1
|
Chandra A, Bezabh MW, Mercado-Shekhar KP. Quantifying the effect of fiber pennation angle on shear wave viscoelastography estimates: In silico and phantom studies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:993-1003. [PMID: 39927788 DOI: 10.1121/10.0035788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/17/2025] [Indexed: 02/11/2025]
Abstract
Ultrasound shear wave elastography can be useful for assessing muscle pathology. The effect of anisotropy on shear wave elasticity estimates of skeletal muscle has been reported previously. However, muscle is inherently viscoelastic, and hence, tissue viscosity is also an important material parameter to assess. The goal of this study was to systematically quantify the effect of fiber pennation angle on shear wave viscoelasticity imaging estimates. Numerical phantom simulations of skeletal muscle-mimicking phantoms were analyzed. Anisotropic polyvinyl alcohol phantoms embedded with polysulfone fibers were developed to mimic the viscoelasticity and appearance of muscle in B-mode images. Shear wave dispersion analysis, assuming a Kelvin-Voigt model, was performed to estimate the shear modulus and viscosity of the phantoms along the fibers (in-plane) and across the fibers (cross-plane) with varying pennation angles (0°-30°). A decreasing trend was observed in shear modulus estimates with increasing fiber pennation angle in the in-plane orientation for all phantoms. Notably, simulations showed that viscosity estimates decreased with increasing angle. These results provide a systematic quantification of the effect of fiber pennation angle on viscoelastic estimates under controlled conditions, which will be useful for assessing the performance of shear wave viscoelasticity imaging approaches for muscle assessment.
Collapse
Affiliation(s)
- Akash Chandra
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Mekdes Wubet Bezabh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Karla P Mercado-Shekhar
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
2
|
Sun X, Chang CF, Zhang J, Zeng Y, Li B, Sun Y, Kang H, Liu HC, Zhou Q. Four-Dimensional (4D) Ultrasound Shear Wave Elastography Using Sequential Excitation. IEEE Trans Biomed Eng 2025; 72:786-793. [PMID: 39356609 PMCID: PMC11875905 DOI: 10.1109/tbme.2024.3472689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
OBJECTIVE Current shear wave elastography methods primarily focus on 2D imaging. To explore mechanical properties of biological tissues in 3D, a four-dimensional (4D, x, y, z, t) ultrasound shear wave elastography is required. However, 4D ultrasound shear wave elastography is still challenging due to the limitation of the hardware of standard ultrasound acquisition systems. In this study, we introduce a novel method to achieve 4D shear wave elastography, named sequential-based excitation shear wave elastography (SE-SWE). This method can achieve 4D elastography implemented by a 1024-element 2D array with a standard ultrasound 256-channel system. METHODS The SE-SWE method employs sequential excitation to generate shear waves, and utilizes a 2D array, dividing it into four sub-sections, to capture shear waves across multiple planes. This process involves sequentially exciting each sub-section to capture shear waves, followed by compounding the acquired data from these subsections. RESULTS The phantom studies showed strong concordance between the shear wave speeds (SWS) measured by SE-SWE and expected values, confirming the accuracy of this method and potential to differentiate tissues by stiffness. In ex vivo chicken breast experiments, SE-SWE effectively distinguished between orientations relative to muscle fibers, highlighting its ability to capture the anisotropic properties of tissues. CONCLUSION The SE-SWE method advances shear wave elastography significantly by using a 2D array divided into four subsections and sequential excitation, achieving high-resolution volumetric imaging at 1.6mm resolution. SIGNIFICANCE The SE-SWE method offers a straightforward and effective approach for 3D shear volume imaging of tissue biological properties.
Collapse
|
3
|
Lim WTH, Ooi EH, Foo JJ, Ng KH, Wong JHD, Leong SS. In silico analysis reveals the prospects of renal anisotropy in improving chronic kidney disease detection using ultrasound shear wave elastography. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3857. [PMID: 39075679 DOI: 10.1002/cnm.3857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 07/31/2024]
Abstract
Renal anisotropy is a complex property of the kidney and often poses a challenge in obtaining consistent measurements when using shear wave elastography to detect chronic kidney disease. To circumvent the challenge posed by renal anisotropy in clinical settings, a dimensionless biomarker termed the 'anisotropic ratio' was introduced to establish a correlation between changes in degree of renal anisotropy and progression of chronic kidney disease through an in silico perspective. To achieve this, an efficient model reduction approach was developed to model the anisotropic property of kidneys. Good agreement between the numerical and experimental data were obtained, as percentage errors of less than 5.5% were reported when compared against experimental phantom measurement from the literature. To demonstrate the applicability of the model to clinical measurements, the anisotropic ratio of sheep kidneys was quantified, with both numerical and derived experimental results reporting a value of .667. Analysis of the anisotropic ratio with progression of chronic kidney disease demonstrated that patients with normal kidneys would have a lower anisotropic ratio of .872 as opposed to patients suffering from renal impairment, in which the anisotropic ratio may increase to .904, as determined from this study. The findings demonstrate the potential of the anisotropic ratio in improving the detection of chronic kidney disease using shear wave elastography.
Collapse
Affiliation(s)
- William T H Lim
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ean H Ooi
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
- Medical Engineering and Technology Hub, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ji J Foo
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Kwan H Ng
- Faculty of Medicine, Department of Biomedical Imaging, Universiti Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health Sciences, UCSI University, Springhill, Malaysia
| | - Jeannie H D Wong
- Faculty of Medicine, Department of Biomedical Imaging, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sook S Leong
- Centre of Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA Selangor, Bandar Puncak Alam, Malaysia
| |
Collapse
|
4
|
Dong Z, Lok UW, Lowerison MR, Huang C, Chen S, Song P. Three-Dimensional Shear Wave Elastography Using Acoustic Radiation Force and a 2-D Row-Column Addressing (RCA) Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:448-458. [PMID: 38363671 DOI: 10.1109/tuffc.2024.3366540] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Acoustic radiation force (ARF)-based shear wave elastography (SWE) is a clinically available ultrasound imaging mode that noninvasively and quantitatively measures tissue stiffness. Current implementations of ARF-SWE are largely limited to 2-D imaging, which does not provide a robust estimation of heterogeneous tissue mechanical properties. Existing 3-D ARF-SWE solutions that are clinically available are based on wobbler probes, which cannot provide true 3-D shear wave motion detection. Although 3-D ARF-SWE based on 2-D matrix arrays have been previously demonstrated, they do not provide a practical solution because of the need for a high channel-count ultrasound system (e.g., 1024-channel) to provide adequate volume rates and the delicate circuitries (e.g., multiplexers) that are vulnerable to the long-duration "push" pulses. To address these issues, here we propose a new 3-D ARF-SWE method based on the 2-D row-column addressing (RCA) array which has a much lower element count (e.g., 256), provides an ultrafast imaging volume rate (e.g., 2000 Hz), and can withstand the push pulses. In this study, we combined the comb-push shear elastography (CUSE) technique with 2-D RCA for enhanced SWE imaging field-of-view (FOV). In vitro phantom studies demonstrated that the proposed method had robust 3-D SWE performance in both homogenous and inclusion phantoms. An in vivo study on a breast cancer patient showed that the proposed method could reconstruct 3-D elasticity maps of the breast lesion, which was validated using a commercial ultrasound scanner. These results demonstrate strong potential for the proposed method to provide a viable and practical solution for clinical 3-D ARF-SWE.
Collapse
|
5
|
Ngo HHP, Andrade R, Brum J, Benech N, Chatelin S, Loumeaud A, Frappart T, Fraschini C, Nordez A, Gennisson JL. In plane quantification of in vivomuscle elastic anisotropy factor by steered ultrasound pushing beams. Phys Med Biol 2024; 69:045013. [PMID: 38262052 DOI: 10.1088/1361-6560/ad21a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Objective.Skeletal muscles are organized into distinct layers and exhibit anisotropic characteristics across various scales. Assessing the arrangement of skeletal muscles may provide valuable biomarkers for diagnosing muscle-related pathologies and evaluating the efficacy of clinical interventions.Approach. In this study, we propose a novel ultrafast ultrasound sequence constituted of steered pushing beams was proposed for ultrasound elastography applications in transverse isotropic muscle. Based on the propagation of the shear wave vertical mode, it is possible to fit the experimental results to retrieve in the same imaging plane, the shear modulus parallel to fibers as well as the elastic anisotropy factor (ratio of Young's moduli times the shear modulus perpendicular to fibers).Main results. The technique was demonstratedin vitroin phantoms andex vivoin fusiform beef muscles. At last, the technique was appliedin vivoon fusiform muscles (biceps brachii) and mono-pennate muscles (gastrocnemius medialis) during stretching and contraction.Significance. This novel sequence provides access to new structural and mechanical biomarkers of muscle tissue, including the elastic anisotropy factor, within the same imaging plane. Additionally, it enables the investigation of multiples parameters during muscle active and passive length changes.
