1
|
Shi Y, Gao Y, Xu Q, Li Y, Mou X, Liang Z. Learned Tensor Neural Network Texture Prior for Photon-Counting CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3830-3842. [PMID: 38753483 DOI: 10.1109/tmi.2024.3402079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Photon-counting computed tomography (PCCT) reconstructs multiple energy-channel images to describe the same object, where there exists a strong correlation among different channel images. In addition, reconstruction of each channel image suffers photon count starving problem. To make full use of the correlation among different channel images to suppress the data noise and enhance the texture details in reconstructing each channel image, this paper proposes a tensor neural network (TNN) architecture to learn a multi-channel texture prior for PCCT reconstruction. Specifically, we first learn a spatial texture prior in each individual channel image by modeling the relationship between the center pixels and its corresponding neighbor pixels using a neural network. Then, we merge the single channel spatial texture prior into multi-channel neural network to learn the spectral local correlation information among different channel images. Since our proposed TNN is trained on a series of unpaired small spatial-spectral cubes which are extracted from one single reference multi-channel image, the local correlation in the spatial-spectral cubes is considered by TNN. To boost the TNN performance, a low-rank representation is also employed to consider the global correlation among different channel images. Finally, we integrate the learned TNN and the low-rank representation as priors into Bayesian reconstruction framework. To evaluate the performance of the proposed method, four references are considered. One is simulated images from ultra-high-resolution CT. One is spectral images from dual-energy CT. The other two are animal tissue and preclinical mouse images from a custom-made PCCT systems. Our TNN prior Bayesian reconstruction demonstrated better performance than other state-of-the-art competing algorithms, in terms of not only preserving texture feature but also suppressing image noise in each channel image.
Collapse
|
2
|
Gao Y, Tan J, Shi Y, Zhang H, Lu S, Gupta A, Li H, Reiter M, Liang Z. Machine Learned Texture Prior From Full-Dose CT Database via Multi-Modality Feature Selection for Bayesian Reconstruction of Low-Dose CT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3129-3139. [PMID: 34968178 PMCID: PMC9243192 DOI: 10.1109/tmi.2021.3139533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In our earlier study, we proposed a regional Markov random field type tissue-specific texture prior from previous full-dose computed tomography (FdCT) scan for current low-dose CT (LdCT) imaging, which showed clinical benefits through task-based evaluation. Nevertheless, two assumptions were made for early study. One assumption is that the center pixel has a linear relationship with its nearby neighbors and the other is previous FdCT scans of the same subject are available. To eliminate the two assumptions, we proposed a database assisted end-to-end LdCT reconstruction framework which includes a deep learning texture prior model and a multi-modality feature based candidate selection model. A convolutional neural network-based texture prior is proposed to eliminate the linear relationship assumption. And for scenarios in which the concerned subject has no previous FdCT scans, we propose to select one proper prior candidate from the FdCT database using multi-modality features. Features from three modalities are used including the subjects' physiological factors, the CT scan protocol, and a novel feature named Lung Mark which is deliberately proposed to reflect the z-axial property of human anatomy. Moreover, a majority vote strategy is designed to overcome the noise effect from LdCT scans. Experimental results showed the effectiveness of Lung Mark. The selection model has accuracy of 84% testing on 1,470 images from 49 subjects. The learned texture prior from FdCT database provided reconstruction comparable to the subjects having corresponding FdCT. This study demonstrated the feasibility of bringing clinically relevant textures from available FdCT database to perform Bayesian reconstruction of any current LdCT scan.
