imaging, the challenges associated with higher frequencies and shorter wavelengths necessitate rigorous attention to multichannel array design. While the need for such arrays remains, and efforts to increase channel counts continue, a persistent impediment-inter-element coupling-constantly hinders development. This coupling degrades current and field distribution, introduces noise correlation between channels, and alters the frequency of array elements, affecting image quality and overall performance. The goal of optimizing ultra-high field MRI goes beyond resolving inter-element coupling and includes significant safety considerations related to the design changes required to achieve high-impedance coils. Although these coils provide excellent isolation, the higher impedance needs special design changes. However, such changes pose a significant safety risk in the form of strong electric fields across low-capacitance lumped components. This process may raise Specific Absorption Rate (SAR) values in the imaging subject, increasing power deposition and, as a result, the risk of tissue heating-related injury. To balance the requirement of inter-element decoupling with the critical need for safety, we suggest a new solution. Our method uses high-dielectric materials to efficiently reduce electric fields and SAR values in the imaging sample. This intervention tries to maintain B1 efficiency and inter-element decoupling within the existing array design, which includes high-impedance coils. Our method aims to promote the full potential of ultra-high field MRI by alleviating this critical safety concern with minimal changes to the existing array setup.
Collapse
Affiliation(s)
- Aditya A. Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
| |
Collapse
|
3
|
Payne K, Zhao Y, Bhosale AA, Zhang X. Dual-Tuned Coaxial-Transmission-Line RF Coils for Hyperpolarized 13C and Deuterium 2H Metabolic MRS Imaging at Ultrahigh Fields. IEEE Trans Biomed Eng 2024; 71:1521-1530. [PMID: 38090865 PMCID: PMC11095995 DOI: 10.1109/tbme.2023.3341760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
OBJECTIVE Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. METHODS Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. RESULTS Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. CONCLUSION The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. SIGNIFICANCE The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.
Collapse
|
4
|
Zhao Y, Bhosale AA, Zhang X. Multimodal surface coils for low field MR imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.14.24305802. [PMID: 38699318 PMCID: PMC11065021 DOI: 10.1101/2024.04.14.24305802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Low field MRI is safer and more cost effective than the high field MRI. One of the inherent problems of low field MRI is its low signal-to-noise ratio or sensitivity. In this work, we introduce a multimodal surface coil technique for signal excitation and reception to improve the RF magnetic field (B 1 ) efficiency and potentially improve MR sensitivity. The proposed multimodal surface coil consists of multiple identical resonators that are electromagnetically coupled to form a multimodal resonator. The field distribution of its lowest frequency mode is suitable for MR imaging applications. The prototype multimodal surface coils are built, and the performance is investigated and validated through numerical simulation, standard RF measurements and tests, and comparison with the conventional surface coil at low fields. Our results show that the B 1 efficiency of the multimodal surface coil outperforms that of the conventional surface coil which is known to offer the highest B 1 efficiency among all coil categories, i.e., volume coil, half-volume coil and surface coil. In addition, in low-field MRI, the required low-frequency coils often use large value capacitance to achieve the low resonant frequency which makes frequency tuning difficult. The proposed multimodal surface coil can be conveniently tuned to the required low frequency for low-field MRI with significantly reduced capacitance value, demonstrating excellent low-frequency operation capability over the conventional surface coil.
Collapse
|
5
|
Bhosale AA, Zhao Y, Zhang X. Electric Field and SAR Reduction in High Impedance RF Arrays by Using High Permittivity Materials for 7T MR Imaging. ARXIV 2023:arXiv:2312.04491v1. [PMID: 38106453 PMCID: PMC10723527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Higher frequencies and shorter wavelengths present significant design issues at ultra-high fields, making multi-channel array setup a critical component for ultra-high field MR imaging. The requirement for multi-channel arrays, as well as ongoing efforts to increase the number of channels in an array, are always limited by the major issue known as inter-element coupling. This coupling affects the current and field distribution, noise correlation between channels, and frequency of array elements, lowering imaging quality and performance. To realize the full potential of UHF MRI, we must ensure that the coupling between array elements is kept to a minimum. High-impedance coils allow array systems to completely realize their potential by providing optimal isolation while requiring minimal design modifications. These minor design changes, which demand the use of low capacitance on the conventional loop to induce elevated impedance, result in a significant safety hazard that cannot be overlooked. High electric fields are formed across these low capacitance lumped elements, which may result in higher SAR values in the imaging subject, depositing more power and, ultimately, providing a greater risk of tissue heating-related injury to the human sample. We propose an innovative method of utilizing high-dielectric material to effectively reduce electric fields and SAR values in the imaging sample while preserving the B1 efficiency and inter-element decoupling between the array elements to address this important safety concern with minimal changes to the existing array design comprising high-impedance coils.
Collapse
Affiliation(s)
- Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
6
|
Zhao Y, Bhosale AA, Zhang X. Coupled stack-up volume RF coils for low-field MR imaging. ARXIV 2023:arXiv:2311.09430v1. [PMID: 38013888 PMCID: PMC10680881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The advent of low field open magnetic resonance imaging (MRI) systems has greatly expanded the accessibility of MRI technology to meet a wide range of patient needs. However, the inherent challenges of low-field MRI, such as limited signal-to-noise ratios and limited availability of dedicated RF coil, have prompted the need for innovative coil designs that can improve imaging quality and diagnostic capabilities. In response to these challenges, we introduce the coupled stack-up volume coil, a novel RF coil design that addresses the shortcomings of conventional birdcage in the context of low field open MRI. The proposed coupled stack-up volume coil design utilizes a unique architecture that optimizes both transmit/receive efficiency and RF field homogeneity and offers the advantage of a simple design and construction, making it a practical and feasible solution for low field MRI applications. This paper presents a comprehensive exploration of the theoretical framework, design considerations, and experimental validation of this innovative coil design. Through rigorous analysis and empirical testing, we demonstrate the superior performance of the coupled stack-up volume coil in achieving improved transmit/receive efficiency and more uniform magnetic field distribution compared to traditional birdcage coils.