Collapse
Affiliation(s)
- Ha-Hien-Phuong Ngo
- Laboratoire d'imagerie médicale multimodale, BioMaps, Université Paris Saclay, CEA, CNRS, Inserm, Orsay, France
| | - Ricardo Andrade
- Nantes Université, Mouvement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France
| | - Javier Brum
- Laboratorio de Acústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolas Benech
- Laboratorio de Acústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Simon Chatelin
- ICube, CNRS UMR 7357, University of Strasbourg, Strasbourg, France
| | - Aude Loumeaud
- ICube, CNRS UMR 7357, University of Strasbourg, Strasbourg, France
| | | | | | - Antoine Nordez
- Nantes Université, Mouvement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France
- Institut Universitaire de France (IUF), Paris, France
| | - Jean-Luc Gennisson
- Laboratoire d'imagerie médicale multimodale, BioMaps, Université Paris Saclay, CEA, CNRS, Inserm, Orsay, France
| |
Collapse
|
6
|
Paley CT, Knight AE, Jin FQ, Moavenzadeh SR, Rouze NC, Pietrosimone LS, Hobson-Webb LD, Palmeri ML, Nightingale KR. Rotational 3D shear wave elasticity imaging: Effect of knee flexion on 3D shear wave propagation in in vivo vastus lateralis. J Mech Behav Biomed Mater 2024; 150:106302. [PMID: 38160641 PMCID: PMC11367681 DOI: 10.1016/j.jmbbm.2023.106302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/18/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Skeletal muscle is a complex tissue, exhibiting not only direction-dependent material properties (commonly modeled as a transversely isotropic material), but also changes in observed material properties due to factors such as contraction and passive stretch. In this work, we evaluated the effect of muscle passive stretch on shear wave propagation along and across the muscle fibers using a rotational 3D shear wave elasticity imaging system and automatic analysis methods. We imaged the vastus lateralis of 10 healthy volunteers, modulating passive stretch by imaging at 8 different knee flexion angles (controlled by a BioDex system). In addition to demonstrating the ability of this acquisition and automatic processing system to estimate muscle shear moduli over a range of values, we evaluated potential higher order biomarkers for muscle health that capture the change in muscle stiffness along and across the fibers with changing knee flexion. The median within-subject variability of these biomarkers is found to be <16%, suggesting promise as a repeatable clinical metric. Additionally, we report an unexpected observation: that shear wave signal amplitude along the fibers increases with increasing flexion and muscle stiffness, which is not predicted by transversely isotropic (TI) material simulations. This observation may point to an additional potential biomarker for muscle health or inform other material modeling choices for muscle.
Collapse
Affiliation(s)
- Courtney Trutna Paley
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Applied Research Laboratories, The University of Texas at Austin, Austin, TX, USA.
| | - Anna E Knight
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Felix Q Jin
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Ned C Rouze
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Laura S Pietrosimone
- Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, USA
| | - Lisa D Hobson-Webb
- Neuromuscular Division, Department of Neurology, Duke University, Durham, NC, USA
| | - Mark L Palmeri
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | |
Collapse
|
7
|
Xu GX, Chen PY, Huang CC. Visualization of Human Hand Tendon Mechanical Anisotropy in 3-D Using High- Frequency Dual-Direction Shear Wave Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1457-1469. [PMID: 37669211 DOI: 10.1109/tuffc.2023.3312273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
High-resolution ultrasound shear wave elastography has been used to determine the mechanical properties of hand tendons. However, because of fiber orientation, tendons have anisotropic properties; this results in differences in shear wave velocity (SWV) between ultrasound scanning cross sections. Rotating transducers can be used to achieve full-angle scanning. However, this technique is inconvenient to implement in clinical settings. Therefore, in this study, high-frequency ultrasound (HFUS) dual-direction shear wave imaging (DDSWI) based on two external vibrators was used to create both transverse and longitudinal shear waves in the human flexor carpi radialis tendon. SWV maps from two directions were obtained using 40-MHz ultrafast imaging at the same scanning cross section. The anisotropic map was calculated pixel by pixel, and 3-D information was obtained using mechanical scanning. A standard phantom experiment was then conducted to verify the performance of the proposed HFUS DDSWI technique. Human studies were also conducted where volunteers assumed three hand postures: relaxed (Rel), full fist (FF), and tabletop (TT). The experimental results indicated that both the transverse and longitudinal SWVs increased due to tendon flexion. The transverse SWV surpassed the longitudinal SWV in all cases. The average anisotropic ratios for the Rel, FF, and TT hand postures were 1.78, 2.01, and 2.21, respectively. Both the transverse and the longitudinal SWVs were higher at the central region of the tendon than at the surrounding region. In conclusion, the proposed HFUS DDSWI technique is a high-resolution imaging technique capable of characterizing the anisotropic properties of tendons in clinical applications.
Collapse
|
8
|
Wu T, Shen EX, Jin ZB, Jiang Y, Chen Y, Tao C, Yuan J, Ge Y, Liu XJ. Characterization of anisotropy of elastic modulus with three-dimensional freehand scan shear wave elasticity imaging. J Med Imaging (Bellingham) 2023; 10:066002. [PMID: 38074631 PMCID: PMC10704188 DOI: 10.1117/1.jmi.10.6.066002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2024] Open
Abstract
Purpose The purpose of this study is to develop a freehand scan three-dimensional (3D) shear wave elasticity imaging (SWEI) method for characterizing the anisotropy of elastic properties in biological tissues. The motivation behind this work lies in addressing the limitations of traditional two-dimensional (2D) SWEI, which only measures shear wave speeds in a single direction, as well as fulfilling the clinical demand for improved medical imaging. Approach Our imaging system utilizes a high-definition optical camera to continuously track the ultrasonic transducer, collecting spatial position-angle data of the transducer and corresponding two-dimensional SWEI data. By reconstructing three-dimensional SWEI images using these data, we achieved freehand SWEI. Results We validated the accuracy of 2D SWEI on a standard elastic phantom, and then performed 3D SWEI on the pork tenderloin and the triceps brachii of two volunteers. We obtained shear wave speed of 1.82 to 3.12 m / s in the pork tenderloin, shear wave speed of 1.16 to 2.36 m / s in the triceps brachii of non-exercising volunteers, and shear wave speed of 0.55 to 1.63 m / s in the triceps brachii of exercising volunteers, and the maximum shear wave speed directions were generally aligned with the orientation of muscle fibers. Conclusions We proposed a method that can overcome the limitations of 2D-SWEI regarding imaging angle while also extending the imaging angle of 3D-SWEI, which could have significant implications for improving the accuracy and safety of medical diagnoses.
Collapse
Affiliation(s)
- Tong Wu
- Nanjing University, the School of Electronic Science and Engineering, Nanjing, China
| | - En-Xiang Shen
- Nanjing University, the School of Electronic Science and Engineering, Nanjing, China
| | - Zhi-Bin Jin
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Jiang
- The Shenzhen Wisonic Medical Technology Co., Ltd., Shenzhen, China
| | - Ying Chen
- Nanjing University, the School of Electronic Science and Engineering, Nanjing, China
| | - Chao Tao
- Nanjing University, the School of Physics, Nanjing, China
| | - Jie Yuan
- Nanjing University, the School of Electronic Science and Engineering, Nanjing, China
| | - Yun Ge
- Nanjing University, the School of Electronic Science and Engineering, Nanjing, China
| | - Xiao-Jun Liu
- Nanjing University, the School of Physics, Nanjing, China
| |
Collapse
|
9
|
Paley CT, Knight AE, Jin FQ, Moavenzadeh SR, Pietrosimone LS, Hobson-Webb LD, Rouze NC, Palmeri ML, Nightingale KR. Repeatability of Rotational 3-D Shear Wave Elasticity Imaging Measurements in Skeletal Muscle. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:750-760. [PMID: 36543617 PMCID: PMC10065087 DOI: 10.1016/j.ultrasmedbio.2022.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/15/2022] [Accepted: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Shear wave elasticity imaging (SWEI) usually assumes an isotropic material; however, skeletal muscle is typically modeled as a transversely isotropic material with independent shear wave speeds in the directions along and across the muscle fibers. To capture these direction-dependent properties, we implemented a rotational 3-D SWEI system that measures the shear wave speed both along and across the fibers in a single 3-D acquisition, with automatic detection of the muscle fiber orientation. We tested and examined the repeatability of this system's measurements in the vastus lateralis of 10 healthy volunteers. The average coefficient of variation of the measurements from this 3-D SWEI system was 5.3% along the fibers and 8.1% across the fibers. When compared with estimated respective 2-D SWEI values of 16.0% and 83.4%, these results suggest using 3-D SWEI has the potential to improve the precision of SWEI measurements in muscle. Additionally, we observed no significant difference in shear wave speed between the dominant and non-dominant legs along (p = 0.26) or across (p = 0.65) the muscle fibers.
Collapse
Affiliation(s)
| | - Anna E Knight
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Felix Q Jin
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | - Laura S Pietrosimone
- Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, North Carolina, USA
| | - Lisa D Hobson-Webb
- Neuromuscular Division, Department of Neurology, Duke University, Durham, North Carolina, USA
| | - Ned C Rouze
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Mark L Palmeri
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
10
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
11
|
Knight AE, Jin FQ, Paley CT, Rouze NC, Moavenzadeh SR, Pietrosimone LS, Palmeri ML, Nightingale KR. Parametric Analysis of SV Mode Shear Waves in Transversely Isotropic Materials Using Ultrasonic Rotational 3-D SWEI. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:3145-3154. [PMID: 36054392 PMCID: PMC9675586 DOI: 10.1109/tuffc.2022.3203935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus μL , the transverse shear modulus μT , and the tensile anisotropy χE . Measurement of the SV wave is necessary to characterize χE , but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green's function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: μL , μT , χE , fiber tilt angle [Formula: see text], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as μL increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as μT increases, the SV wave speeds increase; 3) as χE increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula: see text] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an F/1 push geometry and [Formula: see text].
Collapse
|
12
|
Ngo HHP, Poulard T, Brum J, Gennisson JL. Anisotropy in ultrasound shear wave elastography: An add-on to muscles characterization. Front Physiol 2022; 13:1000612. [PMID: 36246132 PMCID: PMC9554096 DOI: 10.3389/fphys.2022.1000612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Ultrasound shear wave elastography was developed the past decade, bringing new stiffness biomarker in clinical practice. This biomarker reveals to be of primarily importance for the diagnosis of breast cancer or liver fibrosis. In muscle this biomarker become much more complex due to the nature of the muscle itself: an anisotropic medium. In this manuscript we depict the underlying theory of propagating waves in such anisotropic medium. Then we present the available methods that can consider and quantify this parameter. Advantages and drawbacks are discussed to open the way to imagine new methods that can free this biomarker in a daily clinical practice.
