1
|
Ma X, Zou M, Fang X, Luo G, Wang W, Dong S, Li X, Wang K, Dong Q, Tian Y, Li S. Convergent-Diffusion Denoising Model for multi-scenario CT Image Reconstruction. Comput Med Imaging Graph 2025; 120:102491. [PMID: 39787736 DOI: 10.1016/j.compmedimag.2024.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/27/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
A generic and versatile CT Image Reconstruction (CTIR) scheme can efficiently mitigate imaging noise resulting from inherent physical limitations, substantially bolstering the dependability of CT imaging diagnostics across a wider spectrum of patient cases. Current CTIR techniques often concentrate on distinct areas such as Low-Dose CT denoising (LDCTD), Sparse-View CT reconstruction (SVCTR), and Metal Artifact Reduction (MAR). Nevertheless, due to the intricate nature of multi-scenario CTIR, these techniques frequently narrow their focus to specific tasks, resulting in limited generalization capabilities for diverse scenarios. We propose a novel Convergent-Diffusion Denoising Model (CDDM) for multi-scenario CTIR, which utilizes a stepwise denoising process to converge toward an imaging-noise-free image with high generalization. CDDM uses a diffusion-based process based on a priori decay distribution to steadily correct imaging noise, thus avoiding the overfitting of individual samples. Within CDDM, a domain-correlated sampling network (DS-Net) provides an innovative sinogram-guided noise prediction scheme to leverage both image and sinogram (i.e., dual-domain) information. DS-Net analyzes the correlation of the dual-domain representations for sampling the noise distribution, introducing sinogram semantics to avoid secondary artifacts. Experimental results validate the practical applicability of our scheme across various CTIR scenarios, including LDCTD, MAR, and SVCTR, with the support of sinogram knowledge.
Collapse
Affiliation(s)
- Xinghua Ma
- The Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China; The Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - Mingye Zou
- The Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xinyan Fang
- The Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Gongning Luo
- The Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China; The Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - Wei Wang
- The Faculty of Computing, Harbin Institute of Technology, Shenzhen, Guangdong, China.
| | - Suyu Dong
- The College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Xiangyu Li
- The Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| | - Kuanquan Wang
- The Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Qing Dong
- The Department of Thoracic Surgery at No. 4 Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ye Tian
- The Department of Cardiology at No. 1 Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuo Li
- The Department of Computer and Data Science, Case Western Reserve University, Cleveland, OH, USA; The Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Kuroda H, Okita Y, Arisawa A, Utsugi R, Murakami K, Hirayama R, Kijima N, Arita H, Kinoshita M, Fujimoto Y, Nakamura H, Kagawa N, Tomiyama N, Kishima H. Cerebral blood flow and histological analysis for the accurate differentiation of infiltrating tumor and vasogenic edema in glioblastoma. PLoS One 2025; 20:e0316168. [PMID: 39792964 PMCID: PMC11723604 DOI: 10.1371/journal.pone.0316168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images. METHODS Data were retrospectively collected from 48 patients with primary IDH-wild-type glioblastoma and 24 patients with meningiomas (Edemas-M). First, we attempted histological verification of cell density, Ki-67 index, and microvessel areas to distinguish between non-contrast-enhancing tumors (NETs) and edema (Edemas) which were obtained from stereotactically fused T2-weighted and perfusion images. This was performed for evaluating enhancing tumors (ETs), NETs, and Edemas. Second, we also performed radiological verification to distinguish NETs from Edemas. Two neurosurgeons manually assigned the regions of interests (ROIs) to ETs, NETs, and Edemas. The DSC-MR perfusion imaging-derived parameters calculated for each ROI included the cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT). RESULTS Cell density and microvessel area were significantly higher in NETs than those in Edemas (p<0.01 and p<0.05, respectively). Regarding radiological analysis, the mean CBF ratio for Edemas was significantly lower than that for NETs (p<0.01). The mean MTT ratio for Edemas was significantly higher than that for NETs. The receiver operating characteristic (ROC) analysis showed that CBF (area under the curve [AUC] = 0.890) could effectively distinguish between NETs and Edemas. The ROC analysis also showed that MTT (AUC = 0.946) could effectively distinguish between NETs and Edemas. CONCLUSIONS DSC-MR perfusion images may prove useful in differentiating NETs from Edemas in non-contrast T2 hyperintensity regions of glioblastoma.
Collapse
Affiliation(s)
- Hideki Kuroda
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsuko Arisawa
- Department of Diagnostic Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Reina Utsugi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koki Murakami
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuichi Hirayama
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideyuki Arita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Japan
| | - Manabu Kinoshita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yasunori Fujimoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Neurosurgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Hajime Nakamura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Liu CK, Huang HM. A Novel Self-Supervised Learning-Based Method for Dynamic CT Brain Perfusion Imaging. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01341-1. [PMID: 39633209 DOI: 10.1007/s10278-024-01341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Dynamic computed tomography (CT)-based brain perfusion imaging is a non-invasive technique that can provide quantitative measurements of cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT). However, due to high radiation dose, dynamic CT scan with a low tube voltage and current protocol is commonly used. Because of this reason, the increased noise degrades the quality and reliability of perfusion maps. In this study, we aim to propose and investigate the feasibility of utilizing a convolutional neural network and a bi-directional long short-term memory model with an attention mechanism to self-supervisedly yield the impulse residue function (IRF) from dynamic CT images. Then, the predicted IRF can be used to compute the perfusion parameters. We evaluated the performance of the proposed method using both simulated and real brain perfusion data and compared the results with those obtained from two existing methods: singular value decomposition and tensor total-variation. The simulation results showed that the overall performance of parameter estimation obtained from the proposed method was superior to that obtained from the other two methods. The experimental results showed that the perfusion maps calculated from the three studied methods were visually similar, but small and significant differences in perfusion parameters between the proposed method and the other two methods were found. We also observed that there were several low-CBF and low-CBV lesions (i.e., suspected infarct core) found by all comparing methods, but only the proposed method revealed longer MTT. The proposed method has the potential to self-supervisedly yield reliable perfusion maps from dynamic CT images.
Collapse
Affiliation(s)
- Chi-Kuang Liu
- Department of Medical Imaging, Changhua Christian Hospital, 135 Nanxiao St., Changhua County 500, Taiwan
| | - Hsuan-Ming Huang
- Institute of Medical Device and Imaging, College of Medicine, Zhongzheng Dist, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei City, 100, Taiwan.