Collapse
|
3
|
Gao Y, Lu S, Shi Y, Chang S, Zhang H, Hou W, Li L, Liang Z. A Joint-Parameter Estimation and Bayesian Reconstruction Approach to Low-Dose CT. SENSORS (BASEL, SWITZERLAND) 2023; 23:1374. [PMID: 36772417 PMCID: PMC9921255 DOI: 10.3390/s23031374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Most penalized maximum likelihood methods for tomographic image reconstruction based on Bayes' law include a freely adjustable hyperparameter to balance the data fidelity term and the prior/penalty term for a specific noise-resolution tradeoff. The hyperparameter is determined empirically via a trial-and-error fashion in many applications, which then selects the optimal result from multiple iterative reconstructions. These penalized methods are not only time-consuming by their iterative nature, but also require manual adjustment. This study aims to investigate a theory-based strategy for Bayesian image reconstruction without a freely adjustable hyperparameter, to substantially save time and computational resources. The Bayesian image reconstruction problem is formulated by two probability density functions (PDFs), one for the data fidelity term and the other for the prior term. When formulating these PDFs, we introduce two parameters. While these two parameters ensure the PDFs completely describe the data and prior terms, they cannot be determined by the acquired data; thus, they are called complete but unobservable parameters. Estimating these two parameters becomes possible under the conditional expectation and maximization for the image reconstruction, given the acquired data and the PDFs. This leads to an iterative algorithm, which jointly estimates the two parameters and computes the to-be reconstructed image by maximizing a posteriori probability, denoted as joint-parameter-Bayes. In addition to the theoretical formulation, comprehensive simulation experiments are performed to analyze the stopping criterion of the iterative joint-parameter-Bayes method. Finally, given the data, an optimal reconstruction is obtained without any freely adjustable hyperparameter by satisfying the PDF condition for both the data likelihood and the prior probability, and by satisfying the stopping criterion. Moreover, the stability of joint-parameter-Bayes is investigated through factors such as initialization, the PDF specification, and renormalization in an iterative manner. Both phantom simulation and clinical patient data results show that joint-parameter-Bayes can provide comparable reconstructed image quality compared to the conventional methods, but with much less reconstruction time. To see the response of the algorithm to different types of noise, three common noise models are introduced to the simulation data, including white Gaussian noise to post-log sinogram data, Poisson-like signal-dependent noise to post-log sinogram data and Poisson noise to the pre-log transmission data. The experimental outcomes of the white Gaussian noise reveal that the two parameters estimated by the joint-parameter-Bayes method agree well with simulations. It is observed that the parameter introduced to satisfy the prior's PDF is more sensitive to stopping the iteration process for all three noise models. A stability investigation showed that the initial image by filtered back projection is very robust. Clinical patient data demonstrated the effectiveness of the proposed joint-parameter-Bayes and stopping criterion.
Collapse
Affiliation(s)
- Yongfeng Gao
- Department of Radiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Siming Lu
- Department of Radiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yongyi Shi
- Department of Radiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Shaojie Chang
- Department of Radiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hao Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wei Hou
- Department of Preventive Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lihong Li
- Department of Engineering Science and Physics, CUNY/CSI, Staten Island, NY 10314, USA
| | - Zhengrong Liang
- Department of Radiology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Nan Y, Zhang Z, Zhang J, Jiang B, Zhu Y, Zhang L. Role of CT Images in the Diagnosis of Common Acute Abdominal Diseases in General Surgery. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5732357. [PMID: 35368947 PMCID: PMC8967512 DOI: 10.1155/2022/5732357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/16/2022] [Indexed: 11/17/2022]
Abstract
Acute abdomen is a clinical emergency disease with acute abdominal pain as the main prominent feature. Through severe disease changes in intra-abdominal, extrapelvic, and retroperitoneal tissues and organs, symptoms and clinical signs led by abdominal pain are formed. This article mainly explores the role of CT imaging diagnosis in common acute abdominal diseases in general surgery. In this paper, the use of computer-aided CT scan imaging technology in pulmonary nodules was firstly investigated, and the image segmentation algorithms based on CT images were given, including the spatial domain fuzzy C-mean clustering separation algorithm and the spatial domain fuzzy clustering level set semiautomatic separation algorithm, then the treatment of acute abdomen under the concept of ERAS was explored, and the treatment of ERAS under CT images of the acute abdomen was analyzed and studied. The empirical research results show that the ERAS's concept is guided by the undergoing national nutritional support with the traditional perioperative management. Compared to 12.9% of complications in traditional CPM groups, the recall rate of complications after ERAS group was only 6.01%, the improvement was obvious and the results were statistically significant (P < 0.05). Postoperative hospitalization time was also 4.62 days from 7.93 days, thus controlling the clinical risks of perioperative periods, providing a benefit to patient life.