Collapse
Affiliation(s)
- Ha-Hien-Phuong Ngo
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Laboratoire d’Imagerie Médicale Multimodale à Paris-Saclay, Orsay, France
| | - Thomas Poulard
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Laboratoire d’Imagerie Médicale Multimodale à Paris-Saclay, Orsay, France
| | - Javier Brum
- Laboratorio de Acústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jean- Luc Gennisson
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Laboratoire d’Imagerie Médicale Multimodale à Paris-Saclay, Orsay, France
- *Correspondence: Jean- Luc Gennisson,
| |
Collapse
|
13
|
Dong Z, Kim J, Huang C, Lowerison MR, Lok UW, Chen S, Song P. Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array. BME FRONTIERS 2022; 2022:9879632. [PMID: 37850186 PMCID: PMC10521701 DOI: 10.34133/2022/9879632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/18/2022] [Indexed: 10/19/2023] Open
Abstract
Objective. To develop a 3D shear wave elastography (SWE) technique using a 2D row column addressing (RCA) array, with either external vibration or acoustic radiation force (ARF) as the shear wave source. Impact Statement. The proposed method paves the way for clinical translation of 3D SWE based on the 2D RCA, providing a low-cost and high volume rate solution that is compatible with existing clinical systems. Introduction. SWE is an established ultrasound imaging modality that provides a direct and quantitative assessment of tissue stiffness, which is significant for a wide range of clinical applications including cancer and liver fibrosis. SWE requires high frame rate imaging for robust shear wave tracking. Due to the technical challenges associated with high volume rate imaging in 3D, current SWE techniques are typically confined to 2D. Advancing SWE from 2D to 3D is significant because of the heterogeneous nature of tissue, which demands 3D imaging for accurate and comprehensive evaluation. Methods. A 3D SWE method using a RCA array was developed with a volume rate up to 2000 Hz. The performance of the proposed method was systematically evaluated on tissue-mimicking elasticity phantoms and in an in vivo case study. Results. 3D shear wave motion induced by either external vibration or ARF was successfully detected with the proposed method. Robust 3D shear wave speed maps were reconstructed for phantoms and in vivo. Conclusion. The high volume rate 3D imaging provided by the 2D RCA array provides a robust and practical solution for 3D SWE with a clear pathway for future clinical translation.
Collapse
Affiliation(s)
- Zhijie Dong
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jihun Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of ICT Convergence Engineering/Major in Electronic Engineering, Kangnam University, Republic of Korea
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Matthew R. Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
14
|
Hossain MM, Gallippi CM. Quantitative Estimation of Mechanical Anisotropy Using Acoustic Radiation Force (ARF)-Induced Peak Displacements (PD): In Silico and Experimental Demonstration. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1468-1481. [PMID: 34995184 PMCID: PMC9208382 DOI: 10.1109/tmi.2022.3141084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Elastic degree of anisotropy (DoA) is a diagnostically relevant biomarker in muscle, kidney, breast, and other organs. Previously, elastic DoA was qualitatively assessed as the ratio of peak displacements (PD) achieved with the long-axis of a spatially asymmetric Acoustic Radiation Force Impulse (ARFI) excitation point spread function (PSF) aligned along versus across the axis of symmetry (AoS) in transversely isotropic materials. However, to better enable longitudinal and cross-sectional analyses, a quantitative measure of elastic DoA is desirable. In this study, qualitative ARFI PD ratios are converted to quantitative DoA, measured as the ratio of longitudinal over transverse shear elastic moduli, using a model empirically derived from Field II and finite element method (FEM) simulations. In silico, the median absolute percent error (MAPE) in ARFI-derived shear moduli ratio (SMR) was 1.75%, and predicted SMRs were robust to variations in transverse shear modulus, Young's moduli ratio, speed of sound, attenuation, density, and ARFI excitation PSF dimension. Further, ARFI-derived SMRs distinguished two materials when the true SMRs of the compared materials differed by as little as 10%. Experimentally, ARFI-derived SMRs linearly correlated with the corresponding ratios measured by Shear Wave Elasticity Imaging (SWEI) in excised pig skeletal muscle ( [Formula: see text], MAPE = 13%) and in pig kidney, in vivo ( [Formula: see text], MAPE = 5.3%). These results demonstrate the feasibility of using the ARFI PD to quantify elastic DoA in biological tissues.
Collapse
|
15
|
Rouze NC, Caenen A, Nightingale KR. Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch. Phys Med Biol 2022; 67. [PMID: 35263729 PMCID: PMC9112140 DOI: 10.1088/1361-6560/ac5bfc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Determining elastic properties of materials from observations of shear wave propagation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this study, we derive expressions for the phase velocities of the SH and SV propagation modes as a function of propagation direction in an incompressible, hyperelastic material with uniaxial stretch. Approach. Wave motion is included in the material model by adding incremental, small amplitude motion to the initial, finite deformation. Equations of motion for the SH and SV propagation modes are constructed using the Cauchy stress tensor derived from the strain energy function of the material. Group velocities for the SH and SV propagation modes are derived from the angle-dependent phase velocities. Main results. Sample results are presented for the Arruda–Boyce, Mooney–Rivlin, and Isihara material models using model parameters previously determined in a phantom. Significance. Results for the Mooney–Rivlin and Isihara models demonstrate shear splitting in which the SH and SV propagation modes have unequal group velocities for propagation across the material symmetry axis. In addition, for sufficiently large stretch, the Arruda–Boyce and Isihara material models show cusp structures with triple-valued group velocities for the SV mode at angles of roughly 15° to the material symmetry axis.
Collapse
|
16
|
Crutison J, Sun M, Royston TJ. The combined importance of finite dimensions, anisotropy, and pre-stress in acoustoelastography. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2403. [PMID: 35461517 PMCID: PMC8993425 DOI: 10.1121/10.0010110] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Dynamic elastography, whether based on magnetic resonance, ultrasound, or optical modalities, attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties that are altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasistatic tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues currently being studied using elastography, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article, we review how prestress alters both bulk mechanical wave motion and wave motion in one- and two-dimensional waveguides. Key findings are linked to studies on skeletal muscle and the human cornea, as one- and two-dimensional waveguide examples. This study highlights the underappreciated combined acoustoelastic and waveguide challenge to elastography. Can elastography truly determine viscoelastic properties of a material when what it is measuring is affected by both these material properties and unknown prestress and other boundary conditions?
Collapse
Affiliation(s)
- Joseph Crutison
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, 851 South Morgan Street, MC 063, Chicago, Illinois 60607, USA
| | - Michael Sun
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, 851 South Morgan Street, MC 063, Chicago, Illinois 60607, USA
| | - Thomas J Royston
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, 851 South Morgan Street, MC 063, Chicago, Illinois 60607, USA
| |
Collapse
|
17
|
Knight AE, Trutna CA, Rouze NC, Hobson-Webb LD, Caenen A, Jin FQ, Palmeri ML, Nightingale KR. Full Characterization of in vivo Muscle as an Elastic, Incompressible, Transversely Isotropic Material Using Ultrasonic Rotational 3D Shear Wave Elasticity Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:133-144. [PMID: 34415833 PMCID: PMC8754054 DOI: 10.1109/tmi.2021.3106278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Using a 3D rotational shear wave elasticity imaging (SWEI) setup, 3D shear wave data were acquired in the vastus lateralis of a healthy volunteer. The innate tilt between the transducer face and the muscle fibers results in the excitation of multiple shear wave modes, allowing for more complete characterization of muscle as an elastic, incompressible, transversely isotropic (ITI) material. The ability to measure both the shear vertical (SV) and shear horizontal (SH) wave speed allows for measurement of three independent parameters needed for full ITI material characterization: the longitudinal shear modulus μL , the transverse shear modulus μT , and the tensile anisotropy χE . Herein we develop and validate methodology to estimate these parameters and measure them in vivo, with μL = 5.77±1.00 kPa, μT = 1.93±0.41 kPa (giving shear anisotropy χμ = 2.11±0.92 ), and χE = 4.67±1.40 in a relaxed vastus lateralis muscle. We also demonstrate that 3D SWEI can be used to more accurately characterize muscle mechanical properties as compared to 2D SWEI.
Collapse
|
18
|
Zvietcovich F, Larin KV. Wave-based optical coherence elastography: The 10-year perspective. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2022; 4:012007. [PMID: 35187403 PMCID: PMC8856668 DOI: 10.1088/2516-1091/ac4512] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
After 10 years of progress and innovation, optical coherence elastography (OCE) based on the propagation of mechanical waves has become one of the major and the most studied OCE branches, producing a fundamental impact in the quantitative and nondestructive biomechanical characterization of tissues. Preceding previous progress made in ultrasound and magnetic resonance elastography; wave-based OCE has pushed to the limit the advance of three major pillars: (1) implementation of novel wave excitation methods in tissues, (2) understanding new types of mechanical waves in complex boundary conditions by proposing advance analytical and numerical models, and (3) the development of novel estimators capable of retrieving quantitative 2D/3D biomechanical information of tissues. This remarkable progress promoted a major advance in answering basic science questions and the improvement of medical disease diagnosis and treatment monitoring in several types of tissues leading, ultimately, to the first attempts of clinical trials and translational research aiming to have wave-based OCE working in clinical environments. This paper summarizes the fundamental up-to-date principles and categories of wave-based OCE, revises the timeline and the state-of-the-art techniques and applications lying in those categories, and concludes with a discussion on the current challenges and future directions, including clinical translation research.