- Program for Precision Health and Intelligent Medicine, Graduate School of Advanced Technology, Zhongzheng Dist., National Taiwan University, No.1, Sec. 1, Jen Ai Rd., Taipei City, 100, Taiwan.
| |
Collapse
|
4
|
Iimura H, Maruyama T, Suzuki K. [Noise Characteristics of Summary Maps for Brain CT Perfusion: A Simulation Study Using a Digital Phantom and Clinical Images]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2024; 80:1145-1154. [PMID: 39443089 DOI: 10.6009/jjrt.2024-1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
PURPOSE Cerebral CT perfusion (CTP) summary maps classify the ischemic core, penumbra, and normal tissue from traditional parametric maps, which is a criterion for indicating thrombectomy. Since perfusion maps change when the CTP radiation dose is reduced, summary maps also might change. This study aimed to assess the noise characteristics of a summary map in simulation experiments. METHODS We added various amounts of noise to a digital phantom and clinical CTPs, used Vitrea (Canon Medical Systems, Tochigi, Japan) to perform perfusion analysis, and assessed the relationship between the noise and cerebral blood volume (CBV), time to maximum (Tmax), and ischemic core and penumbra volumes. RESULTS As the noise increased, the obtained CBV increased, the obtained Tmax shortened, and the obtained ischemic core and penumbra volumes decreased, which depended on the tissue's CBV and Tmax. CONCLUSION Under low-dose conditions, the ischemic core and penumbra volumes decreased, so the criteria for thrombectomy may differ from those for standard doses.
Collapse
Affiliation(s)
- Hiroshi Iimura
- Department of Radiological Services, Tokyo Women's Medical University Hospital
| | - Tatsuya Maruyama
- Department of Radiological Services, Tokyo Women's Medical University Hospital
| | - Kazufumi Suzuki
- Division of Diagnostic Imaging and Nuclear Medicine, Department of Radiology, Tokyo Women's Medical University
| |
Collapse
|
5
|
Niu S, Li S, Huang S, Liang L, Tang S, Wang T, Yu G, Niu T, Wang J, Ma J. Adaptive prior image constrained total generalized variation for low-dose dynamic cerebral perfusion CT reconstruction. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:1429-1447. [PMID: 39302409 DOI: 10.3233/xst-240104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Dynamic cerebral perfusion CT (DCPCT) can provide valuable insight into cerebral hemodynamics by visualizing changes in blood within the brain. However, the associated high radiation dose of the standard DCPCT scanning protocol has been a great concern for the patient and radiation physics. Minimizing the x-ray exposure to patients has been a major effort in the DCPCT examination. A simple and cost-effective approach to achieve low-dose DCPCT imaging is to lower the x-ray tube current in data acquisition. However, the image quality of low-dose DCPCT will be degraded because of the excessive quantum noise. OBJECTIVE To obtain high-quality DCPCT images, we present a statistical iterative reconstruction (SIR) algorithm based on penalized weighted least squares (PWLS) using adaptive prior image constrained total generalized variation (APICTGV) regularization (PWLS-APICTGV). METHODS APICTGV regularization uses the precontrast scanned high-quality CT image as an adaptive structural prior for low-dose PWLS reconstruction. Thus, the image quality of low-dose DCPCT is improved while essential features of targe image are well preserved. An alternating optimization algorithm is developed to solve the cost function of the PWLS-APICTGV reconstruction. RESULTS PWLS-APICTGV algorithm was evaluated using a digital brain perfusion phantom and patient data. Compared to other competing algorithms, the PWLS-APICTGV algorithm shows better noise reduction and structural details preservation. Furthermore, the PWLS-APICTGV algorithm can generate more accurate cerebral blood flow (CBF) map than that of other reconstruction methods. CONCLUSIONS PWLS-APICTGV algorithm can significantly suppress noise while preserving the important features of the reconstructed DCPCT image, thus achieving a great improvement in low-dose DCPCT imaging.
Collapse
Affiliation(s)
- Shanzhou Niu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
- Ganzhou Key Laboratory of Computational Imaging, Gannan Normal University, Ganzhou, China
| | - Shuo Li
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Shuyan Huang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Lijing Liang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Sizhou Tang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Tinghua Wang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Gaohang Yu
- School of Science, Hangzhou Dianzi University, Hangzhou, China
| | - Tianye Niu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zhou B, Chen X, Xie H, Zhou SK, Duncan JS, Liu C. DuDoUFNet: Dual-Domain Under-to-Fully-Complete Progressive Restoration Network for Simultaneous Metal Artifact Reduction and Low-Dose CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3587-3599. [PMID: 35816532 PMCID: PMC9812027 DOI: 10.1109/tmi.2022.3189759] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To reduce the potential risk of radiation to the patient, low-dose computed tomography (LDCT) has been widely adopted in clinical practice for reconstructing cross-sectional images using sinograms with reduced x-ray flux. The LDCT image quality is often degraded by different levels of noise depending on the low-dose protocols. The image quality will be further degraded when the patient has metallic implants, where the image suffers from additional streak artifacts along with further amplified noise levels, thus affecting the medical diagnosis and other CT-related applications. Previous studies mainly focused either on denoising LDCT without considering metallic implants or full-dose CT metal artifact reduction (MAR). Directly applying previous LDCT or MAR approaches to the issue of simultaneous metal artifact reduction and low-dose CT (MARLD) may yield sub-optimal reconstruction results. In this work, we develop a dual-domain under-to-fully-complete progressive restoration network, called DuDoUFNet, for MARLD. Our DuDoUFNet aims to reconstruct images with substantially reduced noise and artifact by progressive sinogram to image domain restoration with a two-stage progressive restoration network design. Our experimental results demonstrate that our method can provide high-quality reconstruction, superior to previous LDCT and MAR methods under various low-dose and metal settings.
Collapse
|
7
|
牛 善, 刘 宏, 刘 沛, 张 梦, 李 硕, 梁 礼, 李 楠, 刘 国. [Nonlocal low-rank and sparse matrix decomposition for low-dose cerebral perfusion CT image restoration]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1309-1316. [PMID: 36210703 PMCID: PMC9550540 DOI: 10.12122/j.issn.1673-4254.2022.09.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To present a nonlocal low-rank and sparse matrix decomposition (NLSMD) method for low-dose cerebral perfusion CT image restoration. METHODS Low-dose cerebral perfusion CT images were first partitioned into a matrix, and the low- rank and sparse matrix decomposition model was constructed to obtain high-quality low-dose cerebral perfusion CT images. The cerebral hemodynamic parameters were calculated from the restored high-quality CT images. RESULTS In the phantom study, the average structured similarity (SSIM) value of the sequential images obtained by filtered back-projection (FBP) algorithm was 0.9438, which was increased to 0.9765 using the proposed algorithm; the SSIM values of cerebral blood flow (CBF) and cerebral blood volume (CBV) map obtained by FBP algorithm were 0.7005 and 0.6856, respectively, which were increased using the proposed algorithm to 0.7871 and 0.7972, respectively. CONCLUSION The proposed method can effectively suppress noises in low-dose cerebral perfusion CT images to obtain accurate cerebral hemodynamic parameters.