Collapse
Affiliation(s)
- Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
7
|
Payne K, Zhao Y, Bhosale AA, Zhang X. Dual-tuned Coaxial-transmission-line RF coils for Hyperpolarized 13C and Deuterium 2H Metabolic MRS Imaging at Ultrahigh Fields. ARXIV 2023:arXiv:2307.11221v3. [PMID: 37502626 PMCID: PMC10370217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Objective Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ 2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. Methods Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. Results Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. Conclusion The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. Significance The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.
Collapse
Affiliation(s)
- Komlan Payne
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Aditya Ashok Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Xiaoliang Zhang
- Departments of Biomedical Engineering and Electrical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| |
Collapse
|
8
|
Payne K, Ying LL, Zhang X. Hairpin RF resonators for MR imaging transceiver arrays with high inter-channel isolation and B 1 efficiency at ultrahigh field 7 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107321. [PMID: 36335877 DOI: 10.1016/j.jmr.2022.107321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 06/03/2023]
Abstract
Electromagnetic decoupling among a close-fitting or high-density transceiver RF array elements is required to maintain the integrity of the magnetic flux density from individual channel for enhanced performance in detection sensitivity and parallel imaging. High-impedance RF coils have demonstrated to be a prominent design method to circumvent these coupling issues. Yet, inherent characteristics of these coils have ramification on the B1 field efficiency and SNR. In this work, we propose a hairpin high impedance RF resonator design for highly decoupled multichannel transceiver arrays at ultrahigh magnetic fields. Due to the high impedance property of the hairpin resonators, the proposed transceiver array can provide high decoupling performance without using any dedicated decoupling circuit among the resonant elements. Because of elimination of lumped inductors in the resonator circuit, higher B1 field efficiency in imaging subjects can be expected. In order to validate the feasibility of the proposed hairpin RF coils, systematical studies on decoupling performance, field distribution, and SNR are performed, and the results are compared with those obtained from existing high-impedance RF coil, e.g., "self-decoupled RF coil". To further investigate its performance, an 8-channel head coil array using the proposed hairpin resonators loaded with a cylindrical phantom is designed, demonstrating a 19 % increase of the B1+ field intensity compared to the self-decoupled coils at 7 T. Furthermore, the characteristics of the hairpin RF coils are evaluated using a more realistic human head voxel model numerically. The proposed hairpin RF coil provides excellent decoupling performance and superior RF magnetic field efficiency compared to the "self-decoupled" high impedance coils. Bench test of a pair of fabricated hairpin coils prove to be in good accordance with numerical results.
Collapse
Affiliation(s)
- Komlan Payne
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Leslie L Ying
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA; Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA; Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
9
|
Zhu Y, Lu M, Yan X. Resistor-free and one-board-fits-all ratio adjustable power splitter for add-on RF shimming in high field MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 338:107194. [PMID: 35316747 PMCID: PMC9050946 DOI: 10.1016/j.jmr.2022.107194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 05/03/2023]
Abstract
Ratio adjustable power splitter (RAPS) circuits were recently proposed for add-on RF shimming. Previous RAPSs split the input RF signal with a Wilkinson splitter or 50-Ω-terminated hybrid coupler into two branches, delay these two signals with cable/microstrip line phase shifters, and recombine them with another hybrid coupler. They require resistors to provide high output isolation and a cable/microstrip line library to realize desired splitting ratios. Here we propose a novel resistor-free RAPS circuit in which the Wilkinson splitter/50-Ω-terminated hybrid is replaced with a resistor-free T-junction splitter. A novel sliding mechanism was employed to further combine the T-junction's output arms with subsequent phase shifters and realize a one-board-fits-all design. The resistor-free RAPS was theoretically analyzed, simulated, and validated on workbench and MRI experiments. The resistor-free RAPS's splitting ratio has a tan/cot dependence on the phase/length difference between the T-junction output arms. The ratio can be continuously adjusted to any value by sliding the input arm without additional cable/microstrip libraries, largely saving time and effort when determining the best RF weights in practice. The fabricated resistor-free RAPS has a compact size, excellent input impedance matching, and a low insertion loss. Potential safety concerns caused by unwanted power dissipation on RF resistors are eliminated. The simulation and MRI experiments demonstrated that the resistor-free RAPS functions well on a widely-used Tx coil.
Collapse
Affiliation(s)
- Yue Zhu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ming Lu
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai, Shandong, China
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Li N, Zheng H, Xu G, Gui T, Yin Q, Chen Q, Lee J, Xin Y, Zhang S, He Q, Zhang X, Liu X, Zheng H, Wang D, Li Y. Simultaneous Head and Spine MR Imaging in Children Using a Dedicated Multichannel Receiver System at 3T. IEEE Trans Biomed Eng 2021; 68:3659-3670. [PMID: 34014817 DOI: 10.1109/tbme.2021.3082149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of this work was to enable simultaneous head and spine Magnetic Resonance imaging (MRI) in children at 3T by using a dedicated multichannel radiofrequency coil array system. METHODS A 24-channel head and spine pediatric coil system was developed and constructed. The coils performance was compared with a commercially available 24-channel adult head-neck coil and a spine coil (1-4 spine of 16-channel were selected). Signal-to-noise ratio (SNR) and parallel imaging capability were quantitatively evaluated by phantom studies and in vivo imaging experiments. With Institutional Review Board and Ethics Committee approval, the designed coil was used to acquire head and spine images on 27 children in clinical settings. RESULTS The pediatric coil provided substantial SNR improvements with an increase of 32 % to 40 % in the brain region and up to a two-fold increase in the surface. SNR increased by at least 18 % in the spine region. The coil enabled higher resolution and a faster imaging speed, owing to significantly improved SNR. Extensive coverage of the coil enabled high-quality fast imaging from head-neck to the whole spine. Good image quality with an average score 4.63 out of 5 was achieved using the developed pediatric coil in clinical studies. CONCLUSION Simultaneous head and spine MRI with superior performance have been successfully acquired in children subjects at 3T using the dedicated 24-channel head and spine pediatric coil system. SIGNIFICANCE The 24-channel pediatric coil system potentially can enhance pediatric head and spine MRI in clinical research and diagnosis.