Collapse
Affiliation(s)
- Fernando Zvietcovich
- University of Houston, Biomedical Engineering, Houston, TX, United States, 77204
| | - Kirill V. Larin
- University of Houston, Biomedical Engineering, Houston, TX, United States, 77204,
| |
Collapse
|
19
|
Caenen A, Pernot M, Nightingale KR, Voigt JU, Vos HJ, Segers P, D'hooge J. Assessing cardiac stiffness using ultrasound shear wave elastography. Phys Med Biol 2021; 67. [PMID: 34874312 DOI: 10.1088/1361-6560/ac404d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Shear wave elastography offers a new dimension to echocardiography: it measures myocardial stiffness. Therefore, it could provide additional insights into the pathophysiology of cardiac diseases affecting myocardial stiffness and potentially improve diagnosis or guide patient treatment. The technique detects fast mechanical waves on the heart wall with high frame rate echography, and converts their propagation velocity into a stiffness value. A proper interpretation of shear wave data is required as the shear wave interacts with the intrinsic, yet dynamically changing geometrical and material characteristics of the heart under pressure. This dramatically alters the wave physics of the propagating wave, demanding adapted processing methods compared to other shear wave elastography applications as breast tumor and liver stiffness staging. Furthermore, several advanced analysis methods have been proposed to extract supplementary material features such as viscosity and anisotropy, potentially offering additional diagnostic value. This review explains the general mechanical concepts underlying cardiac shear wave elastography and provides an overview of the preclinical and clinical studies within the field. We also identify the mechanical and technical challenges ahead to make shear wave elastography a valuable tool for clinical practice.
Collapse
Affiliation(s)
- Annette Caenen
- Institute for Biomedical Engineering and Technology, Ghent University, Ghent, BELGIUM
| | - Mathieu Pernot
- INSERM U979 "Physics for medicine", ESPCI Paris, PSL Research University, CNRS UMR 7587, Institut Langevin, Paris, FRANCE
| | - Kathryn R Nightingale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, UNITED STATES
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, KU Leuven, Leuven, BELGIUM
| | - Hendrik J Vos
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Zuid-Holland, NETHERLANDS
| | - Patrick Segers
- Institute of Biomedical Engineering and Technology, Universiteit Gent, Gent, BELGIUM
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, BELGIUM
| |
Collapse
|
20
|
Dong J, Lee WN. Noninvasive Assessment of In Vivo Passive Skeletal Muscle Mechanics as a Composite Material Using Biomedical Ultrasound. IEEE Trans Biomed Eng 2021; 69:1162-1172. [PMID: 34559632 DOI: 10.1109/tbme.2021.3115144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This study develops a biomedical ultrasound imaging method to infer microstructural information (i.e., tissue level) from imaging mechanical behavior of skeletal muscle (i.e., organ level). METHODS We first reviewed the constitutive model of skeletal muscle by regarding it as a transversely isotropic (TI) hyperelastic composite material, for which a theoretical formula was established among shear wave speed, deformation, and material parameters (MPs) using the acoustoelasticity theory. The formula was evaluated by finite element (FE) simulations and experimentally examined using ultrasound shear wave imaging (SWI) and strain imaging (SI) on in vivo passive biceps brachii muscles of two healthy volunteers. The imaging sequence included 1) generation of SW in multiple propagation directions while resting the muscle at an elbow angle of 90; 2) generation of SW propagating along the myofiber direction during continuous uniaxial muscle extension by passively changing the elbow angle from 90 to 120. Ultrasound-quantified SW speeds and muscle deformations were fitted by the theoretical formula to estimate MPs of in vivo passive muscle. RESULTS Estimated myofiber stiffness, stiffness ratio of myofiber to extracellular matrix (ECM), ECM volume ratio all agreed with literature findings. CONCLUSION The proposed mathematical formula together with our in-house ultrasound imaging method enabled assessing microstructural material properties of in vivo passive skeletal muscle from organ-level mechanical behavior in an entirely noninvasive way. SIGNIFICANCE Noninvasive assessment of both micro and macro properties of in vivo skeletal muscle will advance our understanding of complex muscle dynamics and facilitate treatment and rehabilitation planning.
Collapse
|
21
|
Bedewi MA, Alhariqi BA, Aldossary NM, Gaballah AH, Sandougah KJ. Shear wave elastography of the scalene muscles in healthy adults: A preliminary study. Medicine (Baltimore) 2021; 100:e26891. [PMID: 34397912 PMCID: PMC8360440 DOI: 10.1097/md.0000000000026891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
The aim of the study is to evaluate the reliability of shear wave elastography to assess the anterior and middle scalene muscles in healthy adult subjects.The study included 60 scalene muscles in 15 healthy subjects. High-resolution ultrasound and shear wave elastography were used to evaluate the anterior scalene and the middle scalene muscles. Stiffness values were measured.The mean shear elastic modulus showed the following values, right anterior scalene muscle 18.83 ± 5.32 kPa, left anterior scalene muscle 21.71 ± 4.8 kPa, right middle scalene muscle 12.84 ± 5.2 kPa, left middle scalene muscle 19.76 ± 5.30 kPa. Positive correlation was noted between the left middle scalene muscle and body mass index (P = .004). No difference in elasticity was noted between the right and left anterior scalene muscles; however, significant difference was noted between the right and left middle scalene muscles (P = .002).The results obtained in our study could be a reference point for future research considering different scalene muscle pathologies.
Collapse
Affiliation(s)
- Mohamed A. Bedewi
- Department of Internal Medicine, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Bader Abdullah Alhariqi
- Department of Internal Medicine, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Nasser M. Aldossary
- Department of Internal Medicine, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | | | - Kholoud J. Sandougah
- Department of Medicine, College of Medicine, Al Imam Mohammed Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Guidetti M, Zampini MA, Jiang Y, Gambacorta C, Smejkal JP, Crutison J, Pan Y, Klatt D, Royston TJ. Axially- and torsionally-polarized radially converging shear wave MRE in an anisotropic phantom made via Embedded Direct Ink Writing. J Mech Behav Biomed Mater 2021; 119:104483. [PMID: 33838445 PMCID: PMC8137604 DOI: 10.1016/j.jmbbm.2021.104483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 11/28/2022]
Abstract
Magnetic Resonance Elastography (MRE) is a non-invasive imaging method to quantitatively map the shear viscoelastic properties of soft tissues. In this study, Embedded Direct Ink Writing is used to fabricate a muscle mimicking anisotropic phantom that may serve as a standard for imaging studies of anisotropic materials. The technique allowed us to obtain a long shelf life silicone-based phantom expressing transverse isotropic mechanical properties. Another goal of the present investigation is to introduce a torsionally-polarized, radially-converging shear wave actuation method for MRE. The implemented design for this novel setup was first validated via its application to isotropic and homogeneous gelatin phantoms. Then, a comparison of the resulting complex wave images from axially- and torsionally-polarized MRE on the developed anisotropic phantom and on a skeletal muscle murine sample is presented, highlighting the value of using multiple actuation and motion encoding polarization directions when studying anisotropic materials.
Collapse
Affiliation(s)
- Martina Guidetti
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | | - Yizhou Jiang
- University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chiara Gambacorta
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Joshua P Smejkal
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Joseph Crutison
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yayue Pan
- University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dieter Klatt
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Thomas J Royston
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
23
|
Zvietcovich F, Singh M, Ambekar YS, Aglyamov SR, Twa MD, Larin KV. Micro Air-Pulse Spatial Deformation Spreading Characterizes Degree of Anisotropy in Tissues. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2021; 27:6800810. [PMID: 33994766 PMCID: PMC8117953 DOI: 10.1109/jstqe.2020.3038633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In optical coherence elastography (OCE), air-pulse stimulation has been widely used to produce propagation of mechanical waves for elastic characterization of tissues. In this paper, we propose the use of spatial deformation spreading (SDS) on the surface of samples produced by air-pulse stimulation for the OCE of transverse isotropic tissues. Experiments in isotropic tissue-mimicking phantoms and anisotropic chicken tibialis muscle were conducted using a spectral-domain optical coherence tomography system synchronized with a confocal air-pulse stimulation. SDS measurements were compared with wave speeds values calculated at different propagation angles. We found an approximately linear relationship between shear wave speed and SDS in isotropic phantoms, which was confirmed with predictions made by the numerical integration of a wave propagation model. Experimental measurements in chicken muscle show a good agreement between SDS and surface wave speed taken along and across the axis of symmetry of the tissues, also called degree of anisotropy. In summary, these results demonstrated the capabilities of SDS produced by the air-pulse technique in measuring the shear elastic anisotropy of transverse isotropic tissues.
Collapse
Affiliation(s)
- Fernando Zvietcovich
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204 USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204 USA
| | - Yogeshwari S Ambekar
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204 USA
| | - Salavat R Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204 USA
| | - Michael D Twa
- College of Optometry, University of Houston, Houston, TX 77204 USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204 USA
| |
Collapse
|
24
|
Li H, Flé G, Bhatt M, Qu Z, Ghazavi S, Yazdani L, Bosio G, Rafati I, Cloutier G. Viscoelasticity Imaging of Biological Tissues and Single Cells Using Shear Wave Propagation. FRONTIERS IN PHYSICS 2021; 9. [DOI: 10.3389/fphy.2021.666192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Changes in biomechanical properties of biological soft tissues are often associated with physiological dysfunctions. Since biological soft tissues are hydrated, viscoelasticity is likely suitable to represent its solid-like behavior using elasticity and fluid-like behavior using viscosity. Shear wave elastography is a non-invasive imaging technology invented for clinical applications that has shown promise to characterize various tissue viscoelasticity. It is based on measuring and analyzing velocities and attenuations of propagated shear waves. In this review, principles and technical developments of shear wave elastography for viscoelasticity characterization from organ to cellular levels are presented, and different imaging modalities used to track shear wave propagation are described. At a macroscopic scale, techniques for inducing shear waves using an external mechanical vibration, an acoustic radiation pressure or a Lorentz force are reviewed along with imaging approaches proposed to track shear wave propagation, namely ultrasound, magnetic resonance, optical, and photoacoustic means. Then, approaches for theoretical modeling and tracking of shear waves are detailed. Following it, some examples of applications to characterize the viscoelasticity of various organs are given. At a microscopic scale, a novel cellular shear wave elastography method using an external vibration and optical microscopy is illustrated. Finally, current limitations and future directions in shear wave elastography are presented.