Collapse
Affiliation(s)
- 善洲 牛
- 赣南师范大学数学与计算机科学学院,江西 赣州 341000School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China
- 赣南师范大学赣州市计算成像重点实验室,江西 赣州 341000Ganzhou Key Laboratory of Computational Imaging, Gannan Normal University, Ganzhou 341000, China
| | - 宏 刘
- 赣南师范大学数学与计算机科学学院,江西 赣州 341000School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China
- 赣南师范大学赣州市计算成像重点实验室,江西 赣州 341000Ganzhou Key Laboratory of Computational Imaging, Gannan Normal University, Ganzhou 341000, China
| | - 沛沄 刘
- 赣南师范大学数学与计算机科学学院,江西 赣州 341000School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China
- 赣南师范大学赣州市计算成像重点实验室,江西 赣州 341000Ganzhou Key Laboratory of Computational Imaging, Gannan Normal University, Ganzhou 341000, China
| | - 梦真 张
- 赣南师范大学数学与计算机科学学院,江西 赣州 341000School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China
- 赣南师范大学赣州市计算成像重点实验室,江西 赣州 341000Ganzhou Key Laboratory of Computational Imaging, Gannan Normal University, Ganzhou 341000, China
| | - 硕 李
- 赣南师范大学数学与计算机科学学院,江西 赣州 341000School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China
- 赣南师范大学赣州市计算成像重点实验室,江西 赣州 341000Ganzhou Key Laboratory of Computational Imaging, Gannan Normal University, Ganzhou 341000, China
| | - 礼境 梁
- 赣南师范大学数学与计算机科学学院,江西 赣州 341000School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China
- 赣南师范大学赣州市计算成像重点实验室,江西 赣州 341000Ganzhou Key Laboratory of Computational Imaging, Gannan Normal University, Ganzhou 341000, China
| | - 楠 李
- 赣南师范大学经济管理学院,江西 赣州 341000School of Economics and Management, Gannan Normal University, Ganzhou 341000, China
| | - 国良 刘
- 赣南医学院医学信息工程学院,江西 赣州 341000School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
8
|
Zeng D, Zeng C, Zeng Z, Li S, Deng Z, Chen S, Bian Z, Ma J. Basis and current state of computed tomography perfusion imaging: a review. Phys Med Biol 2022; 67. [PMID: 35926503 DOI: 10.1088/1361-6560/ac8717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
Abstract
Computed tomography perfusion (CTP) is a functional imaging that allows for providing capillary-level hemodynamics information of the desired tissue in clinics. In this paper, we aim to offer insight into CTP imaging which covers the basics and current state of CTP imaging, then summarize the technical applications in the CTP imaging as well as the future technological potential. At first, we focus on the fundamentals of CTP imaging including systematically summarized CTP image acquisition and hemodynamic parameter map estimation techniques. A short assessment is presented to outline the clinical applications with CTP imaging, and then a review of radiation dose effect of the CTP imaging on the different applications is presented. We present a categorized methodology review on known and potential solvable challenges of radiation dose reduction in CTP imaging. To evaluate the quality of CTP images, we list various standardized performance metrics. Moreover, we present a review on the determination of infarct and penumbra. Finally, we reveal the popularity and future trend of CTP imaging.
Collapse
Affiliation(s)
- Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Cuidie Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhixiong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sui Li
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhen Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sijin Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| |
Collapse
|
9
|
Li S, Zeng D, Bian Z, Ma J. Noise modelling of perfusion CT images for robust hemodynamic parameter estimations. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6d9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. The radiation dose of cerebral perfusion computed tomography (CPCT) imaging can be reduced by lowering the milliampere-second or kilovoltage peak. However, dose reduction can decrease image quality due to excessive x-ray quanta fluctuation and reduced detector signal relative to system electronic noise, thereby influencing the accuracy of hemodynamic parameters for patients with acute stroke. Existing low-dose CPCT denoising methods, which mainly focus on specific temporal and spatial prior knowledge in low-dose CPCT images, not take the noise distribution characteristics of low-dose CPCT images into consideration. In practice, the noise of low-dose CPCT images can be much more complicated. This study first investigates the noise properties in low-dose CPCT images and proposes a perfusion deconvolution model based on the noise properties. Approach. To characterize the noise distribution in CPCT images properly, we analyze noise properties in low-dose CPCT images and find that the intra-frame noise distribution may vary in the different areas and the inter-frame noise also may vary in low-dose CPCT images. Thus, we attempt the first-ever effort to model CPCT noise with a non-independent and identical distribution (i.i.d.) mixture-of-Gaussians (MoG) model for noise assumption. Furthermore, we integrate the noise modeling strategy into a perfusion deconvolution model and present a novel perfusion deconvolution method by using self-relative structural similarity information and MoG model (named as SR-MoG) to estimate the hemodynamic parameters accurately. In the presented SR-MoG method, the self-relative structural similarity information is obtained from preprocessed low-dose CPCT images. Main results. The results show that the presented SR-MoG method can achieve promising gains over the existing deconvolution approaches. In particular, the average root-mean-square error (RMSE) of cerebral blood flow (CBF), cerebral blood volume, and mean transit time was improved by 40.3%, 69.1%, and 40.8% in the digital phantom study, and the average RMSE of CBF can be improved by 81.0% in the clinical data study, compared with tensor total variation regularization deconvolution method. Significance. The presented SR-MoG method can estimate high-accuracy hemodynamic parameters andachieve promising gains over the existing deconvolution approaches.
Collapse
|
10
|
Sudarshan VP, Reddy PK, Gubbi J, Purushothaman B. Forward Model and Deep Learning Based Iterative Deconvolution for Robust Dynamic CT Perfusion. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3543-3546. [PMID: 34892004 DOI: 10.1109/embc46164.2021.9630969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Perfusion maps obtained from low-dose computed tomography (CT) data suffer from poor signal to noise ratio. To enhance the quality of the perfusion maps, several works rely on denoising the low-dose CT (LD-CT) images followed by conventional regularized deconvolution. Recent works employ deep neural networks (DNN) for learning a direct mapping between the noisy and the clean perfusion maps ignoring the convolution-based forward model. DNN-based methods are not robust to practical variations in the data that are seen in real-world applications such as stroke. In this work, we propose an iterative framework that combines the perfusion forward model with a DNN-based regularizer to obtain perfusion maps directly from the LD-CT dynamic data. To improve the robustness of the DNN, we leverage the anatomical information from the contrast-enhanced LD-CT images to learn the mapping between low-dose and standard-dose perfusion maps. Through empirical experiments, we show that our model is robust both qualitatively and quantitatively to practical perturbations in the data.