Collapse
|
11
|
Li Y, Lee J, Long X, Qiao Y, Ma T, He Q, Cao P, Zhang X, Zheng H. A Magnetic Resonance-Guided Focused Ultrasound Neuromodulation System With a Whole Brain Coil Array for Nonhuman Primates at 3 T. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4401-4412. [PMID: 32833632 DOI: 10.1109/tmi.2020.3019087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The phased-array radio frequency (RF) coil plays a vital role in magnetic resonance-guided focused ultrasound (MRgFUS) neuromodulation studies, where accurate brain functional stimulations and neural circuit observations are required. Although various designs of phased-array coils have been reported, few are suitable for ultrasound stimulations. In this study, an MRgFUS neuromodulation system comprised of a whole brain coverage non-human primate (NHP) RF coil and an MRI-compatible ultrasound device was developed. When compared to a single loop coil, the NHP coil provided up to a 50% increase in the signal-to-noise ratio (SNR) in the brain and acquired better anatomical image-quality. The NHP coil also demonstrated the ability to achieve higher spatial resolution and reduce distortion in echo-planer imaging (EPI). Ultrasound beam characteristics and transcranial magnetic resonance acoustic radiation force (MR-ARF) were measured for simulated positions, and calculated B0 maps were employed to establish MRI-compatibility. The differences between focused off and on ultrasound techniques were measured using SNR, g-factors, and temporal SNR (tSNR) analyses and all deviations were under 2.3%. The EPI images quality and stable tSNR demonstrated the suitability of the MRgFUS neuromodulation system to conduct functional MRI studies. Last, the time course of the blood oxygen level dependent (BOLD) signal of posterior cingulate cortex in a focused ultrasound neuromodulation study was detected and repeated with MR thermometry.
Collapse
|
12
|
A Novel Mono-surface Antisymmetric 8Tx/16Rx Coil Array for Parallel Transmit Cardiac MRI in Pigs at 7T. Sci Rep 2020; 10:3117. [PMID: 32080274 PMCID: PMC7033245 DOI: 10.1038/s41598-020-59949-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/30/2020] [Indexed: 02/01/2023] Open
Abstract
A novel mono-surface antisymmetric 16-element transmit/receive (Tx/Rx) coil array was designed, simulated, constructed, and tested for cardiac magnetic resonance imaging (cMRI) in pigs at 7 T. The cardiac array comprised of a mono-surface 16-loops with two central elements arranged anti-symmetrically and flanked by seven elements on either side. The array was configured for parallel transmit (pTx) mode to have an eight channel transmit and 16-channel receive (8Tx/16Rx) coil array. Electromagnetic (EM) simulations, bench-top measurements, phantom, and MRI experiments with two pig cadavers (68 and 46 kg) were performed. Finally, the coil was used in pilot in-vivo measurements with a 60 kg pig. Flip angle (FA), geometry factor (g-factor), signal-to-noise ratio (SNR) maps, and high-resolution cardiac images were acquired with an in-plane resolution of 0.6 mm × 0.6 mm (in-vivo) and 0.3 mm × 0.3 mm (ex-vivo). The mean g-factor over the heart was 1.26 (R = 6). Static phase [Formula: see text] shimming in a pig body phantom with the optimal phase vectors makes possible to improve the [Formula: see text] homogeneity by factor > 2 and transmit efficiency by factor > 3 compared to zero phases (before RF shimming). Parallel imaging performed in the in-vivo measurements demonstrated well preserved diagnostic quality of the resulting images at acceleration factors up to R = 6. The described hardware design can be adapted for arrays optimized for animals and humans with a larger number of elements (32-64) while maintaining good decoupling for various MRI applications at UHF (e.g., cardiac, head, and spine).
Collapse
|
13
|
Elabyad IA, Terekhov M, Stefanescu MR, Lohr D, Fischer M, Schreiber LM. Design of a novel antisymmetric coil array for parallel transmit cardiac MRI in pigs at 7 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:195-208. [PMID: 31306985 DOI: 10.1016/j.jmr.2019.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/12/2019] [Accepted: 07/04/2019] [Indexed: 05/12/2023]
Abstract
The design, simulation, assembly and testing of a novel dedicated antisymmetric transmit/receive (Tx/Rx) coil array to demonstrate the feasibility of cardiac magnetic resonance imaging (cMRI) in pigs at 7 T was described. The novel antisymmetric array is composed of eight elements based on mirrored and reversed loop orientations to generate varying B1+ field harmonics for RF shimming. The central four loop elements formed together a pair of antisymmetric L-shaped channels to allow good decoupling between all neighboring elements of the entire array. The antisymmetric array was compared to a standard symmetric rectilinear loop array with an identical housing dimension. Both arrays were driven in the parallel transmit (pTx) mode forming an 8-channel transmit and 16-channel receive (8Tx/16Rx) coil array, where the same posterior array was combined with both anterior arrays. The hardware and imaging performance of the dedicated cardiac arrays were validated and compared by means of electromagnetic (EM) simulations, bench-top measurements, phantom, and ex-vivo MRI experiments with 46 kg female pig. Combined signal-to-noise ratio (SNR), geometry factor (g-factor), noise correlation maps, and high resolution ex-vivo cardiac images were acquired with an in-plane resolution of 0.3 mm × 0.3 mm using both arrays. The novel antisymmetric array enhanced the SNR within the heart by about two times and demonstrated good decoupling and improved control of the B1+ field distributions for RF shimming compared to the standard coil array. Parallel imaging with acceleration factor (R) up to 4 was possible using the novel antisymmetric coil array while maintaining the mean g-factor within the heart region of 1.13.