Collapse
|
25
|
Pedreira O, Correia M, Chatelin S, Villemain O, Goudot G, Thiebaut S, Bassan G, Messas E, Tanter M, Papadacci C, Pernot M. Smart ultrasound device for non-invasive real-time myocardial stiffness quantification of the human heart. IEEE Trans Biomed Eng 2021; 69:42-52. [PMID: 34097602 DOI: 10.1109/tbme.2021.3087039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quantitative assessment of myocardial stiffness is crucial to understand and evaluate cardiac biomechanics and function. Despite the recent progresses of ultrasonic shear wave elastography, quantitative evaluation of myocardial stiffness still remains a challenge because of strong elastic anisotropy. In this paper we introduce a smart ultrasound approach for non-invasive real-time quantification of shear wave velocity (SWV) and elastic fractional anisotropy (FA) in locally transverse isotropic elastic medium such as the myocardium. The approach relies on a simultaneous multidirectional evaluation of the SWV without a prior knowledge of the fiber orientation. We demonstrated that it can quantify accurately SWV in the range of 1.5 to 6 m/s in transverse isotropic medium (FA<0.7) using numerical simulations. Experimental validation was performed on calibrated phantoms and anisotropic ex vivo tissues. A mean absolute error of 0.22 m/s was found when compared to gold standard measurements. Finally, in vivo feasibility of myocardial anisotropic stiffness assessment was evaluated in four healthy volunteers on the antero-septo basal segment and on anterior free wall of the right ventricle (RV) in end-diastole. A mean longitudinal SWV of 1.08 0.20 m/s was measured on the RV wall and 1.74 0.51 m/s on the Septal wall with a good intra-volunteer reproducibility (0.18 m/s). This approach has the potential to become a clinical tool for the quantitative evaluation of myocardial stiffness and diastolic function.
Collapse
|
26
|
Zampini MA, Guidetti M, Royston TJ, Klatt D. Measuring viscoelastic parameters in Magnetic Resonance Elastography: a comparison at high and low magnetic field intensity. J Mech Behav Biomed Mater 2021; 120:104587. [PMID: 34034077 DOI: 10.1016/j.jmbbm.2021.104587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Elastography (MRE) is a non-invasive imaging technique which involves motion-encoding MRI for the estimation of the shear viscoelastic properties of soft tissues through the study of shear wave propagation. The technique has been found informative for disease diagnosis, as well as for monitoring of the effects of therapies. The development of MRE and its validation have been supported by the use of tissue-mimicking phantoms. In this paper we present our new MRE protocol using a low magnetic field tabletop MRI device at 0.5 T and sinusoidal uniaxial excitation in a geometrical focusing condition. Results obtained for gelatin are compared to those previously obtained using high magnetic field MRE at 11.7 T. A multi-frequency investigation is also provided via a comparison of commonly used rheological models: Maxwell, Springpot, Voigt, Zener, Jeffrey, fractional Voigt and fractional Zener. Complex shear modulus values were comparable when processed from images acquired with the tabletop low field scanner and the high field scanner. This study serves as a validation of the presented tabletop MRE protocol and paves the way for MRE experiments on ex-vivo tissue samples in both normal and pathological conditions.
Collapse
Affiliation(s)
- Marco Andrea Zampini
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA; MR Solutions Ltd, Ashbourne House, Old Portsmouth Rd, Guildford, United Kingdom; Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| | - Martina Guidetti
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Thomas J Royston
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Dieter Klatt
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
27
|
Royston TJ. Analytical solution based on spatial distortion for a time-harmonic Green's function in a transverse isotropic viscoelastic solid. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2283. [PMID: 33940868 PMCID: PMC8024033 DOI: 10.1121/10.0004133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/17/2021] [Accepted: 03/15/2021] [Indexed: 05/19/2023]
Abstract
A strategy of spatial distortion to make an anisotropic problem become isotropic has been previously validated in two-dimensional transverse isotropic (TI) viscoelastic cases. Here, the approach is extended to the three-dimensional problem by considering the time-harmonic point force response (Green's function) in a TI viscoelastic material. The resulting wave field, exactly solvable using a Radon transform with numerical integration, is approximated via spatial distortion of the closed form analytical solution to the isotropic case. Different distortions are used, depending on whether the polarization of the wave motion is orthogonal to the axis of isotropy, with the approximation yielding differing levels of accuracy.
Collapse
Affiliation(s)
- Thomas J Royston
- Richard and Loan Hill Department of Bioengineering, 851 South Morgan Street, MC 063, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
28
|
Bedewi MA, Elsifey AA, Alfaifi T, Saleh AK, Swify SM, Sandougah KJ. Shearwave elastography of the Sartorius muscle. Medicine (Baltimore) 2021; 100:e25196. [PMID: 33726013 PMCID: PMC7982227 DOI: 10.1097/md.0000000000025196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
The aim of the study was to study sonoelastographic features of thesartorius muscle, and its relation to the demographic factors.The study included 70 muscles in 35 healthy subjects. High-resolution ultrasound and shearwave elastography were used to evaluate the sartorius muscle. Stiffness values were measured.The mean shear elastic modulus of the sartorius muscle was 21.96 ± 5.1 kPa. Demographic factors showed no relation to the elastic modulus of the left sartorius muscle. Positive statistical correlation was noted between the elastic modulus of the right sartorius muscle, weight, and body mass index.Our results could be a reference point for evaluating sartorius muscle stiffness in future research considering different pathologies.
Collapse
Affiliation(s)
| | | | | | - Ayman K. Saleh
- Department of Surgery, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
- Orthopedic Department, Faculty of Medicine for Girls, Alazhar University, Cairo
| | | | - Kholoud J. Sandougah
- Department of Medicine, College of Medicine, Al Imam Mohammed Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Hossain MM, Gallippi CM. Electronic Point Spread Function Rotation Using a Three-Row Transducer for ARFI-Based Elastic Anisotropy Assessment: In Silico and Experimental Demonstration. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:632-646. [PMID: 32833634 PMCID: PMC7987224 DOI: 10.1109/tuffc.2020.3019002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Degree of anisotropy (DoA) of mechanical properties has been assessed as the ratio of acoustic radiation force impulse (ARFI)-induced peak displacements (PDs) achieved using spatially asymmetric point spread functions (PSFs) that are rotated 90° to each other. Such PSF rotation has been achieved by manually rotating a linear array transducer, but manual rotation is cumbersome and prone to misalignment errors and higher variability in measurements. The purpose of this work is to evaluate the feasibility of electronic PSF rotation using a three-row transducer, which will reduce variability in DoA assessment. A Siemens 9L4, with 3×192 elements, was simulated in Field II to generate spatially asymmetric ARFI PSFs that were electronically rotated 63° from each other. Then, using the finite element method (FEM), PD due to the ARFI excitation PSFs in 42 elastic, incompressible, transversely isotropic (TI) materials with shear moduli ratios of 1.0-6.0 were modeled. Finally, the ratio of PDs achieved using the two rotated PSFs was evaluated to assess elastic DoA. DoA increased with increasing shear moduli ratios and distinguished materials with 17% or greater difference in shear moduli ratios (Wilcoxon, ). Experimentally, the ratio of PDs achieved using ARFI PSF rotated 63° from each other distinguished the biceps femoris muscle from two pigs, which had median shear moduli ratios of 4.25 and 3.15 as assessed by shear wave elasticity imaging (SWEI). These results suggest that ARFI-based DoA assessment can be achieved without manual transducer rotation using a three-row transducer capable of electronically rotating PSFs by 63°. It is expected that electronic PSF rotation will facilitate data acquisitions and improve the reproducibility of elastic anisotropy assessments.
Collapse
|
30
|
Huang C, Song P, Mellema DC, Gong P, Lok UW, Tang S, Ling W, Meixner DD, Urban MW, Manduca A, Greenleaf JF, Chen S. Three-dimensional shear wave elastography on conventional ultrasound scanners with external vibration. Phys Med Biol 2020; 65:215009. [PMID: 32663816 PMCID: PMC7880611 DOI: 10.1088/1361-6560/aba5ea] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two-dimensional (2D) ultrasound shear wave elastography (SWE) has been widely used for soft tissue properties assessment. Given that shear waves propagate in three dimensions (3D), extending SWE from 2D to 3D is important for comprehensive and accurate stiffness measurement. However, implementation of 3D SWE on a conventional ultrasound scanner is challenging due to the low volume rate (tens of Hertz) associated with limited parallel receive capability of the scanner's hardware beamformer. Therefore, we developed an external mechanical vibration-based 3D SWE technique allowing robust 3D shear wave tracking and speed reconstruction for conventional scanners. The aliased shear wave signal detected with a sub-Nyquist sampling frequency was corrected by leveraging the cyclic nature of the sinusoidal shear wave generated by the external vibrator. Shear wave signals from different sub-volumes were aligned in temporal direction to correct time delays from sequential pulse-echo events, followed by 3D speed reconstruction using a 3D local frequency estimation algorithm. The technique was validated on liver fibrosis phantoms with different stiffness, showing good correlation (r = 0.99, p < 0.001) with values measured from a state-of-the-art SWE system (GE LOGIQ E9). The phantoms with different stiffnesses can be well-differentiated regardless of the external vibrator position, indicating the feasibility of the 3D SWE with regard to different shear wave propagation scenarios. Finally, shear wave speed calculated by the 3D method correlated well with magnetic resonance elastography performed on human liver (r = 0.93, p = 0.02), demonstrating the in vivo feasibility. The proposed technique relies on low volume rate imaging and can be implemented on the widely available clinical ultrasound scanners, facilitating its clinical translation to improve liver fibrosis evaluation.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Pengfei Song
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Daniel C. Mellema
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Ping Gong
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Shanshan Tang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Wenwu Ling
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Duane D. Meixner
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Matthew W. Urban
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - James F. Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
31
|
Bastijns S, De Cock AM, Vandewoude M, Perkisas S. Usability and Pitfalls of Shear-Wave Elastography for Evaluation of Muscle Quality and Its Potential in Assessing Sarcopenia: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2891-2907. [PMID: 32843232 DOI: 10.1016/j.ultrasmedbio.2020.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
Sarcopenia is age-related progressive and generalized loss of skeletal muscle mass and strength. Its prevalence is rising, which poses a burden for society because it increases disability and dependency and therefore raises health care costs. Muscle mass quality, however-an essential part of sarcopenia-is not easily diagnosable yet. Recent interest has risen for ultrasonographic evaluation of muscle. This review introduces muscle elastography as a possible, easy and cheap tool to evaluate qualitative muscle parameters. Basic principles of muscle elastography are described, as well as different elastography techniques and some technical considerations. Furthermore, a proposal for practical guidelines is offered and factors influencing muscle stiffness are highlighted.