Collapse
|
11
|
Niu S, Liu H, Zhang M, Wang M, Wang J, Ma J. Iterative reconstruction for low-dose cerebral perfusion computed tomography using prior image induced diffusion tensor. Phys Med Biol 2021; 66. [PMID: 34081027 DOI: 10.1088/1361-6560/ac0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Cerebral perfusion computed tomography (CPCT) can depict the functional status of cerebral circulation at the tissue level; hence, it has been increasingly used to diagnose patients with cerebrovascular disease. However, there is a significant concern that CPCT scanning protocol could expose patients to excessive radiation doses. Although reducing the x-ray tube current when acquiring CPCT projection data is an effective method for reducing radiation dose, this technique usually results in degraded image quality. To enhance the image quality of low-dose CPCT, we present a prior image induced diffusion tensor (PIDT) for statistical iterative reconstruction, based on the penalized weighted least-squares (PWLS) criterion, which we referred to as PWLS-PIDT, for simplicity. Specifically, PIDT utilizes the geometric features of pre-contrast scanned high-quality CT image as a structure prior for PWLS reconstruction; therefore, the low-dose CPCT images are enhanced while preserving important features in the target image. An effective alternating minimization algorithm is developed to solve the associated objective function in the PWLS-PIDT reconstruction. We conduct qualitative and quantitative studies to evaluate the PWLS-PIDT reconstruction with a digital brain perfusion phantom and patient data. With this method, the noise in the reconstructed CPCT images is more substantially reduced than that of other competing methods, without sacrificing structural details significantly. Furthermore, the CPCT sequential images reconstructed via the PWLS-PIDT method can derive more accurate hemodynamic parameter maps than those of other competing methods.
Collapse
Affiliation(s)
- Shanzhou Niu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Hong Liu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Mengzhen Zhang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Min Wang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States of America
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|
12
|
Wu D, Ren H, Li Q. Self-Supervised Dynamic CT Perfusion Image Denoising With Deep Neural Networks. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.2996566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Zhang Y, Peng J, Zeng D, Xie Q, Li S, Bian Z, Wang Y, Zhang Y, Zhao Q, Zhang H, Liang Z, Lu H, Meng D, Ma J. Contrast-Medium Anisotropy-Aware Tensor Total Variation Model for Robust Cerebral Perfusion CT Reconstruction with Low-Dose Scans. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2020; 6:1375-1388. [PMID: 33313342 PMCID: PMC7731921 DOI: 10.1109/tci.2020.3023598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perfusion computed tomography (PCT) is critical in detecting cerebral ischemic lesions. PCT examination with low-dose scans can effectively reduce radiation exposure to patients at the cost of degraded images with severe noise and artifacts. Tensor total variation (TTV) models are powerful tools that can encode the regional continuous structures underlying a PCT object. In a TTV model, the sparsity structures of the contrast-medium concentration (CMC) across PCT frames are assumed to be isotropic with identical and independent distribution. However, this assumption is inconsistent with practical PCT tasks wherein the sparsity has evident variations and correlations. Such modeling deviation hampers the performance of TTV-based PCT reconstructions. To address this issue, we developed a novel contrast-medium anisotropy-aware tensor total variation (CMAA-TTV) model to describe the intrinsic anisotropy sparsity of the CMC in PCT imaging tasks. Instead of directly on the difference matrices, the CMAA-TTV model characterizes sparsity on a low-rank subspace of the difference matrices which are calculated from the input data adaptively, thus naturally encoding the intrinsic variant and correlated anisotropy sparsity structures of the CMC. We further proposed a robust and efficient PCT reconstruction algorithm to improve low-dose PCT reconstruction performance using the CMAA-TTV model. Experimental studies using a digital brain perfusion phantom, patient data with low-dose simulation and clinical patient data were performed to validate the effectiveness of the presented algorithm. The results demonstrate that the CMAA-TTV algorithm can achieve noticeable improvements over state-of-the-art methods in low-dose PCT reconstruction tasks.
Collapse
Affiliation(s)
- Yuanke Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China, and also with the School of Information Science and Engineering, Qufu Normal University, Rizhao 276826, China
| | - Jiangjun Peng
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qi Xie
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sui Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yongbo Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yong Zhang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Zhao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Zhang
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Zhengrong Liang
- Departments of Radiology and Biomedical Engineering, State University of New York at Stony Brook, NY 11794, USA
| | - Hongbing Lu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Deyu Meng
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
14
|
Xiao Y, Liu P, Liang Y, Stolte S, Sanelli P, Gupta A, Ivanidze J, Fang R. STIR-Net: Deep Spatial-Temporal Image Restoration Net for Radiation Reduction in CT Perfusion. Front Neurol 2019; 10:647. [PMID: 31297079 PMCID: PMC6607281 DOI: 10.3389/fneur.2019.00647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/03/2019] [Indexed: 02/04/2023] Open
Abstract
Computed Tomography Perfusion (CTP) imaging is a cost-effective and fast approach to provide diagnostic images for acute stroke treatment. Its cine scanning mode allows the visualization of anatomic brain structures and blood flow; however, it requires contrast agent injection and continuous CT scanning over an extended time. In fact, the accumulative radiation dose to patients will increase health risks such as skin irritation, hair loss, cataract formation, and even cancer. Solutions for reducing radiation exposure include reducing the tube current and/or shortening the X-ray radiation exposure time. However, images scanned at lower tube currents are usually accompanied by higher levels of noise and artifacts. On the other hand, shorter X-ray radiation exposure time with longer scanning intervals will lead to image information that is insufficient to capture the blood flow dynamics between frames. Thus, it is critical for us to seek a solution that can preserve the image quality when the tube current and the temporal frequency are both low. We propose STIR-Net in this paper, an end-to-end spatial-temporal convolutional neural network structure, which exploits multi-directional automatic feature extraction and image reconstruction schema to recover high-quality CT slices effectively. With the inputs of low-dose and low-resolution patches at different cross-sections of the spatio-temporal data, STIR-Net blends the features from both spatial and temporal domains to reconstruct high-quality CT volumes. In this study, we finalize extensive experiments to appraise the image restoration performance at different levels of tube current and spatial and temporal resolution scales.The results demonstrate the capability of our STIR-Net to restore high-quality scans at as low as 11% of absorbed radiation dose of the current imaging protocol, yielding an average of 10% improvement for perfusion maps compared to the patch-based log likelihood method.