Collapse
Affiliation(s)
- Ibrahim A Elabyad
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany; Department of Electronics and Communications Engineering, Thebes Higher Institute of Engineering, Cairo, Egypt.
| | - M Terekhov
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - M R Stefanescu
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - D Lohr
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - M Fischer
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - L M Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| |
Collapse
|
14
|
Bluem P, Van de Moortele PF, Adriany G, Popović Z. Excitation and RF Field Control of a Human-Size 10.5-T MRI System. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2019; 67:1184-1196. [PMID: 31749460 PMCID: PMC6867708 DOI: 10.1109/tmtt.2018.2884405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper presents an investigation of methods for improving homogeneity inside various dielectric phantoms situated in a 10.5 T human-sized MRI. The transmit B1 (B 1 + ) field is excited with a quadrature fed circular patch-probe and a 12 element capacitively-loaded microstrip array. Both simulations and measurements show improved homogeneity in a cylindrical water phantom, an inhomogeneous phantom (pineapple), and a NIST standard phantom. The simulations are performed using a full-wave finite-difference time-domain solver (Sim4Life) in order to find theB 1 + field distribution and compared to the gradient recalled echo image and efficiency result. For additional field uniformity, the wall electromagnetic boundary conditions are modified with a passive quadrifilar helix. Finally, these methods are applied in simulation to head imaging of an anatomically correct human body model (Duke, IT'IS Virtual Population) showing improved homogeneity and specific absorption rate for various excitations.
Collapse
Affiliation(s)
- Patrick Bluem
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 USA
| | | | - Gregor Adriany
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455
| | - Zoya Popović
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 USA
| |
Collapse
|
15
|
Chen Q, Xie G, Luo C, Yang X, Zhu J, Lee J, Su S, Liang D, Zhang X, Liu X, Li Y, Zheng H. A Dedicated 36-Channel Receive Array for Fetal MRI at 3T. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2290-2297. [PMID: 29994303 PMCID: PMC6312740 DOI: 10.1109/tmi.2018.2839191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Due to a lack of fetal imaging coils, the standard commercial abdominal coil is often used for fetal imaging, the performance of which is limited by its insufficient coverage, element number, and Signal-to-noise ratio (SNR). In this paper, a dedicated 36-channel coil array, of which size can best fit the body sizes of pregnancy gestation from 20 to 37+ weeks, was designed for fetal imaging at 3T. SNR with full phase encoding and G-factor denoted as noise amplification for parallel imaging were quantitatively evaluated by phantom studies. Compared with a commercial abdominal coil array, the proposed 36-channel fetal array provides not only SNR improvements in full phase encoding (with 10% in the region where the whole fetal body was located, and up to 40% in the edge region where the fetal brain and heart may appear) but also an augmented parallel imaging capability and remarkable SNR improvements at high acceleration factors.
Collapse
Affiliation(s)
- Qiaoyan Chen
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Guoxi Xie
- School of Basic Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Chao Luo
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Xing Yang
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Chengdu 610054, China
| | - Jin Zhu
- Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Jo Lee
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Shi Su
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Dong Liang
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158 USA, and also with the UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA 94158 USA
| | - Xin Liu
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Ye Li
- Corresponding authors: Ye Li, and Hairong Zheng. ; .
| | - Hairong Zheng
- Corresponding authors: Ye Li, and Hairong Zheng. ; .
| |
Collapse
|
16
|
Zhang X. Sensitivity enhancement of traveling wave MRI using free local resonators: an experimental demonstration. Quant Imaging Med Surg 2017; 7:170-176. [PMID: 28516042 DOI: 10.21037/qims.2017.02.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Traveling wave MR uses the far fields in signal excitation and reception, therefore its acquisition efficiency is low in contrast to the conventional near field magnetic resonance (MR). Here we show a simple and efficient method based on the local resonator to improving sensitivity of traveling wave MR technique. The proposed method utilizes a standalone or free local resonator to amplify the radio frequency magnetic fields in the interested target. The resonators have no wire connections to the MR system and thus can be conveniently placed to any place around imaging simples. METHODS A rectangular loop L/C resonator to be used as the free local resonator was tuned to the proton Larmor frequency at 7T. Traveling wave MR experiments with and without the wireless free local resonator were performed on a living rat using a 7T whole body MR scanner. The signal-to-noise ratio (SNR) or sensitivity of the images acquired was compared and evaluated. RESULTS In vivo 7T imaging results show that traveling wave MR with a wireless free local resonator placed near the head of a living rat achieves at least 10-fold SNR gain over the images acquired on the same rat using conventional traveling wave MR method, i.e. imaging with no free local resonators. CONCLUSIONS The proposed free local resonator technique is able to enhance the MR sensitivity and acquisition efficiency of traveling wave MR at ultrahigh fields in vivo. This method can be a simple solution to alleviating low sensitivity problem of traveling wave MRI.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California, San Francisco, CA, USA.,UC Berkeley/UCSF Joint Graduate Group in Bioengineering, University of California, San Francisco, CA, USA.,California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| |
Collapse
|
17
|
Yan X, Zhang X, Xue R, Gore JC, Grissom WA. Optimizing the ICE decoupling element distance to improve monopole antenna arrays for 7 Tesla MRI. Magn Reson Imaging 2016; 34:1264-1268. [PMID: 27469314 DOI: 10.1016/j.mri.2016.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 11/15/2022]
Abstract
The induced current elimination (ICE) method has been previously applied to decouple monopole coil arrays in ultrahigh field MRI. However, the method creates low B1+ spots near the decoupling elements. In this study, we aim to improve the performance of ICE-decoupled monopole array in human head imaging at 7 Tesla. Eight-channel ICE-decoupled monopole arrays were optimized by varying the position of the decoupling elements. A series of numerical studies were performed using the co-simulation method. In simulation, decoupling performance, quality (Q-) values and transmit field (B1+) were comparatively investigated. In addition, we constructed an optimized ICE-decoupled monopole array and compared its performance with the unoptimized array. The simulation results showed that a good trade-off between decoupling and B1+ loss can be obtained when decoupling elements were moved 2.5-cm away from coil elements. This was validated by in-vivo MR imaging using the constructed array. Compared with the unoptimized ICE decoupled monopole array, the optimized array had a more homogeneous transmit field and no dark spots or signal cancellations in the MR images.