Collapse
Affiliation(s)
- Sophie Bastijns
- Department of Medicine, University of Antwerp, Antwerp, Belgium; Ziekenhuisnetwerk Antwerpen, Antwerp, Belgium.
| | - Anne-Marie De Cock
- Department of Medicine, University of Antwerp, Antwerp, Belgium; Ziekenhuisnetwerk Antwerpen, Antwerp, Belgium
| | - Maurits Vandewoude
- Department of Medicine, University of Antwerp, Antwerp, Belgium; Ziekenhuisnetwerk Antwerpen, Antwerp, Belgium; Belgian Ageing Muscle Society, Liege, Belgium
| | - Stany Perkisas
- Department of Medicine, University of Antwerp, Antwerp, Belgium; Ziekenhuisnetwerk Antwerpen, Antwerp, Belgium; Belgian Ageing Muscle Society, Liege, Belgium
| |
Collapse
|
32
|
Keijzer LBH, Strachinaru M, Bowen DJ, Caenen A, van Steen AFWD, Verweij MD, de Jong N, Bosch JG, Vos HJ. Parasternal Versus Apical View in Cardiac Natural Mechanical Wave Speed Measurements. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1590-1602. [PMID: 32149686 DOI: 10.1109/tuffc.2020.2978299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shear wave speed measurements can potentially be used to noninvasively measure myocardial stiffness to assess the myocardial function. Several studies showed the feasibility of tracking natural mechanical waves induced by aortic valve closure in the interventricular septum, but different echocardiographic views have been used. This article systematically studied the wave propagation speeds measured in a parasternal long-axis and in an apical four-chamber view in ten healthy volunteers. The apical and parasternal views are predominantly sensitive to longitudinal or transversal tissue motion, respectively, and could, therefore, theoretically measure the speed of different wave modes. We found higher propagation speeds in apical than in the parasternal view (median of 5.1 m/s versus 3.8 m/s, , n = 9 ). The results in the different views were not correlated ( r = 0.26 , p = 0.49 ) and an unexpectedly large variability among healthy volunteers was found in apical view compared with the parasternal view (3.5-8.7 versus 3.2-4.3 m/s, respectively). Complementary finite element simulations of Lamb waves in an elastic plate showed that different propagation speeds can be measured for different particle motion components when different wave modes are induced simultaneously. The in vivo results cannot be fully explained with the theory of Lamb wave modes. Nonetheless, the results suggest that the parasternal long-axis view is a more suitable candidate for clinical diagnosis due to the lower variability in wave speeds.
Collapse
|
33
|
Caenen A, Knight AE, Rouze NC, Bottenus NB, Segers P, Nightingale KR. Analysis of multiple shear wave modes in a nonlinear soft solid: Experiments and finite element simulations with a tilted acoustic radiation force. J Mech Behav Biomed Mater 2020; 107:103754. [PMID: 32364950 DOI: 10.1016/j.jmbbm.2020.103754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022]
Abstract
Tissue nonlinearity is conventionally measured in shear wave elastography by studying the change in wave speed caused by the tissue deformation, generally known as the acoustoelastic effect. However, these measurements have mainly focused on the excitation and detection of one specific shear mode, while it is theoretically known that the analysis of multiple wave modes offers more information about tissue material properties that can potentially be used to refine disease diagnosis. This work demonstrated proof of concept using experiments and finite element simulations in a uniaxially stretched phantom by tilting the acoustic radiation force excitation axis with respect to the material's symmetry axis. Using this unique set-up, we were able to visualize two propagating shear wave modes across the stretch direction for stretches larger than 140%. Complementary simulations were performed using material parameters determined from mechanical testing, which enabled us to convert the observed shear wave behavior into a correct representative constitutive law for the phantom material, i.e. the Isihara model. This demonstrates the potential of measuring shear wave propagation in combination with shear wave modeling in complex materials as a non-invasive alternative for mechanical testing.
Collapse
Affiliation(s)
- Annette Caenen
- IBiTech-bioMMeda, Ghent University, Ghent, Belgium; Department of Cardiology, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands.
| | - Anna E Knight
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Ned C Rouze
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Nick B Bottenus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | | | | |
Collapse
|
34
|
Guertler CA, Okamoto RJ, Ireland JA, Pacia CP, Garbow JR, Chen H, Bayly PV. Estimation of Anisotropic Material Properties of Soft Tissue by MRI of Ultrasound-Induced Shear Waves. J Biomech Eng 2020; 142:031001. [PMID: 31980814 PMCID: PMC7104780 DOI: 10.1115/1.4046127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/31/2019] [Indexed: 11/08/2022]
Abstract
This paper describes a new method for estimating anisotropic mechanical properties of fibrous soft tissue by imaging shear waves induced by focused ultrasound (FUS) and analyzing their direction-dependent speeds. Fibrous materials with a single, dominant fiber direction may exhibit anisotropy in both shear and tensile moduli, reflecting differences in the response of the material when loads are applied in different directions. The speeds of shear waves in such materials depend on the propagation and polarization directions of the waves relative to the dominant fiber direction. In this study, shear waves were induced in muscle tissue (chicken breast) ex vivo by harmonically oscillating the amplitude of an ultrasound beam focused in a cylindrical tissue sample. The orientation of the fiber direction relative to the excitation direction was varied by rotating the sample. Magnetic resonance elastography (MRE) was used to visualize and measure the full 3D displacement field due to the ultrasound-induced shear waves. The phase gradient (PG) of radially propagating "slow" and "fast" shear waves provided local estimates of their respective wave speeds and directions. The equations for the speeds of these waves in an incompressible, transversely isotropic (TI), linear elastic material were fitted to measurements to estimate the shear and tensile moduli of the material. The combination of focused ultrasound and MR imaging allows noninvasive, but comprehensive, characterization of anisotropic soft tissue.
Collapse
Affiliation(s)
- Charlotte A Guertler
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, 1 Brookings Drive, CB 1185 St. Louis, MO 63130
| | - Ruth J Okamoto
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, 1 Brookings Drive, CB 1185 St. Louis, MO 63130
| | - Jake A Ireland
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, 1 Brookings Drive, CB 1185 St. Louis, MO 63130
| | - Christopher P Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, CB 1097, St. Louis, MO 63130
| | - Joel R Garbow
- Biomedical Magnetic Resonance Laboratory, Washington University in St. Louis, 4525 Scott Avenue, CB 8227, St. Louis, MO 63110
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, CB 1097, St. Louis, MO 63130
| | - Philip V Bayly
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, 1 Brookings Drive, CB 1185 St. Louis, MO 63130; Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, CB 1097, St. Louis, MO 63130
| |
Collapse
|
35
|
Yu J, Yoon H, Khalifa YM, Emelianov SY. Design of a Volumetric Imaging Sequence Using a Vantage-256 Ultrasound Research Platform Multiplexed With a 1024-Element Fully Sampled Matrix Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:248-257. [PMID: 31545718 PMCID: PMC7008949 DOI: 10.1109/tuffc.2019.2942557] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Ultrasound imaging using a matrix array allows real-time multi-planar volumetric imaging. To enhance image quality, the matrix array should provide fast volumetric ultrasound imaging with spatially consistent focusing in the lateral and elevational directions. However, because of the significantly increased data size, dealing with massive and continuous data acquisition is a significant challenge. We have designed an imaging acquisition sequence that handles volumetric data efficiently using a single 256-channel Verasonics ultrasound research platform multiplexed with a 1024-element matrix array. The developed sequence has been applied for building an ultrasonic pupilometer. Our results demonstrate the capability of the developed approach for structural visualization of an ex vivo porcine eye and the temporal response of the modeled eye pupil with moving iris at the volume rate of 30 Hz. Our study provides a fundamental ground for researchers to establish their own volumetric ultrasound imaging platform and could stimulate the development of new volumetric ultrasound approaches and applications.
Collapse
|
36
|
Rouze NC, Palmeri ML, Nightingale KR. Tractable calculation of the Green's tensor for shear wave propagation in an incompressible, transversely isotropic material. Phys Med Biol 2020; 65:015014. [PMID: 31775132 PMCID: PMC7288246 DOI: 10.1088/1361-6560/ab5c2d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Assessing material properties from observations of shear wave propagation following an acoustic radiation force impulse (ARFI) excitation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this paper, we describe a method to calculate shear wave signals using Green’s tensor methods in an incompressible, transversely isotropic (TI) material characterized by three material parameters. The Green’s tensor is written as the sum of an analytic expression for the SH propagation mode, and an integral expression for the SV propagation mode that can be evaluated by interpolation within precomputed integral functions with an efficiency comparable to the evaluation of a closed-form expression. By using parametrized integral functions, the number of requried numerical integrations is reduced by a factor of 102 − 109 depending on the specific problem under consideration. Results are presented for the case of a point source positioned at the origin and a tall Gaussian source similar to an ARFI excitation. For an experimental configuration with a tilted material symmetry axis, results show that shear wave signals exhibit structures that are sufficiently complex to allow measurement of all three material parameters that characterize an incompressible, TI material.