Collapse
Affiliation(s)
- Yao Xiao
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Peng Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Yun Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Skylar Stolte
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Pina Sanelli
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
- Imaging Clinical Effectiveness and Outcomes Research, Department of Radiology, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Health Innovations and Outcomes Research, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Ruogu Fang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Zhang S, Zeng D, Niu S, Zhang H, Xu H, Li S, Qiu S, Ma J. High-fidelity image deconvolution for low-dose cerebral perfusion CT imaging via low-rank and total variation regularizations. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.09.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Zhang Y, Chen Y, Qiang M, Zhang K, Li H, Jiang Y, Jia X. Comparison between three-dimensional CT and conventional radiography in proximal tibia morphology. Medicine (Baltimore) 2018; 97:e11632. [PMID: 30045306 PMCID: PMC6078714 DOI: 10.1097/md.0000000000011632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To provide morphological parameters of the normal tibial plateau by using three-dimensional (3D) CT and conventional radiography.We performed morphological measurements of tibial plateau on 157 consecutive adults using radiographic and 3D computed tomography (CT). Gender differences as well as differences in measurement techniques were statistically compared. Intraclass correlation coefficient (ICC) was used to evaluate intra- and interobserver reproducibility.The mediolateral dimensions, anteroposterior dimensions of tibial plateau showed significant differences according to gender, but no statistical differences were observed in coronal tibial slope as well as in posterior slope. There were significant differences in all parameters between 2 measurement techniques. 3D-CT measurements had a higher ICC in all parameters than that in the radiographs.This study confirmed that 3D morphological measurements of tibial plateau have more reproducibility than radiographs. Our data will be helpful for tibial component design and placement.
Collapse
|
17
|
Gu C, Zeng D, Lin J, Li S, He J, Zhang H, Bian Z, Niu S, Zhang Z, Huang J, Chen B, Zhao D, Chen W, Ma J. Promote quantitative ischemia imaging via myocardial perfusion CT iterative reconstruction with tensor total generalized variation regularization. ACTA ACUST UNITED AC 2018; 63:125009. [DOI: 10.1088/1361-6560/aac7bd] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Zeng D, Xie Q, Cao W, Lin J, Zhang H, Zhang S, Huang J, Bian Z, Meng D, Xu Z, Liang Z, Chen W, Ma J. Low-Dose Dynamic Cerebral Perfusion Computed Tomography Reconstruction via Kronecker-Basis-Representation Tensor Sparsity Regularization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:2546-2556. [PMID: 28880164 PMCID: PMC5711606 DOI: 10.1109/tmi.2017.2749212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Dynamic cerebral perfusion computed tomography (DCPCT) has the ability to evaluate the hemodynamic information throughout the brain. However, due to multiple 3-D image volume acquisitions protocol, DCPCT scanning imposes high radiation dose on the patients with growing concerns. To address this issue, in this paper, based on the robust principal component analysis (RPCA, or equivalently the low-rank and sparsity decomposition) model and the DCPCT imaging procedure, we propose a new DCPCT image reconstruction algorithm to improve low-dose DCPCT and perfusion maps quality via using a powerful measure, called Kronecker-basis-representation tensor sparsity regularization, for measuring low-rankness extent of a tensor. For simplicity, the first proposed model is termed tensor-based RPCA (T-RPCA). Specifically, the T-RPCA model views the DCPCT sequential images as a mixture of low-rank, sparse, and noise components to describe the maximum temporal coherence of spatial structure among phases in a tensor framework intrinsically. Moreover, the low-rank component corresponds to the "background" part with spatial-temporal correlations, e.g., static anatomical contribution, which is stationary over time about structure, and the sparse component represents the time-varying component with spatial-temporal continuity, e.g., dynamic perfusion enhanced information, which is approximately sparse over time. Furthermore, an improved nonlocal patch-based T-RPCA (NL-T-RPCA) model which describes the 3-D block groups of the "background" in a tensor is also proposed. The NL-T-RPCA model utilizes the intrinsic characteristics underlying the DCPCT images, i.e., nonlocal self-similarity and global correlation. Two efficient algorithms using alternating direction method of multipliers are developed to solve the proposed T-RPCA and NL-T-RPCA models, respectively. Extensive experiments with a digital brain perfusion phantom, preclinical monkey data, and clinical patient data clearly demonstrate that the two proposed models can achieve more gains than the existing popular algorithms in terms of both quantitative and visual quality evaluations from low-dose acquisitions, especially as low as 20 mAs.
Collapse
|
19
|
Zhang H, Zeng D, Lin J, Zhang H, Bian Z, Huang J, Gao Y, Zhang S, Zhang H, Feng Q, Liang Z, Chen W, Ma J. Iterative reconstruction for dual energy CT with an average image-induced nonlocal means regularization. Phys Med Biol 2017; 62:5556-5574. [PMID: 28471750 PMCID: PMC5497789 DOI: 10.1088/1361-6560/aa7122] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reducing radiation dose in dual energy computed tomography (DECT) is highly desirable but it may lead to excessive noise in the filtered backprojection (FBP) reconstructed DECT images, which can inevitably increase the diagnostic uncertainty. To obtain clinically acceptable DECT images from low-mAs acquisitions, in this work we develop a novel scheme based on measurement of DECT data. In this scheme, inspired by the success of edge-preserving non-local means (NLM) filtering in CT imaging and the intrinsic characteristics underlying DECT images, i.e. global correlation and non-local similarity, an averaged image induced NLM-based (aviNLM) regularization is incorporated into the penalized weighted least-squares (PWLS) framework. Specifically, the presented NLM-based regularization is designed by averaging the acquired DECT images, which takes the image similarity within the two energies into consideration. In addition, the weighted least-squares term takes into account DECT data-dependent variance. For simplicity, the presented scheme was termed as 'PWLS-aviNLM'. The performance of the presented PWLS-aviNLM algorithm was validated and evaluated on digital phantom, physical phantom and patient data. The extensive experiments validated that the presented PWLS-aviNLM algorithm outperforms the FBP, PWLS-TV and PWLS-NLM algorithms quantitatively. More importantly, it delivers the best qualitative results with the finest details and the fewest noise-induced artifacts, due to the aviNLM regularization learned from DECT images. This study demonstrated the feasibility and efficacy of the presented PWLS-aviNLM algorithm to improve the DECT reconstruction and resulting material decomposition.