Collapse
Affiliation(s)
- Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology, Vanderbilt University, Nashville, TN, USA.
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology, Vanderbilt University, Nashville, TN, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
18
|
Yan X, Pedersen JO, Wei L, Zhang X, Xue R. Multichannel Double-Row Transmission Line Array for Human MR Imaging at Ultrahigh Fields. IEEE Trans Biomed Eng 2015; 62:1652-9. [PMID: 25706499 DOI: 10.1109/tbme.2015.2401976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In microstrip transmission line (MTL) transmit/receive (transceive) arrays used for ultrahigh field MRI, the array length is often constrained by the required resonant frequency, limiting the image coverage. The purpose of this study is to increase the imaging coverage and also improve its parallel imaging capability by utilizing a double-row design. METHODS A 16-channel double-row MTL transceive array was designed, constructed, and tested for human head imaging at 7 T. Array elements between two rows were decoupled by using the induced current elimination or magnetic wall decoupling technique. In vivo human head images were acquired, and g-factor results were calculated to evaluate the performance of this double-row array. RESULTS Testing results showed that all coil elements were well decoupled with a better than -18 dB transmission coefficient between any two elements. The double-row array improves the imaging quality of the lower portion of the human head, and has low g-factors even at high acceleration rates. CONCLUSION Compared with a regular single-row MTL array, the double-row array demonstrated a larger imaging coverage along the z-direction with improved parallel imaging capability. SIGNIFICANCE The proposed technique is particularly suitable for the design of large-sized transceive arrays with large channel counts, which ultimately benefits the imaging performance in human MRI.
Collapse
|
19
|
Yan X, Zhang X, Wei L, Xue R. Design and Test of Magnetic Wall Decoupling for Dipole Transmit/Receive Array for MR Imaging at the Ultrahigh Field of 7T. APPLIED MAGNETIC RESONANCE 2015; 46:59-66. [PMID: 28955135 PMCID: PMC5612434 DOI: 10.1007/s00723-014-0612-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Radio-frequency coil arrays using dipole antenna technique have been recently applied for ultrahigh field magnetic resonance (MR) imaging to obtain the better signal-noise-ratio (SNR) gain at the deep area of human tissues. However, the unique structure of dipole antennas makes it challenging to achieve sufficient electromagnetic decoupling among the dipole antenna elements. Currently, there is no decoupling methods proposed for dipole antenna arrays in MR imaging. The recently developed magnetic wall (MW) or induced current elimination decoupling technique has demonstrated its feasibility and robustness in designing microstrip transmission line arrays, L/C loop arrays and monopole arrays. In this study, we aim to investigate the possibility and performance of MW decoupling technique in dipole arrays for MR imaging at the ultrahigh field of 7T. To achieve this goal, a two-channel MW decoupled dipole array was designed, constructed and analyzed experimentally through bench test and MR imaging. Electromagnetic isolation between the two dipole elements was improved from about -3.6 dB (without any decoupling treatments) to -16.5 dB by using the MW decoupling method. MR images acquired from a water phantom using the MW decoupled dipole array and the geometry factor maps were measured, calculated and compared with those acquired using the dipole array without decoupling treatments. The MW decoupled dipole array demonstrated well-defined image profiles from each element and had better geometry factor over the array without decoupling treatments. The experimental results indicate that the MW decoupling technique might be a promising solution to reducing the electromagnetic coupling of dipole arrays in ultrahigh field MRI, consequently improving their performance in SNR and parallel imaging.
Collapse
Affiliation(s)
- Xinqiang Yan
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Bldg. 11, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, Byers Hall, Room 102, 1700 4th ST, San Francisco, CA 94158-2330, USA
| | - Long Wei
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Bldg. 11, 15 Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
20
|
Pang Y, Wu B, Jiang X, Vigneron DB, Zhang X. Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging. Medicine (Baltimore) 2014; 93:e311. [PMID: 25526481 PMCID: PMC4603100 DOI: 10.1097/md.0000000000000311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T.
Collapse
Affiliation(s)
- Yong Pang
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (YP, BW, DBV, XZ); Department of Electrical Engineering, Tsinghua University, Beijing, China (XJ); UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley (DBV, XZ); and California Institute for Quantitative Biosciences (QB3), San Francisco, CA (DBV, XZ)
| | | | | | | | | |
Collapse
|
21
|
Yan X, Zhang X, Feng B, Ma C, Wei L, Xue R. 7T transmit/receive arrays using ICE decoupling for human head MR imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1781-1787. [PMID: 24710826 DOI: 10.1109/tmi.2014.2313879] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In designing large-sized volume type phased array coils for human head imaging at ultrahigh fields, e.g., 7T, minimizing electromagnetic coupling among array elements is technically challenging. A new decoupling method based on induced current compensation or elimination (ICE) for a microstrip line planar array has recently been proposed. In this study, an eight-channel transmit/receive volume array with ICE-decoupled loop elements was built and investigated to demonstrate its feasibility and robustness for human head imaging at 7T. Isolation between adjacent loop elements was better than - 25 dB with a human head load. The worst-case of the isolation between all of the elements was about - 17.5 dB. All of the MRI experiments were performed on a 7T whole-body human MR scanner. Images of the phantom and human head were acquired and g-factor maps were measured and calculated to evaluate the performance of the coil array. Compared with the conventional capacitively decoupled array, the ICE-decoupled array demonstrated improved parallel imaging ability and had a higher SNR. The experimental results indicate that the transceiver array design with ICE decoupling technique might be a promising solution to designing high performance transmit/receive coil arrays for human head imaging at ultrahigh fields.