Collapse
Affiliation(s)
- Yunguang Nan
- General Surgery, Shuyang Benevolent Hospital, Suqian 223600, Jiangsu, China
| | - Zuyan Zhang
- Imaging Department, Shuyang Benevolent Hospital, Suqian 223600, Jiangsu, China
| | - Jianbo Zhang
- General Surgery, Shuyang Benevolent Hospital, Suqian 223600, Jiangsu, China
| | - Bo Jiang
- General Surgery, Shuyang Benevolent Hospital, Suqian 223600, Jiangsu, China
| | - Yuxi Zhu
- General Surgery, Shuyang Benevolent Hospital, Suqian 223600, Jiangsu, China
| | - Li Zhang
- Imaging Department, Shuyang Benevolent Hospital, Suqian 223600, Jiangsu, China
| |
Collapse
|
5
|
Zeng D, Wang L, Geng M, Li S, Deng Y, Xie Q, Li D, Zhang H, Li Y, Xu Z, Meng D, Ma J. Noise-Generating-Mechanism-Driven Unsupervised Learning for Low-Dose CT Sinogram Recovery. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3083361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Zhang H, Capaldi D, Zeng D, Ma J, Xing L. Prior-image-based CT reconstruction using attenuation-mismatched priors. Phys Med Biol 2021; 66:064007. [PMID: 33729997 DOI: 10.1088/1361-6560/abe760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prior-image-based reconstruction (PIBR) methods are powerful tools for reducing radiation doses and improving the image quality of low-dose computed tomography (CT). Apart from anatomical changes, prior and current images can also have different attenuations because they originated from different scanners or from the same scanner but with different x-ray beam qualities (e.g., kVp settings, beam filters) during data acquisition. In such scenarios, with attenuation-mismatched priors, PIBR is challenging. In this work, we investigate a specific PIBR method, called statistical image reconstruction, using normal-dose image-induced nonlocal means regularization (SIR-ndiNLM), to address PIBR with such attenuation-mismatched priors and achieve quantitative low-dose CT imaging. We propose two corrective schemes for the original SIR-ndiNLM method, (1) a global histogram-matching approach and (2) a local attenuation correction approach, to account for the attenuation differences between the prior and current images in PIBR. We validate the efficacy of the proposed schemes using images acquired from dual-energy CT scanners to simulate attenuation mismatches. Meanwhile, we utilize different CT slices to simulate anatomical mismatches or changes between the prior and the current low-dose image. We observe that the original SIR-ndiNLM introduces artifacts to the reconstruction when an attenuation-mismatched prior is used. Furthermore, we find that a larger attenuation mismatch between the prior and current images results in more severe artifacts in the SIR-ndiNLM reconstruction. Our two proposed corrective schemes enable SIR-ndiNLM to effectively handle the attenuation mismatch and anatomical changes between the two images and successfully eliminate the artifacts. We demonstrate that the proposed techniques permit SIR-ndiNLM to leverage the attenuation-mismatched prior and achieve quantitative low-dose CT reconstruction from both low-flux and sparse-view data acquisitions. This work permits robust and reliable PIBR for CT data acquired using different beam settings.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiation Oncology, Stanford University School of Medicine, California, United States of America. Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | | | | | | | | |
Collapse
|
7
|
Gong C, Zeng L. Anisotropic structure property based image reconstruction method for limited-angle computed tomography. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2021; 29:1079-1102. [PMID: 34511479 DOI: 10.3233/xst-210954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Limited-angle computed tomography (CT) may appear in restricted CT scans. Since the available projection data is incomplete, the images reconstructed by filtered back-projection (FBP) or algebraic reconstruction technique (ART) often encounter shading artifacts. However, using the anisotropy property of the shading artifacts that coincide with the characteristic of limited-angle CT images can reduce the shading artifacts. Considering this concept, we combine the anisotropy property of the shading artifacts with the anisotropic structure property of an image to develop a new algorithm for image reconstruction. Specifically, we propose an image reconstruction method based on adaptive weighted anisotropic total variation (AwATV). This method, termed as AwATV method for short, is designed to preserve image structures and then remove the shading artifacts. It characterizes both of above properties. The anisotropy property of the shading artifacts accounts for reducing artifacts, and the anisotropic structure property of an image accounts for preserving structures. In order to evaluate the performance of AwATV, we use the simulation projection data of FORBILD head phantom and real CT data for image reconstruction. Experimental results show that AwATV can always reconstruct images with higher SSIM and PSNR, and smaller RMSE, which means that AwATV enables to reconstruct images with higher quality in term of artifact reduction and structure preservation.
Collapse
Affiliation(s)
- Changcheng Gong
- College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing, China
- Chongqing Key Laboratory of Social Economic and Applied Statistics, Chongqing Technology and Business University, Chongqing, China
| | - Li Zeng
- College of Mathematics and Statistics, Chongqing University, Chongqing, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing of the Education Ministry of China, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Matsuura M, Zhou J, Akino N, Yu Z. Feature-Aware Deep-Learning Reconstruction for Context-Sensitive X-ray Computed Tomography. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3040882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Shi Y, Gao Y, Zhang Y, Sun J, Mou X, Liang Z. Spectral CT Reconstruction via Low-Rank Representation and Region-Specific Texture Preserving Markov Random Field Regularization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2996-3007. [PMID: 32217474 PMCID: PMC7529661 DOI: 10.1109/tmi.2020.2983414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photon-counting spectral computed tomography (CT) is capable of material characterization and can improve diagnostic performance over traditional clinical CT. However, it suffers from photon count starving for each individual energy channel which may cause severe artifacts in the reconstructed images. Furthermore, since the images in different energy channels describe the same object, there are high correlations among different channels. To make full use of the inter-channel correlations and minimize the count starving effect while maintaining clinically meaningful texture information, this paper combines a region-specific texture model with a low-rank correlation descriptor as an a priori regularization to explore a superior texture preserving Bayesian reconstruction of spectral CT. Specifically, the inter-channel correlations are characterized by the low-rank representation, and the inner-channel regional textures are modeled by a texture preserving Markov random field. In other words, this paper integrates the spectral and spatial information into a unified Bayesian reconstruction framework. The widely-used Split-Bregman algorithm is employed to minimize the objective function because of the non-differentiable property of the low-rank representation. To evaluate the tissue texture preserving performance of the proposed method for each channel, three references are built for comparison: one is the traditional CT image from energy integration detection. The second one is spectral images from dual-energy CT. The third one is individual channels images from custom-made photon-counting spectral CT. As expected, the proposed method produced promising results in terms of not only preserving texture features but also suppressing image noise in each channel, comparing to existing methods of total variation (TV), low-rank TV and tensor dictionary learning, by both visual inspection and quantitative indexes of root mean square error, peak signal to noise ratio, structural similarity and feature similarity.