Collapse
Affiliation(s)
- Houjin Zhang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Dong Zeng
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Jiahui Lin
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Hao Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Zhaoying Bian
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Jing Huang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Yuanyuan Gao
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Shanli Zhang
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Hua Zhang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Qianjin Feng
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Zhengrong Liang
- Departments of Radiology and Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794 USA
| | - Wufan Chen
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Jianhua Ma
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Guangzhou 510515, China
| |
Collapse
|
20
|
[Sinogram restoration for low-dose cerebral perfusion CT images]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37. [PMID: 28446398 PMCID: PMC6744093 DOI: 10.3969/j.issn.1673-4254.2017.04.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In clinical cerebral perfusion CT examination, repeated scanning the region of interest in the cine mode increases the radiation dose of the patients, while decreasing the radiation dose by lowering the scanning current results in poor image quality and affects the clinical diagnosis. We propose a penalized weighted least-square (PWLS) method for recovering the projection data to improve the quality of low-dose cerebral perfusion CT imaged. This method incorporates the statistical distribution characteristics of brain perfusion CT projection data and uses the statistical properties of the projection data for modeling. The PWLS method was used to recover the data, and the Gauss-Seidel (GS) method was employed for iterative solving. Adaptive weighting is introduced between the original projection data and the projection data after PWLS restoration. The experimental results on the clinical data demonstrated that the PWLS-based sinogram restoration method improved noise reduction and artifact suppression as compared with the conventional noise reduction methods, and better retained the edges and details to generate better cerebral perfusion maps.
Collapse
|
21
|
Zeng D, Zhang X, Bian Z, Huang J, Zhang H, Lu L, Lyu W, Zhang J, Feng Q, Chen W, Ma J. Cerebral perfusion computed tomography deconvolution via structure tensor total variation regularization. Med Phys 2017; 43:2091. [PMID: 27147322 DOI: 10.1118/1.4944866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Cerebral perfusion computed tomography (PCT) imaging as an accurate and fast acute ischemic stroke examination has been widely used in clinic. Meanwhile, a major drawback of PCT imaging is the high radiation dose due to its dynamic scan protocol. The purpose of this work is to develop a robust perfusion deconvolution approach via structure tensor total variation (STV) regularization (PD-STV) for estimating an accurate residue function in PCT imaging with the low-milliampere-seconds (low-mAs) data acquisition. METHODS Besides modeling the spatio-temporal structure information of PCT data, the STV regularization of the present PD-STV approach can utilize the higher order derivatives of the residue function to enhance denoising performance. To minimize the objective function, the authors propose an effective iterative algorithm with a shrinkage/thresholding scheme. A simulation study on a digital brain perfusion phantom and a clinical study on an old infarction patient were conducted to validate and evaluate the performance of the present PD-STV approach. RESULTS In the digital phantom study, visual inspection and quantitative metrics (i.e., the normalized mean square error, the peak signal-to-noise ratio, and the universal quality index) assessments demonstrated that the PD-STV approach outperformed other existing approaches in terms of the performance of noise-induced artifacts reduction and accurate perfusion hemodynamic maps (PHM) estimation. In the patient data study, the present PD-STV approach could yield accurate PHM estimation with several noticeable gains over other existing approaches in terms of visual inspection and correlation analysis. CONCLUSIONS This study demonstrated the feasibility and efficacy of the present PD-STV approach in utilizing STV regularization to improve the accuracy of residue function estimation of cerebral PCT imaging in the case of low-mAs.
Collapse
Affiliation(s)
- Dong Zeng
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinyu Zhang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhaoying Bian
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing Huang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hua Zhang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijun Lu
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wenbing Lyu
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qianjin Feng
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wufan Chen
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianhua Ma
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
22
|
Pizzolato M, Boutelier T, Deriche R. Perfusion deconvolution in DSC-MRI with dispersion-compliant bases. Med Image Anal 2017; 36:197-215. [DOI: 10.1016/j.media.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 11/27/2022]
|
23
|
Gong C, Han C, Gan G, Deng Z, Zhou Y, Yi J, Zheng X, Xie C, Jin X. Low-dose dynamic myocardial perfusion CT image reconstruction using pre-contrast normal-dose CT scan induced structure tensor total variation regularization. Phys Med Biol 2017; 62:2612-2635. [PMID: 28140366 DOI: 10.1088/1361-6560/aa5d40] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic myocardial perfusion CT (DMP-CT) imaging provides quantitative functional information for diagnosis and risk stratification of coronary artery disease by calculating myocardial perfusion hemodynamic parameter (MPHP) maps. However, the level of radiation delivered by dynamic sequential scan protocol can be potentially high. The purpose of this work is to develop a pre-contrast normal-dose scan induced structure tensor total variation regularization based on the penalized weighted least-squares (PWLS) criteria to improve the image quality of DMP-CT with a low-mAs CT acquisition. For simplicity, the present approach was termed as 'PWLS-ndiSTV'. Specifically, the ndiSTV regularization takes into account the spatial-temporal structure information of DMP-CT data and further exploits the higher order derivatives of the objective images to enhance denoising performance. Subsequently, an effective optimization algorithm based on the split-Bregman approach was adopted to minimize the associative objective function. Evaluations with modified dynamic XCAT phantom and preclinical porcine datasets have demonstrated that the proposed PWLS-ndiSTV approach can achieve promising gains over other existing approaches in terms of noise-induced artifacts mitigation, edge details preservation, and accurate MPHP maps calculation.
Collapse
Affiliation(s)
- Changfei Gong
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tian X, Zeng D, Zhang S, Huang J, Zhang H, He J, Lu L, Xi W, Ma J, Bian Z. Robust low-dose dynamic cerebral perfusion CT image restoration via coupled dictionary learning scheme. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2016; 24:837-853. [PMID: 27612048 DOI: 10.3233/xst-160593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dynamic cerebral perfusion x-ray computed tomography (PCT) imaging has been advocated to quantitatively and qualitatively assess hemodynamic parameters in the diagnosis of acute stroke or chronic cerebrovascular diseases. However, the associated radiation dose is a significant concern to patients due to its dynamic scan protocol. To address this issue, in this paper we propose an image restoration method by utilizing coupled dictionary learning (CDL) scheme to yield clinically acceptable PCT images with low-dose data acquisition. Specifically, in the present CDL scheme, the 2D background information from the average of the baseline time frames of low-dose unenhanced CT images and the 3D enhancement information from normal-dose sequential cerebral PCT images are exploited to train the dictionary atoms respectively. After getting the two trained dictionaries, we couple them to represent the desired PCT images as spatio-temporal prior in objective function construction. Finally, the low-dose dynamic cerebral PCT images are restored by using a general DL image processing. To get a robust solution, the objective function is solved by using a modified dictionary learning based image restoration algorithm. The experimental results on clinical data show that the present method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the state-of-the-art methods.