Collapse
|
22
|
Yan X, Zhang X, Wei L, Xue R. Magnetic wall decoupling method for monopole coil array in ultrahigh field MRI: a feasibility test. Quant Imaging Med Surg 2014; 4:79-86. [PMID: 24834419 DOI: 10.3978/j.issn.2223-4292.2014.04.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 11/14/2022]
Abstract
Ultrahigh field (UHF) MR imaging of deeply located target in high dielectric biological samples faces challenges due to the reduced penetration depth at the corresponding high frequencies. Radiative coils, e.g., dipole and monopole coils, have recently been applied for UHF MRI applications to obtain better signal-noise-ratio (SNR) in the area deep inside the human head and body. However, due to the unique structure of radiative coil elements, electromagnetic (EM) coupling between elements in radiative coil arrays cannot be readily addressed by using traditional decoupling methods such as element overlapping and L/C decoupling network. A new decoupling method based on induced current elimination (ICE) or magnetic wall technique has recently been proposed and has demonstrated feasibility in designing microstrip transmission line (MTL) arrays and L/C loop arrays. In this study, an array of two monopole elements decoupled using magnetic wall decoupling technique was designed, constructed and analyzed numerically and experimentally to investigate the feasibility of the decoupling technique in radiative coil array designs for MR imaging at 7 T. An L-shaped capacitive network was employed as the matching circuit and the reflection coefficients (S11) of the monopole element achieved -30 dB or better. Isolation between the two monopole elements was improved from about -10 dB (without decoupling treatment) to better than -30 dB with the ICE/magnetic wall decoupling method. B1 maps and MR images of the phantom were acquired and SNR maps were measured and calculated to evaluate the performance of the ICE/magnetic wall decoupling method. Compared with the monopole elements without decoupling methods, the ICE-decoupled array demonstrated more independent image profiles from each element and had a higher SNR in the peripheral area of the imaging subject. The experimental and simulation results indicate that the ICE/magnetic wall decoupling technique might be a promising solution to reducing the EM coupling of monopole arrays for UHF MRI.
Collapse
Affiliation(s)
- Xinqiang Yan
- 1 State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China ; 2 Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ; 3 Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China ; 4 University of Chinese Academy of Sciences, Beijing 100049, China ; 5 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA ; 6 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158, USA
| | - Xiaoliang Zhang
- 1 State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China ; 2 Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ; 3 Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China ; 4 University of Chinese Academy of Sciences, Beijing 100049, China ; 5 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA ; 6 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158, USA
| | - Long Wei
- 1 State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China ; 2 Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ; 3 Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China ; 4 University of Chinese Academy of Sciences, Beijing 100049, China ; 5 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA ; 6 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158, USA
| | - Rong Xue
- 1 State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China ; 2 Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ; 3 Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China ; 4 University of Chinese Academy of Sciences, Beijing 100049, China ; 5 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA ; 6 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158, USA
| |
Collapse
|
23
|
Pang Y, Wong EWH, Yu B, Zhang X. Design and numerical evaluation of a volume coil array for parallel MR imaging at ultrahigh fields. Quant Imaging Med Surg 2014; 4:50-6. [PMID: 24649435 DOI: 10.3978/j.issn.2223-4292.2014.02.07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 11/14/2022]
Abstract
In this work, we propose and investigate a volume coil array design method using different types of birdcage coils for MR imaging. Unlike the conventional radiofrequency (RF) coil arrays of which the array elements are surface coils, the proposed volume coil array consists of a set of independent volume coils including a conventional birdcage coil, a transverse birdcage coil, and a helix birdcage coil. The magnetic fluxes of these three birdcage coils are intrinsically cancelled, yielding a highly decoupled volume coil array. In contrast to conventional non-array type volume coils, the volume coil array would be beneficial in improving MR signal-to-noise ratio (SNR) and also gain the capability of implementing parallel imaging. The volume coil array is evaluated at the ultrahigh field of 7T using FDTD numerical simulations, and the g-factor map at different acceleration rates was also calculated to investigate its parallel imaging performance.
Collapse
Affiliation(s)
- Yong Pang
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Agilent Technologies, Santa Clara, CA, USA ; 3 Magwale, Palo Alto, CA, USA ; 4 UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA ; 5 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| | - Ernest W H Wong
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Agilent Technologies, Santa Clara, CA, USA ; 3 Magwale, Palo Alto, CA, USA ; 4 UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA ; 5 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| | - Baiying Yu
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Agilent Technologies, Santa Clara, CA, USA ; 3 Magwale, Palo Alto, CA, USA ; 4 UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA ; 5 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| | - Xiaoliang Zhang
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Agilent Technologies, Santa Clara, CA, USA ; 3 Magwale, Palo Alto, CA, USA ; 4 UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA ; 5 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| |
Collapse
|
24
|
Pang Y, Yu B, Vigneron DB, Zhang X. Quadrature transmit array design using single-feed circularly polarized patch antenna for parallel transmission in MR imaging. Quant Imaging Med Surg 2014; 4:11-8. [PMID: 24649430 DOI: 10.3978/j.issn.2223-4292.2014.02.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/14/2014] [Indexed: 11/14/2022]
Abstract
Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than -35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla.