Collapse
Affiliation(s)
- Ned C Rouze
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | | | | |
Collapse
|
37
|
Schrank F, Warmuth C, Görner S, Meyer T, Tzschätzsch H, Guo J, Uca YO, Elgeti T, Braun J, Sack I. Real‐time MR elastography for viscoelasticity quantification in skeletal muscle during dynamic exercises. Magn Reson Med 2019; 84:103-114. [DOI: 10.1002/mrm.28095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Felix Schrank
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Carsten Warmuth
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Steffen Görner
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Tom Meyer
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Heiko Tzschätzsch
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Jing Guo
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Yavuz Oguz Uca
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Thomas Elgeti
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Jürgen Braun
- Institute of Medical Informatics Charité–Universitätsmedizin Berlin Berlin Germany
| | - Ingolf Sack
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
38
|
Chao PY, Li PC. Laser-speckle-contrast projection tomography for three-dimensional shear wave imaging. OPTICS LETTERS 2019; 44:4809-4812. [PMID: 31568448 DOI: 10.1364/ol.44.004809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Laser-speckle-contrast shear wave (LSC-SW) imaging is an optical method for tracking the propagation of a transient shear wave. With high spatial resolution and sensitivity in detecting displacements, this method is suitable for performing mechanical measurements in vitro. Here, we present a LSC-SW tomographic imaging system for visualizing the propagating shear wave wavefront in four dimensions [i.e., three-dimensional (3D) space plus time]. The volumetric elasticity distribution of a sample is constructed by estimating the speeds of the shear waves propagating along multiple paths at different angles. The proposed method enables multidirectional estimations of the shear wave speed. The capabilities of the imaging system are demonstrated by evaluating isotropy (both homogeneous and heterogeneous) and anisotropy in semiturbid phantoms. The proposed system is suitable for the mechanical characterization of a 3D cell culture system, such as monitoring changes in fiber orientation during the remodeling of the extracellular matrix that is known to be strongly associated with the progression and characterization of tumors.
Collapse
|
39
|
Ahmadzadeh SH, Chen X, Hagemann H, Tang MX, Bull AM. Developing and using fast shear wave elastography to quantify physiologically-relevant tendon forces. Med Eng Phys 2019; 69:116-122. [DOI: 10.1016/j.medengphy.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/07/2019] [Accepted: 04/14/2019] [Indexed: 01/08/2023]
|
40
|
Rosen DP, Jiang J. A comparison of hyperelastic constitutive models applicable to shear wave elastography (SWE) data in tissue-mimicking materials. Phys Med Biol 2019; 64:055014. [PMID: 30673637 DOI: 10.1088/1361-6560/ab0137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Shear wave elastography (SWE) techniques have received substantial attention in recent years. Strong experimental data in SWE suggest that shear wave speed changes significantly due to the known acoustoelastic effect (AE). This presents both challenges and opportunities toward in vivo characterization of biological soft tissues. In this work, under the framework of continuum mechanics, we model a tissue-mimicking material as a homogeneous, isotropic, incompressible, hyperelastic material. Our primary objective is to quantitatively and qualitatively compare experimentally measured acoustoelastic data with model-predicted outcomes using multiple strain energy functions. Our analysis indicated that the classic Neo-Hookean and Mooney-Rivlin models are inadequate for modeling the AE in tissue-mimicking materials. However, a subclass of strain energy functions containing both high-order/exponential term(s) and second-order invariant dependence showed good agreement with experimental data. Based on data investigated, we also found that discrepancies may exist between parameters inversely estimated from uniaxial compression and SWE data. Overall, our findings may improve our understanding of clinical SWE results.
Collapse
Affiliation(s)
- D P Rosen
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States of America
| | | |
Collapse
|
41
|
Guidetti M, Royston TJ. Analytical solution for diverging elliptic shear wave in bounded and unbounded transverse isotropic viscoelastic material with nonhomogeneous inner boundary. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:EL59. [PMID: 30710967 PMCID: PMC6345629 DOI: 10.1121/1.5088028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A theoretical approach was recently introduced by Guidetti and Royston [J. Acoust. Soc. Am. 144, 2312-2323 (2018)] for the radially converging elliptic shear wave pattern in transverse isotropic materials subjected to axisymmetric excitation normal to the fiber axis at the outer boundary of the material. This approach is enabled via a transformation to an elliptic coordinate system with isotropic properties. The approach is extended to the case of diverging shear waves radiating from a cylindrical rod that is axially oscillating perpendicular to the axis of isotropy and parallel to the plane of isotropy.
Collapse
Affiliation(s)
- Martina Guidetti
- Richard and Loan Hill Department of Bioengineering, 851 South Morgan Street, MC 063, University of Illinois at Chicago, Chicago, Illinois 60607, ,
| | - Thomas J Royston
- Richard and Loan Hill Department of Bioengineering, 851 South Morgan Street, MC 063, University of Illinois at Chicago, Chicago, Illinois 60607, ,
| |
Collapse
|
42
|
Moore CJ, Caughey MC, Meyer DO, Emmett R, Jacobs C, Chopra M, Howard JF, Gallippi CM. In Vivo Viscoelastic Response (VisR) Ultrasound for Characterizing Mechanical Anisotropy in Lower-Limb Skeletal Muscles of Boys with and without Duchenne Muscular Dystrophy. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2519-2530. [PMID: 30174231 PMCID: PMC6215506 DOI: 10.1016/j.ultrasmedbio.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/13/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
Our group has previously found that in silico, mechanical anisotropy may be interrogated by exciting transversely isotropic materials with geometrically asymmetric acoustic radiation force excitations and then monitoring the associated induced displacements in the region of excitation. We now translate acoustic radiation force-based anisotropy assessment to human muscle in vivo and investigate its clinical relevance to monitoring muscle degeneration in Duchenne muscular dystrophy (DMD). Clinical anisotropy assessments were performed using Viscoelastic Response ultrasound, with a degree of anisotropy reflected by the ratios of Viscoelastic Response relative elasticity (RE) or relative viscosity (RV) measured with the asymmetric radiation force oriented parallel versus perpendicular to muscle fiber alignment. In vivo results from rectus femoris and gastrocnemius muscles of boys aged ∼7.9-10.4 y indicate that RE and RV anisotropy ratios in rectus femoris muscles of boys with DMD were significantly higher than those of healthy control boys (RE: DMD = 1.51 ± 0.87, control = 0.99 ± 0.69, p = 0.04, Wilcoxon rank sum test; RV: DMD = 1.04 ± 0.71, control = 0.74 ± 0.22, p = 0.02). In the gastrocnemius muscle, only the RV anisotropy ratio was significantly higher in dystrophic than control patients (DMD = 1.23 ± 0.35, control = 0.88 ± 0.31, p = 0.04). In the dystrophic rectus femoris muscle, the RE anisotropy ratio was inversely correlated (slope = -0.03/lbf, r = -0.43, p = 0.07, Pearson correlation) with quantitative muscle testing functional output measures but was not correlated with quantitative muscle testing in the dystrophic gastrocnemius. These results suggest that Viscoelastic Response RE and RV measures reflect differences in mechanical anisotropy associated with functional impairment with dystrophic degeneration that are relevant to monitoring DMD clinically.
Collapse
Affiliation(s)
- Christopher J Moore
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Melissa C Caughey
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Diane O Meyer
- Rehabilitation Services, University of North Carolina Hospital, Chapel Hill, North Carolina, USA
| | - Regina Emmett
- Rehabilitation Services, University of North Carolina Hospital, Chapel Hill, North Carolina, USA
| | - Catherine Jacobs
- Rehabilitation Services, University of North Carolina Hospital, Chapel Hill, North Carolina, USA
| | - Manisha Chopra
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James F Howard
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Caterina M Gallippi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|
43
|
Urban M. Current and Future Clinical Applications of Elasticity Imaging Techniques. ULTRASOUND ELASTOGRAPHY FOR BIOMEDICAL APPLICATIONS AND MEDICINE 2018:471-491. [DOI: 10.1002/9781119021520.ch30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
Urban MW. Production of acoustic radiation force using ultrasound: methods and applications. Expert Rev Med Devices 2018; 15:819-834. [PMID: 30350736 DOI: 10.1080/17434440.2018.1538782] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Acoustic radiation force (ARF) is used in many biomedical applications. The transfer of momentum in acoustic waves can be used in a multitude of ways to perturb tissue and manipulate cells. AREAS COVERED This review will briefly cover the acoustic theory related to ARF, particularly that related to application in tissues. The use of ARF in measurement of mechanical properties will be treated in detail with emphasis on the spatial and temporal modulation of the ARF. Additional topics covered will be the manipulation of particles with ARF, correction of phase aberration with ARF, modulation of cellular behavior with ARF, and bioeffects related to ARF use. EXPERT COMMENTARY The use of ARF can be tailored to specific applications for measurements of mechanical properties or correction of focusing for ultrasound beams. Additionally, noncontact manipulation of particles and cells with ARF enables a wide array of applications for tissue engineering and biosensing.