Collapse
Affiliation(s)
- Xiumei Tian
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanli Zhang
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Ji He
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijun Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiwen Xi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Abstract
Stroke is the leading cause of long-term disability and the second leading cause of mortality in the world, and exerts an enormous burden on the public health. Computed Tomography (CT) remains one of the most widely used imaging modality for acute stroke diagnosis. However when coupled with CT perfusion, the excessive radiation exposure in repetitive imaging to assess treatment response and prognosis has raised significant public concerns regarding its potential hazards to both short- and long-term health outcomes. Tensor total variation has been proposed to reduce the necessary radiation dose in CT perfusion without comprising the image quality by fusing the information of the local anatomical structure with the temporal blood flow model. However the local search in the TTV framework fails to leverage the non-local information in the spatio-temporal data. In this paper, we propose TENDER, an efficient framework of non-local tensor deconvolution to maintain the accuracy of the hemodynamic parameters and the diagnostic reliability in low radiation dose CT perfusion. The tensor total variation is extended using non-local spatio-temporal cubics for regularization, and an efficient algorithm is proposed to reduce the time complexity with speedy similarity computation. Evaluations on clinical data of patients subjects with cerebrovascular disease and normal subjects demonstrate the advantage of non-local tensor deconvolution for reducing radiation dose in CT perfusion.
Collapse
|
26
|
Zeng D, Gong C, Bian Z, Huang J, Zhang X, Zhang H, Lu L, Niu S, Zhang Z, Liang Z, Feng Q, Chen W, Ma J. Robust dynamic myocardial perfusion CT deconvolution for accurate residue function estimation via adaptive-weighted tensor total variation regularization: a preclinical study. Phys Med Biol 2016; 61:8135-8156. [PMID: 27782004 DOI: 10.1088/0031-9155/61/22/8135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed 'MPD-AwTTV'. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.
Collapse
Affiliation(s)
- Dong Zeng
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, People's Republic of China. Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zeng D, Gao Y, Huang J, Bian Z, Zhang H, Lu L, Ma J. Penalized weighted least-squares approach for multienergy computed tomography image reconstruction via structure tensor total variation regularization. Comput Med Imaging Graph 2016; 53:19-29. [PMID: 27490315 DOI: 10.1016/j.compmedimag.2016.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/13/2016] [Accepted: 07/14/2016] [Indexed: 11/17/2022]
Abstract
Multienergy computed tomography (MECT) allows identifying and differentiating different materials through simultaneous capture of multiple sets of energy-selective data belonging to specific energy windows. However, because sufficient photon counts are not available in each energy window compared with that in the whole energy window, the MECT images reconstructed by the analytical approach often suffer from poor signal-to-noise and strong streak artifacts. To address the particular challenge, this work presents a penalized weighted least-squares (PWLS) scheme by incorporating the new concept of structure tensor total variation (STV) regularization, which is henceforth referred to as 'PWLS-STV' for simplicity. Specifically, the STV regularization is derived by penalizing higher-order derivatives of the desired MECT images. Thus it could provide more robust measures of image variation, which can eliminate the patchy artifacts often observed in total variation (TV) regularization. Subsequently, an alternating optimization algorithm was adopted to minimize the objective function. Extensive experiments with a digital XCAT phantom and meat specimen clearly demonstrate that the present PWLS-STV algorithm can achieve more gains than the existing TV-based algorithms and the conventional filtered backpeojection (FBP) algorithm in terms of both quantitative and visual quality evaluations.
Collapse
Affiliation(s)
- Dong Zeng
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yuanyuan Gao
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing Huang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhaoying Bian
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hua Zhang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijun Lu
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianhua Ma
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
28
|
Adeli E, Lalush DS. Multi-Level Canonical Correlation Analysis for Standard-Dose PET Image Estimation. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2016; 25:3303-3315. [PMID: 27187957 PMCID: PMC5106345 DOI: 10.1109/tip.2016.2567072] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Positron emission tomography (PET) images are widely used in many clinical applications, such as tumor detection and brain disorder diagnosis. To obtain PET images of diagnostic quality, a sufficient amount of radioactive tracer has to be injected into a living body, which will inevitably increase the risk of radiation exposure. On the other hand, if the tracer dose is considerably reduced, the quality of the resulting images would be significantly degraded. It is of great interest to estimate a standard-dose PET (S-PET) image from a low-dose one in order to reduce the risk of radiation exposure and preserve image quality. This may be achieved through mapping both S-PET and low-dose PET data into a common space and then performing patch-based sparse representation. However, a one-size-fits-all common space built from all training patches is unlikely to be optimal for each target S-PET patch, which limits the estimation accuracy. In this paper, we propose a data-driven multi-level canonical correlation analysis scheme to solve this problem. In particular, a subset of training data that is most useful in estimating a target S-PET patch is identified in each level, and then used in the next level to update common space and improve estimation. In addition, we also use multi-modal magnetic resonance images to help improve the estimation with complementary information. Validations on phantom and real human brain data sets show that our method effectively estimates S-PET images and well preserves critical clinical quantification measures, such as standard uptake value.
Collapse
|
29
|
Niu S, Zhang S, Huang J, Bian Z, Chen W, Yu G, Liang Z, Ma J. Low-dose cerebral perfusion computed tomography image restoration via low-rank and total variation regularizations. Neurocomputing 2016; 197:143-160. [PMID: 27440948 DOI: 10.1016/j.neucom.2016.01.090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cerebral perfusion x-ray computed tomography (PCT) is an important functional imaging modality for evaluating cerebrovascular diseases and has been widely used in clinics over the past decades. However, due to the protocol of PCT imaging with repeated dynamic sequential scans, the associative radiation dose unavoidably increases as compared with that used in conventional CT examinations. Minimizing the radiation exposure in PCT examination is a major task in the CT field. In this paper, considering the rich similarity redundancy information among enhanced sequential PCT images, we propose a low-dose PCT image restoration model by incorporating the low-rank and sparse matrix characteristic of sequential PCT images. Specifically, the sequential PCT images were first stacked into a matrix (i.e., low-rank matrix), and then a non-convex spectral norm/regularization and a spatio-temporal total variation norm/regularization were then built on the low-rank matrix to describe the low rank and sparsity of the sequential PCT images, respectively. Subsequently, an improved split Bregman method was adopted to minimize the associative objective function with a reasonable convergence rate. Both qualitative and quantitative studies were conducted using a digital phantom and clinical cerebral PCT datasets to evaluate the present method. Experimental results show that the presented method can achieve images with several noticeable advantages over the existing methods in terms of noise reduction and universal quality index. More importantly, the present method can produce more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps.