Collapse
Affiliation(s)
- Yong Pang
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Magwale, Palo Alto, CA, USA ; 3 UCSF/UC Berkeley Joint Bioengineering Program, San Francisco & Berkeley, CA, USA
| | - Baiying Yu
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Magwale, Palo Alto, CA, USA ; 3 UCSF/UC Berkeley Joint Bioengineering Program, San Francisco & Berkeley, CA, USA
| | - Daniel B Vigneron
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Magwale, Palo Alto, CA, USA ; 3 UCSF/UC Berkeley Joint Bioengineering Program, San Francisco & Berkeley, CA, USA
| | - Xiaoliang Zhang
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Magwale, Palo Alto, CA, USA ; 3 UCSF/UC Berkeley Joint Bioengineering Program, San Francisco & Berkeley, CA, USA
| |
Collapse
|
25
|
Hu X, Chen X, Liu X, Zheng H, Li Y, Zhang X. Parallel imaging performance investigation of an 8-channel common-mode differential-mode (CMDM) planar array for 7T MRI. Quant Imaging Med Surg 2014; 4:33-42. [PMID: 24649433 DOI: 10.3978/j.issn.2223-4292.2014.02.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/24/2014] [Indexed: 11/14/2022]
Abstract
An 8-channel planar phased array was proposed based on the common-mode differential-mode (CMDM) structure for ultrahigh field MRI. The parallel imaging performance of the 8-channel CMDM planar array was numerically investigated based on electromagnetic simulations and Cartesian sensitivity encoding (SENSE) reconstruction. The signal-to-noise ratio (SNR) of multichannel images combined using root-sum-of-squares (rSoS) and covariance weighted root-sum-of-squares (Cov-rSoS) at various reduction factors were compared between 8-channel CMDM array and 4-channel CM and DM array. The results of the study indicated the 8-channel CMDM array excelled the 4-channel CM and DM in SNR. The g-factor maps and artifact power were calculated to evaluate parallel imaging performance of the proposed 8-channel CMDM array. The artifact power of 8-channel CMDM array was reduced dramatically compared with the 4-channel CM and DM arrays demonstrating the parallel imaging feasibility of the CMDM array.
Collapse
Affiliation(s)
- Xiaoqing Hu
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Xiao Chen
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Xin Liu
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Hairong Zheng
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Ye Li
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Xiaoliang Zhang
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| |
Collapse
|
26
|
Li Y, Yu B, Pang Y, Vigneron DB, Zhang X. Planar quadrature RF transceiver design using common-mode differential-mode (CMDM) transmission line method for 7T MR imaging. PLoS One 2013; 8:e80428. [PMID: 24265823 PMCID: PMC3827179 DOI: 10.1371/journal.pone.0080428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022] Open
Abstract
The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.
Collapse
Affiliation(s)
- Ye Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Baiying Yu
- Magwale, Palo Alto, California, United States of America
| | - Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- UC Berkeley/UCSF Joint Graduate Group in Bioengineering, Berkeley & San Francisco, California, United States of America
- California Institute for Quantitative Biosciences (QB3), San Francisco, California, United States of America
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- UC Berkeley/UCSF Joint Graduate Group in Bioengineering, Berkeley & San Francisco, California, United States of America
- California Institute for Quantitative Biosciences (QB3), San Francisco, California, United States of America
| |
Collapse
|
27
|
Li Y, Wang C, Yu B, Vigneron D, Chen W, Zhang X. Image homogenization using pre-emphasis method for high field MRI. Quant Imaging Med Surg 2013; 3:217-23. [PMID: 24040618 DOI: 10.3978/j.issn.2223-4292.2013.07.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/16/2013] [Indexed: 11/14/2022]
Abstract
Radiofrequency (RF) field (B 1) inhomogeneity due to shortened wavelength at high field is a major cause of magnetic resonance imaging (MRI) nonuniformity in high dielectric biological samples (e.g., human body). In this work, we propose a method to improve the B 1 and MRI homogeneity by using pre-emphasized non-uniform B 1 distribution. The intrinsic B 1 distribution that could be generated by a RF volume coil, specifically a microstrip transmission line (MTL) coil used in this work, was pre-emphasized in the sample's periphery region of interest to compensate for the central brightness induced by high frequency interference effect due to shortened wave length. This pre-emphasized non-uniform B 1 can be realized by varying the parameters of microstrip elements, such as the substrate thickness of MTL volume coil. Both numerical simulation and phantom MR imaging studies were carried out to investigate the feasibility and merit of the proposed method in achieving homogeneous MR images. The simulation results demonstrate that by using a pre-emphasized B 1 distribution generated by the MTL volume coil, relatively uniform B 1 distribution and homogeneous MR image (98% homogeneity) within the spherical phantom (15 cm diameter) were achieved with 4.5 mm thickness. The B 1 and MRI intensity distributions of a 16-element MTL volume coil with fixed substrate thickness and five varied saline loads were modeled and experimentally tested. Similar results from both simulation and experiments were obtained, suggesting substantial improvements of B 1 and MRI homogeneities within the phantom containing 125 mM saline. The overall results demonstrate an efficient B 1 shimming approach for improving high field MRI.
Collapse
Affiliation(s)
- Ye Li
- Department of Radiology and Biomedical Imaging, UC San Francisco, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
28
|
Pang Y, Yu B, Zhang X. Hepatic fat assessment using advanced Magnetic Resonance Imaging. Quant Imaging Med Surg 2012; 2:213-8. [PMID: 23256082 DOI: 10.3978/j.issn.2223-4292.2012.08.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 08/31/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | | | | |
Collapse
|
29
|
Pang Y, Zhang X. Precompensation for mutual coupling between array elements in parallel excitation. Quant Imaging Med Surg 2012; 1:4-10. [PMID: 23243630 DOI: 10.3978/j.issn.2223-4292.2011.11.02] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/09/2011] [Indexed: 11/14/2022]
Abstract
Parallel transmission or excitation has been suggested to perform multi-dimensional spatial selective excitation to shorten the pulse width using a coil array and the sensitivity information. The mutual coupling between array elements has been a critical technical issue in RF array designs, which can cause artifacts on the excitation profile, leading to degraded excitation performance and image quality. In this work, a precompensation method is proposed to address the mutual coupling effect in parallel transmission by introducing the mutual coupling coefficient matrix into the RF pulses design procedure of the parallel transmission. 90° RF pulses have been designed using both the original transmit SENSE method and the proposed precompensation method for RF arrays with non-negligible mutual coupling, and their excitation profiles are generated by simulating the Bloch equation. The results show that the mutual coupling effect can be effectively compensated by using the proposed method, yielding enhanced tolerance to insufficient mutual decoupling of RF arrays in parallel excitation, ultimately, providing improved performance and accuracy of parallel excitation.