Collapse
Affiliation(s)
- Matthew W Urban
- a Department of Radiology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
45
|
Guidetti M, Royston TJ. Analytical solution for converging elliptic shear wave in a bounded transverse isotropic viscoelastic material with nonhomogeneous outer boundary. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2312. [PMID: 30404507 PMCID: PMC6197985 DOI: 10.1121/1.5064372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/25/2018] [Accepted: 09/28/2018] [Indexed: 05/17/2023]
Abstract
Dynamic elastography methods-based on optical, ultrasonic, or magnetic resonance imaging-are being developed for quantitatively mapping the shear viscoelastic properties of biological tissues, which are often altered by disease and injury. These diagnostic imaging methods involve analysis of shear wave motion in order to estimate or reconstruct the tissue's shear viscoelastic properties. Most reconstruction methods to date have assumed isotropic tissue properties. However, application to tissues like skeletal muscle and brain white matter with aligned fibrous structure resulting in local transverse isotropic mechanical properties would benefit from analysis that takes into consideration anisotropy. A theoretical approach is developed for the elliptic shear wave pattern observed in transverse isotropic materials subjected to axisymmetric excitation creating radially converging shear waves normal to the fiber axis. This approach, utilizing Mathieu functions, is enabled via a transformation to an elliptic coordinate system with isotropic properties and a ratio of minor and major axes matching the ratio of shear wavelengths perpendicular and parallel to the plane of isotropy in the transverse isotropic material. The approach is validated via numerical finite element analysis case studies. This strategy of coordinate transformation to equivalent isotropic systems could aid in analysis of other anisotropic tissue structures.
Collapse
Affiliation(s)
- Martina Guidetti
- Richard and Loan Hill Department of Bioengineering, 851 South Morgan Street, MC 063, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Thomas J Royston
- Richard and Loan Hill Department of Bioengineering, 851 South Morgan Street, MC 063, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
46
|
Guidetti M, Lorgna G, Hammersly M, Lewis P, Klatt D, Vena P, Shah R, Royston TJ. Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography. J Mech Behav Biomed Mater 2018; 89:199-208. [PMID: 30292169 DOI: 10.1016/j.jmbbm.2018.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
The presence and progression of neuromuscular pathology, including spasticity, Duchenne's muscular dystrophy and hyperthyroidism, has been correlated with changes in the intrinsic mechanical properties of skeletal muscle tissue. Tools for noninvasively measuring and monitoring these properties, such as Magnetic Resonance Elastography (MRE), could benefit basic research into understanding neuromuscular pathologies, as well as translational research to develop therapies, by providing a means of assessing and tracking their efficacy. Dynamic elastography methods for noninvasive measurement of tissue mechanical properties have been under development for nearly three decades. Much of the technological development to date, for both Ultrasound (US)-based and Magnetic Resonance Imaging (MRI)-based strategies, has been grounded in assumptions of local homogeneity and isotropy. Striated skeletal and cardiac muscle, as well as brain white matter and soft tissue in some other organ regions, exhibit a fibrous microstructure which entails heterogeneity and anisotropic response; as one seeks to improve the accuracy and resolution in mechanical property assessment, heterogeneity and anisotropy need to be accounted for in order to optimize both the dynamic elastography experimental protocol and the interpretation of the measurements. Advances in elastography methodology at every step have been aided by the use of tissue-mimicking phantoms. The aim of the present study was to develop and characterize a heterogeneous composite phantom design with uniform controllable anisotropic properties meant to be comparable to the frequency-dependent anisotropic properties of skeletal muscle. MRE experiments and computational finite element (FE) studies were conducted on a novel 3D-printed composite phantom design. The displacement maps obtained from simulation and experiment show the same elliptical shaped wavefronts elongated in the plane where the structure presents higher shear modulus. The model exhibits a degree of anisotropy in line with literature data from skeletal muscle tissue MRE experiments. FE simulations of the MRE experiments provide insight into proper interpretation of experimental measurements, and help to quantify the importance of heterogeneity in the anisotropic material at different scales.
Collapse
Affiliation(s)
- Martina Guidetti
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA.
| | - Gloria Lorgna
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milan, Italy.
| | - Margaret Hammersly
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Phillip Lewis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Dieter Klatt
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA.
| | - Pasquale Vena
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milan, Italy.
| | - Ramille Shah
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Thomas J Royston
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA.
| |
Collapse
|
47
|
Yin L, Lu R, Cao W, Zhang L, Li W, Sun H, Guo R. Three-Dimensional Shear Wave Elastography of Skeletal Muscle: Preliminary Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:2053-2062. [PMID: 29399850 DOI: 10.1002/jum.14559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/15/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES Two-dimensional (2D) shear wave elastography (SWE) can measure the elasticity of skeletal muscle, tendons, and ligaments. Three-dimensional (3D) SWE has been used to detect breast cancer but has not been applied to the musculoskeletal system. This study aimed to investigate whether 3D SWE could be used in skeletal muscles in vivo. METHODS The study enrolled 20 healthy volunteers at Beijing Chaoyang Hospital from August to October 2016. Two-dimensional and 3D SWE scans were used to measure the Young modulus of the flexor carpi radialis in the relaxed state. Longitudinal and transverse scanning was performed. Data were analyzed by a 1-way analysis of variance/least significant difference post hoc test, a paired t test, and Bland-Altman plots. RESULTS The participants included 10 male and 10 female volunteers with a mean age ± SD of 25 ± 5 years. The Young modulus did not differ between 3D and 2D SWE for the sagittal plane (longitudinal scanning, 34.9 ± 5.7 versus 32.7 ± 5.2 kPa; P = .096) or transverse plane (transverse scanning, 9.1 ± 2.1 versus 9.2 ± 1.6 kPa; P = .877). The Young modulus did not differ between sagittal, transverse, and coronal planes for 3D SWE longitudinal scanning (34.9 ± 5.7, 34.3 ± 5.8, and 34.8 ± 5.9 kPa, respectively; P = .936) or 3D SWE transverse scanning (9.1 ± 2.0, 9.1 ± 2.1, and 8.8 ± 2.1 kPa; P = .838). However, the Young modulus for each individual plane (sagittal, transverse, or coronal) differed significantly between longitudinal and transverse scanning (P < .001). CONCLUSIONS Both 2D SWE and 3D SWE are suitable techniques for clinical use, depending on the examiner's experience/preference. However, 3D SWE provides a multiplanar/multislice view that better illustrates the spatial characteristics of muscle tissue. Three-dimensional SWE may be a new method for fully visualizing the musculoskeletal system.
Collapse
Affiliation(s)
- Li Yin
- Department of Ultrasound, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ruigang Lu
- Department of Ultrasound, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wen Cao
- Department of Ultrasound, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lingling Zhang
- Department of Ultrasound, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wenjing Li
- Department of Ultrasound, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hong Sun
- Department of Ultrasound, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ruijun Guo
- Department of Ultrasound, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Correia M, Deffieux T, Chatelin S, Provost J, Tanter M, Pernot M. 3D elastic tensor imaging in weakly transversely isotropic soft tissues. ACTA ACUST UNITED AC 2018; 63:155005. [DOI: 10.1088/1361-6560/aacfaf] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Mellema DC, Song P, Kinnick RR, Trzasko JD, Urban MW, Greenleaf JF, Manduca A, Chen S. Probe Oscillation Shear Wave Elastography: Initial In Vivo Results in Liver. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1214-1223. [PMID: 29727284 PMCID: PMC5937941 DOI: 10.1109/tmi.2017.2780855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Shear wave elastography methods are able to accurately measure tissue stiffness, allowing these techniques to monitor the progression of hepatic fibrosis. While many methods rely on acoustic radiation force to generate shear waves for 2-D imaging, probe oscillation shear wave elastography (PROSE) provides an alternative approach by generating shear waves through continuous vibration of the ultrasound probe while simultaneously detecting the resulting motion. The generated shear wave field in in vivo liver is complicated, and the amplitude and quality of these shear waves can be influenced by the placement of the vibrating probe. To address these challenges, a real-time shear wave visualization tool was implemented to provide instantaneous visual feedback to optimize probe placement. Even with the real-time display, it was not possible to fully suppress residual motion with established filtering methods. To solve this problem, the shear wave signal in each frame was decoupled from motion and other sources through the use of a parameter-free empirical mode decomposition before calculating shear wave speeds. This method was evaluated in a phantom as well as in in vivo livers from five volunteers. PROSE results in the phantom as well as in vivo liver correlated well with independent measurements using the commercial General Electric Logiq E9 scanner.
Collapse
|
50
|
Caenen A, Pernot M, Peirlinck M, Mertens L, Swillens A, Segers P. An in silico framework to analyze the anisotropic shear wave mechanics in cardiac shear wave elastography. Phys Med Biol 2018; 63:075005. [PMID: 29451120 DOI: 10.1088/1361-6560/aaaffe] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Shear wave elastography (SWE) is a potential tool to non-invasively assess cardiac muscle stiffness. This study focused on the effect of the orthotropic material properties and mechanical loading on the performance of cardiac SWE, as it is known that these factors contribute to complex 3D anisotropic shear wave propagation. To investigate the specific impact of these complexities, we constructed a finite element model with an orthotropic material law subjected to different uniaxial stretches to simulate SWE in the stressed cardiac wall. Group and phase speed were analyzed in function of tissue thickness and virtual probe rotation angle. Tissue stretching increased the group and phase speed of the simulated shear wave, especially in the direction of the muscle fiber. As the model provided access to the true fiber orientation and material properties, we assessed the accuracy of two fiber orientation extraction methods based on SWE. We found a higher accuracy (but lower robustness) when extracting fiber orientations based on the location of maximal shear wave speed instead of the angle of the major axis of the ellipsoidal group speed surface. Both methods had a comparable performance for the center region of the cardiac wall, and performed less well towards the edges. Lastly, we also assessed the (theoretical) impact of pathology on shear wave physics and characterization in the model. It was found that SWE was able to detect changes in fiber orientation and material characteristics, potentially associated with cardiac pathologies such as myocardial fibrosis. Furthermore, the model showed clearly altered shear wave patterns for the fibrotic myocardium compared to the healthy myocardium, which forms an initial but promising outcome of this modeling study.
Collapse
Affiliation(s)
- Annette Caenen
- IBiTech-bioMMeda, Ghent University, Ghent, Belgium. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|