1
|
Abbasi A, Monadjemi A, Fang L, Rabbani H, Antony BJ, Ishikawa H. Mixed multiscale BM4D for three-dimensional optical coherence tomography denoising. Comput Biol Med 2023; 155:106658. [PMID: 36827787 PMCID: PMC10739784 DOI: 10.1016/j.compbiomed.2023.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
A multiscale extension for the well-known block matching and 4D filtering (BM4D) method is proposed by analyzing and extending the wavelet subbands denoising method in such a way that the proposed method avoids directly denoising detail subbands, which considerably simplifies the computations and makes the multiscale processing feasible in 3D. To this end, we first derive the multiscale construction method in 2D and propose multiscale extensions for three 2D natural image denoising methods. Then, the derivation is extended to 3D by proposing mixed multiscale BM4D (mmBM4D) for optical coherence tomography (OCT) image denoising. We tested mmBM4D on three public OCT datasets captured by various imaging devices. The experiments revealed that mmBM4D significantly outperforms its original counterpart and performs on par with the state-of-the-art OCT denoising methods. In terms of peak-signal-to-noise-ratio (PSNR), mmBM4D surpasses the original BM4D by more than 0.68 decibels over the first dataset. In the second and third datasets, significant improvements in the mean to standard deviation ratio, contrast to noise ratio, and equivalent number of looks were achieved. Furthermore, on the downstream task of retinal layer segmentation, the layer quality preservation of the compared OCT denoising methods is evaluated.
Collapse
Affiliation(s)
- Ashkan Abbasi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, USA
| | - Amirhassan Monadjemi
- School of Continuing and Lifelong Education, National University of Singapore, Singapore
| | - Leyuan Fang
- College of Electrical and Information Engineering, Hunan University, China
| | - Hossein Rabbani
- Department of Biomedical Engineering, Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran
| | - Bhavna Josephine Antony
- Electrical and Computer System Engineering, Faculty of Engineering, Monash University, Australia; Department of Infectious Diseases, Alfred Health, Australia
| | - Hiroshi Ishikawa
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, USA.
| |
Collapse
|
2
|
Noise reduction by adaptive-SIN filtering for retinal OCT images. Sci Rep 2021; 11:19498. [PMID: 34593894 PMCID: PMC8484270 DOI: 10.1038/s41598-021-98832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Optical coherence tomography (OCT) images is widely used in ophthalmic examination, but their qualities are often affected by noises. Shearlet transform has shown its effectiveness in removing image noises because of its edge-preserving property and directional sensitivity. In the paper, we propose an adaptive denoising algorithm for OCT images. The OCT noise is closer to the Poisson distribution than the Gaussian distribution, and shearlet transform assumes additive white Gaussian noise. We hence propose a square-root transform to redistribute the OCT noise. Different manufacturers and differences between imaging objects may influence the observed noise characteristics, which make predefined thresholding scheme ineffective. We propose an adaptive 3D shearlet image filter with noise-redistribution (adaptive-SIN) scheme for OCT images. The proposed adaptive-SIN is evaluated on three benchmark datasets using quantitative evaluation metrics and subjective visual inspection. Compared with other algorithms, the proposed algorithm better removes noise in OCT images and better preserves image details, significantly outperforming in terms of both quantitative evaluation and visual inspection. The proposed algorithm effectively transforms the Poisson noise to Gaussian noise so that the subsequent shearlet transform could optimally remove the noise. The proposed adaptive thresholding scheme optimally adapts to various noise conditions and hence better remove the noise. The comparison experimental results on three benchmark datasets against 8 compared algorithms demonstrate the effectiveness of the proposed approach in removing OCT noise.
Collapse
|
3
|
Daneshmand PG, Mehridehnavi A, Rabbani H. Reconstruction of Optical Coherence Tomography Images Using Mixed Low Rank Approximation and Second Order Tensor Based Total Variation Method. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:865-878. [PMID: 33232227 DOI: 10.1109/tmi.2020.3040270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper proposes a mixed low-rank approximation and second-order tensor-based total variation (LRSOTTV) approach for the super-resolution and denoising of retinal optical coherence tomography (OCT) images through effective utilization of nonlocal spatial correlations and local smoothness properties. OCT imaging relies on interferometry, which explains why OCT images suffer from a high level of noise. In addition, data subsampling is conducted during OCT A-scan and B-scan acquisition. Therefore, using effective super-resolution algorithms is necessary for reconstructing high-resolution clean OCT images. In this paper, a low-rank regularization approach is proposed for exploiting nonlocal self-similarity prior to OCT image reconstruction. To benefit from the advantages of the redundancy of multi-slice OCT data, we construct a third-order tensor by extracting the nonlocal similar three-dimensional blocks and grouping them by applying the k-nearest-neighbor method. Next, the nuclear norm is used as a regularization term to shrink the singular values of the constructed tensor in the non-local correlation direction. Further, the regularization approaches of the first-order tensor-based total variation (FOTTV) and SOTTV are proposed for better preservation of retinal layers and suppression of artifacts in OCT images. The alternative direction method of multipliers (ADMM) technique is then used to solve the resulting optimization problem. Our experiments show that integrating SOTTV instead of FOTTV into a low-rank approximation model can achieve noticeably improved results. Our experimental results on the denoising and super-resolution of OCT images demonstrate that the proposed model can provide images whose numerical and visual qualities are higher than those obtained by using state-of-the-art methods.