Collapse
Affiliation(s)
- Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | | |
Collapse
|
30
|
Abstract
Fetal Magnetic Resonance Imaging (MRI) on clinical scanners has increasingly been realized as a powerful imaging tool and applied for studying the brain abnormalities and the potential of neurodevelopmental disabilities in vivo. The primarily used multi-echo fast imaging sequences reduce the motion artifacts with a tradeoff of image Signal-to-Noise Ratio (SNR) and resolution. In Radio Frequency (RF) hardware for MR signal excitation and reception, there are lack of dedicated RF coils for fetal imaging providing optimized performance in acquisition and safety. There is an urgent demand for novel hardware and fast imaging technology developments to overcome motion artifacts and improve sensitivity and safety. Recent studies have demonstrated that dedicated fetal RF transceiver arrays can improve the SNR, image coverage, and safety. In addition, emerging fast imaging technologies such as parallel imaging and compressed sensing would be advantageous in improving imaging speed and thus reducing motion artifacts in fetal imaging.
Collapse
Affiliation(s)
- Ye Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- UC Berkeley/UCSF Joint Graduate Group in Bioengineering, Berkeley & San Francisco, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, CA, USA
| |
Collapse
|
31
|
Multi-reception strategy with improved SNR for multichannel MR imaging. PLoS One 2012; 7:e42237. [PMID: 22879921 PMCID: PMC3411773 DOI: 10.1371/journal.pone.0042237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 07/04/2012] [Indexed: 12/03/2022] Open
Abstract
A multi-reception strategy with extended GRAPPA is proposed in this work to improve MR imaging performance at ultra-high field MR systems with limited receiver channels. In this method, coil elements are separated to two or more groups under appropriate grouping criteria. Those groups are enabled in sequence for imaging first, and then parallel acquisition is performed to compensate for the redundant scan time caused by the multiple receptions. To efficiently reconstruct the data acquired from elements of each group, a specific extended GRAPPA was developed. This approach was evaluated by using a 16-element head array on a 7 Tesla whole-body MRI scanner with 8 receive channels. The in-vivo experiments demonstrate that with the same scan time, the 16-element array with twice receptions and acceleration rate of 2 can achieve significant SNR gain in the periphery area of the brain and keep nearly the same SNR in the center area over an eight-element array, which indicates the proposed multi-reception strategy and extended GRAPPA are feasible to improve image quality for MRI systems with limited receive channels. This study also suggests that it is advantageous for a MR system with N receiver channels to utilize a coil array with more than N elements if an appropriate acquisition strategy is applied.
Collapse
|
32
|
Zhang X, Pang Y. Parallel Excitation in Ultrahigh Field Human MR Imaging and Multi-Channel Transmit System. OMICS JOURNAL OF RADIOLOGY 2012; 1:e110. [PMID: 24069578 PMCID: PMC3779920 DOI: 10.4172/2167-79641000e110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, CA, USA
| | - Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
33
|
Pang Y, Wu B, Wang C, Vigneron DB, Zhang X. Numerical Analysis of Human Sample Effect on RF Penetration and Liver MR Imaging at Ultrahigh Field. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2011; 39B:206-216. [PMID: 22337345 PMCID: PMC3277816 DOI: 10.1002/cmr.b.20209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Magnetic resonance imaging (MRI) can provide clinically-valuable images for hepatic diseases and has become one of the most promising noninvasive methods in evaluating liver lesions. To facilitate the ultrahigh field human liver MRI, in this work, the RF penetration behavior in the conductive and high dielectric human body at the ultrahigh field of 7 Tesla (7T) is investigated and evaluated using the finite-difference time-domain numerical analysis. The study shows that in brain imaging at the ultrahigh field of 7T, the "dielectric resonance" effect dominates among other factors, resulting in improved B(1) penetration; while in liver imaging, due to its irregular geometry of the liver, the "dielectric resonance" effect is not readily to be established, leading to a reduced B(1) penetration or limited image coverage comparing to that in the brain. Therefore, it is necessary to build a large size coil to have deeper penetration to image human liver although the coil design may become more challenging due to the required high frequency. Based on this study, a bisected microstrip coil operating at 300 MHz range is designed and constructed. Three-dimensional in vivo liver images in axial, sagittal and coronal orientations are then acquired from healthy volunteers using this dedicated RF coil on a 7T whole body MR scanner.
Collapse
Affiliation(s)
- Yong Pang
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Bing Wu
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Chunsheng Wang
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Daniel B. Vigneron
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA
| | - Xiaoliang Zhang
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA
| |
Collapse
|
34
|
Lu J, Pang Y, Wang C, Wu B, Vigneron DB, Zhang X. Evaluation of Common RF Coil Setups for MR Imaging at Ultrahigh Magnetic Field: A Numerical Study. ... INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMUNICATION TECHNOLOGIES. INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMUNICATION TECHNOLOGIES 2011; 2011. [PMID: 28966929 DOI: 10.1145/2093698.2093768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study is an evaluation of the ratio of electric field to magnetic field (E/B1), specific absorption rate (SAR) and signal-to-noise ratio (SNR) generated by three different RF transceiver coil setups: surface coil, surface coil with shielding, and microstrip using a finite discrete time domain (FDTD) simulation in the presence of a head phantom. One of our main focuses in this study is to better understand coil designs that would improve patient safety at high fields by studying a coil type that may potentially minimize SAR while examining potential changes in SNR. In the presence of a human head load, the microstrip's E/B1 ratio was on average smallest while its SAR was also on average smallest of the three setups, suggesting the microstrip may be a better RF coil choice for MRI concerning patient safety and parallel excitation applications than the other two coils. In addition, the study suggests that the microstrip also has a higher SNR compared with the other two coils demonstrating the possibility that the microstrip could lead to higher quality MRI images.
Collapse
Affiliation(s)
- Jonathan Lu
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF)
| | - Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF)
| | - Chunsheng Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF)
| | - Bing Wu
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF)
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF).,UCB/UCSF Joint Graduate Group in Bioengineering, University of California- San Francisco, San Francisco, CA, USA
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF).,UCB/UCSF Joint Graduate Group in Bioengineering, University of California- San Francisco, San Francisco, CA, USA
| |
Collapse
|