Collapse
Affiliation(s)
- Shanzhou Niu
- School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou 341000, China ; School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Shanli Zhang
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, China
| | - Jing Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China ; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China ; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China ; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Gaohang Yu
- School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Zhengrong Liang
- Department of Radiology, State University of New York, Stony Brook, NY 11794, USA
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China ; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
30
|
Chen G, Zhang P, Wu Y, Shen D, Yap PT. Denoising Magnetic Resonance Images Using Collaborative Non-Local Means. Neurocomputing 2016; 177:215-227. [PMID: 26949289 PMCID: PMC4776654 DOI: 10.1016/j.neucom.2015.11.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Noise artifacts in magnetic resonance (MR) images increase the complexity of image processing workflows and decrease the reliability of inferences drawn from the images. It is thus often desirable to remove such artifacts beforehand for more robust and effective quantitative analysis. It is important to preserve the integrity of relevant image information while removing noise in MR images. A variety of approaches have been developed for this purpose, and the non-local means (NLM) filter has been shown to be able to achieve state-of-the-art denoising performance. For effective denoising, NLM relies heavily on the existence of repeating structural patterns, which however might not always be present within a single image. This is especially true when one considers the fact that the human brain is complex and contains a lot of unique structures. In this paper we propose to leverage the repeating structures from multiple images to collaboratively denoise an image. The underlying assumption is that it is more likely to find repeating structures from multiple scans than from a single scan. Specifically, to denoise a target image, multiple images, which may be acquired from different subjects, are spatially aligned to the target image, and an NLM-like block matching is performed on these aligned images with the target image as the reference. This will significantly increase the number of matching structures and thus boost the denoising performance. Experiments on both synthetic and real data show that the proposed approach, collaborative non-local means (CNLM), outperforms the classic NLM and yields results with markedly improved structural details.
Collapse
Affiliation(s)
- Geng Chen
- Data Processing Center, Northwestern Polytechnical University, Xi’an, China
- Department of Radiology and Biomedical Research Imaging Center (BRIC) University of North Carolina at Chapel Hill, NC, U.S.A
| | - Pei Zhang
- Department of Radiology and Biomedical Research Imaging Center (BRIC) University of North Carolina at Chapel Hill, NC, U.S.A
| | - Yafeng Wu
- Data Processing Center, Northwestern Polytechnical University, Xi’an, China
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center (BRIC) University of North Carolina at Chapel Hill, NC, U.S.A
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC) University of North Carolina at Chapel Hill, NC, U.S.A
| |
Collapse
|
31
|
Othman AE, Afat S, Brockmann C, Nikoubashman O, Bier G, Brockmann MA, Nikolaou K, Tai JH, Yang ZP, Kim JH, Wiesmann M. Low-Dose Volume-Perfusion CT of the Brain: Effects of Radiation Dose Reduction on Performance of Perfusion CT Algorithms. Clin Neuroradiol 2015; 27:311-318. [PMID: 26669592 DOI: 10.1007/s00062-015-0489-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE We aimed to compare different computed tomography (CT) perfusion post-processing algorithms regarding image quality of perfusion maps from low-dose volume perfusion CT (VPCT) and their diagnostic performance regarding the detection of ischemic brain lesions. METHODS AND MATERIALS We included VPCT data of 21 patients with acute stroke (onset < 6h), which were acquired at 80 kV and 180 mAs. Low-dose VPCT datasets with 72 mAs (40 % of original dose) were generated using realistic low-dose simulation. Perfusion maps (cerebral blood volume (CBV); cerebral blood flow (CBF) from original and low-dose datasets were generated using two different commercially available post-processing methods: deconvolution-based method (DC) and maximum slope algorithm (MS). The resulting DC and MS perfusion maps were compared regarding perfusion values, signal-to-noise ratio (SNR) as well as image quality and diagnostic accuracy as rated by two blinded neuroradiologists. RESULTS Quantitative perfusion parameters highly correlated for both algorithms and both dose levels (r ≥ 0.613, p < 0.001). Regarding SNR levels and image quality of the CBV maps, no significant differences between DC and MS were found (p ≥ 0.683). Low-dose MS CBF maps yielded significantly higher SNR levels (p < 0.001) and quality scores (p = 0.014) than those of DC. Low-dose CBF and CBV maps from both DC and MS yielded high sensitivity and specificity for the detection of ischemic lesions (sensitivity ≥ 0.82, specificity ≥ 0.90). CONCLUSION Our results indicate that both methods produce diagnostically sufficient perfusion maps from simulated low-dose VPCT. However, MS produced CBF maps with significantly higher image quality and SNR than DC, indicating that MS might be more suitable for low-dose VPCT imaging.
Collapse
Affiliation(s)
- A E Othman
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074, Aachen, Germany.,Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| | - S Afat
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074, Aachen, Germany
| | - C Brockmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074, Aachen, Germany
| | - O Nikoubashman
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074, Aachen, Germany
| | - G Bier
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| | - M A Brockmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074, Aachen, Germany
| | - K Nikolaou
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| | - J H Tai
- Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, 433-270, Suwon, South Korea
| | - Z P Yang
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, 433-270, Suwon, South Korea
| | - J H Kim
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, 433-270, Suwon, South Korea. .,Department of Radiology, Seoul National University College of Medicine, 101 Daehak-Ro, Chongno-gu, 110-744, Seoul, South Korea. .,Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, 433-270, Suwon, South Korea.
| | - M Wiesmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
32
|
Fang R, Jiang H, Huang J. Tissue-specific sparse deconvolution for brain CT perfusion. Comput Med Imaging Graph 2015; 46 Pt 1:64-72. [PMID: 26055434 DOI: 10.1016/j.compmedimag.2015.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/18/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain.
Collapse
Affiliation(s)
- Ruogu Fang
- School of Computing and Information Sciences, Florida International University, Miami, FL 33174, USA.
| | - Haodi Jiang
- School of Computing and Information Sciences, Florida International University, Miami, FL 33174, USA
| | - Junzhou Huang
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|