Collapse
|
4
|
Yan Q, Chen B, Hu Y, Cheng J, Gong Y, Yang J, Liu J, Zhao Y. Speckle reduction of OCT via super resolution reconstruction and its application on retinal layer segmentation. Artif Intell Med 2020; 106:101871. [DOI: 10.1016/j.artmed.2020.101871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/17/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
|
5
|
Zhao R, Zhao Y, Chen Z, Zhao Y, Yang J, Hu Y, Cheng J, Liu J. Speckle Reduction in Optical Coherence Tomography via Super-Resolution Reconstruction. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5589-5592. [PMID: 31947122 DOI: 10.1109/embc.2019.8856445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Reducing speckle noise from the optical coherence tomograms (OCT) of human retina is a fundamental step to a better visualization and analysis in retinal imaging, as thus to support examination, diagnosis and treatment of many eye diseases. In this study, we propose a new method for speckle reduction in OCT images using the super-resolution technology. It merges multiple images for the same scene but with sub-pixel movements and restores the missing signals in one pixel, which significantly improves the image quality. The proposed method is evaluated on a dataset of 20 OCT volumes (5120 images), through the mean square error, peak signal to noise ratio and the mean structure similarity index using high quality line-scan images as reference. The experimental results show that the proposed method outperforms existing state-of-the-art approaches in applicability, effectiveness, and accuracy.
Collapse
|
6
|
Cheng J, Tao D, Quan Y, Wong DWK, Cheung GCM, Akiba M, Liu J. Speckle Reduction in 3D Optical Coherence Tomography of Retina by A-Scan Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:2270-2279. [PMID: 27116734 DOI: 10.1109/tmi.2016.2556080] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Optical coherence tomography (OCT) is a micrometer-scale, cross-sectional imaging modality for biological tissue. It has been widely used for retinal imaging in ophthalmology. Speckle noise is problematic in OCT. A raw OCT image/volume usually has very poor image quality due to speckle noise, which often obscures the retinal structures. Overlapping scan is often used for speckle reduction in a 2D line-scan. However, it leads to an increase of the data acquisition time. Therefore, it is unpractical in 3D scan as it requires a much longer data acquisition time. In this paper, we propose a new method for speckle reduction in 3D OCT. The proposed method models each A -scan as the sum of underlying clean A -scan and noise. Based on the assumption that neighboring A -scans are highly similar in the retina, the method reconstructs each A -scan from its neighboring scans. In the method, the neighboring A -scans are aligned/registered to the A -scan to be reconstructed and form a matrix together. Then low rank matrix completion using bilateral random projection is utilized to iteratively estimate the noise and recover the underlying clean A -scan. The proposed method is evaluated through the mean square error, peak signal to noise ratio and the mean structure similarity index using high quality line-scan images as reference. Experimental results show that the proposed method performs better than other methods. In addition, the subsequent retinal layer segmentation also shows that the proposed method makes the automatic retinal layer segmentation more accurate. The technology can be embedded into current OCT machines to enhance the image quality for visualization and subsequent analysis such as retinal layer segmentation.
Collapse
|
7
|
Duan J, Lu W, Tench C, Gottlob I, Proudlock F, Samani NN, Bai L. Denoising optical coherence tomography using second order total generalized variation decomposition. Biomed Signal Process Control 2016. [DOI: 10.1016/j.bspc.2015.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Duan J, Tench C, Gottlob I, Proudlock F, Bai L. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images. Phys Med Biol 2015; 60:8901-22. [PMID: 26553577 DOI: 10.1088/0031-9155/60/22/8901] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Optical coherence tomography (OCT) imaging plays an important role in clinical diagnosis and monitoring of diseases of the human retina. Automated analysis of optical coherence tomography images is a challenging task as the images are inherently noisy. In this paper, a novel variational image decomposition model is proposed to decompose an OCT image into three components: the first component is the original image but with the noise completely removed; the second contains the set of edges representing the retinal layer boundaries present in the image; and the third is an image of noise, or in image decomposition terms, the texture, or oscillatory patterns of the original image. In addition, a fast Fourier transform based split Bregman algorithm is developed to improve computational efficiency of solving the proposed model. Extensive experiments are conducted on both synthesised and real OCT images to demonstrate that the proposed model outperforms the state-of-the-art speckle noise reduction methods and leads to accurate retinal layer segmentation.
Collapse
Affiliation(s)
- Jinming Duan
- School of Computer Science, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
9
|
Hu W, Hu R, Xie N, Ling H, Maybank S. Image classification using multiscale information fusion based on saliency driven nonlinear diffusion filtering. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2014; 23:1513-1526. [PMID: 24569440 DOI: 10.1109/tip.2014.2303639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, we propose saliency driven image multiscale nonlinear diffusion filtering. The resulting scale space in general preserves or even enhances semantically important structures such as edges, lines, or flow-like structures in the foreground, and inhibits and smoothes clutter in the background. The image is classified using multiscale information fusion based on the original image, the image at the final scale at which the diffusion process converges, and the image at a midscale. Our algorithm emphasizes the foreground features, which are important for image classification. The background image regions, whether considered as contexts of the foreground or noise to the foreground, can be globally handled by fusing information from different scales. Experimental tests of the effectiveness of the multiscale space for the image classification are conducted on the following publicly available datasets: 1) the PASCAL 2005 dataset; 2) the Oxford 102 flowers dataset; and 3) the Oxford 17 flowers dataset, with high classification rates.
Collapse
|