Collapse
|
10
|
Gao Y, Liang Z, Xing Y, Zhang H, Pomeroy M, Lu S, Ma J, Lu H, Moore W. Characterization of tissue-specific pre-log Bayesian CT reconstruction by texture-dose relationship. Med Phys 2020; 47:5032-5047. [PMID: 32786070 DOI: 10.1002/mp.14449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/21/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Tissue textures have been recognized as biomarkers for various clinical tasks. In computed tomography (CT) image reconstruction, it is important but challenging to preserve the texture when lowering x-ray exposure from full- toward low-/ultra-low dose level. Therefore, this paper aims to explore the texture-dose relationship within one tissue-specific pre-log Bayesian CT reconstruction algorithm. METHODS To enhance the texture in ultra-low dose CT (ULdCT) reconstruction, this paper presents a Bayesian type algorithm. A shifted Poisson model is adapted to describe the statistical properties of pre-log data, and a tissue-specific Markov random field prior (MRFt) is used to incorporate tissue texture from previous full-dose CT, thus called SP-MRFt algorithm. Utilizing the SP-MRFt algorithm, we investigated tissue texture degradation as a function of x-ray dose levels from full dose (100 mAs/120 kVp) to ultralow dose (1 mAs/120 kVp) by using quantitative texture-based evaluation metrics. RESULTS Experimental results show the SP-MRFt algorithm outperforms conventional filtered back projection (FBP) and post-log domain penalized weighted least square MRFt (PWLS-MRFt) in terms of noise suppression and texture preservation. Comparable results are also obtained with shifted Poisson model with 7 × 7 Huber MRF weights (SP-Huber7). The investigation on texture-dose relationship shows that the quantified texture measures drop monotonically as dose level decreases, and interestingly a turning point is observed on the texture-dose response curve. CONCLUSIONS This important observation implies that there exists a minimum dose level, at which a given CT scanner (hardware configuration and image reconstruction software) can achieve without compromising clinical tasks. Moreover, the experiment results show that the variance of electronic noise has higher impact than the mean to the texture-dose relationship.
Collapse
Affiliation(s)
- Yongfeng Gao
- Department of Radiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Zhengrong Liang
- Departments of Radiology, Biomedical Engineering, Computer Science, and Electrical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yuxiang Xing
- Department of Engineering Physics, Tsinghua University, Beijing, 100871, China
| | - Hao Zhang
- Departments of Radiology and Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Marc Pomeroy
- Departments of Radiology and Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, 11794, USA
| | - Siming Lu
- Departments of Radiology and Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, 11794, USA
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Hongbing Lu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - William Moore
- Department of Radiology, New York University, New York, NY, 10016, USA
| |
Collapse
|
11
|
Gao Y, Liang Z, Zhang H, Yang J, Ferretti J, Bilfinger T, Yaddanapudi K, Schweitzer M, Bhattacharji P, Moore W. A Task-dependent Investigation on Dose and Texture in CT Image Reconstruction. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020; 4:441-449. [PMID: 33907724 PMCID: PMC8075295 DOI: 10.1109/trpms.2019.2957459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Localizing and characterizing clinically-significant lung nodules, a potential precursor to lung cancer, at the lowest achievable radiation dose is demanded to minimize the stochastic radiation effects from x-ray computed tomography (CT). A minimal dose level is heavily dependent on the image reconstruction algorithms and clinical task, in which the tissue texture always plays an important role. This study aims to investigate the dependence through a task-based evaluation at multiple dose levels and variable textures in reconstructions with prospective patient studies. 133 patients with a suspicious pulmonary nodule scheduled for biopsy were recruited and the data was acquired at120kVp with three different dose levels of 100, 40 and 20mAs. Three reconstruction algorithms were implemented: analytical filtered back-projection (FBP) with optimal noise filtering; statistical Markov random field (MRF) model with optimal Huber weighting (MRF-H) for piecewise smooth reconstruction; and tissue-specific texture model (MRF-T) for texture preserved statistical reconstruction. Experienced thoracic radiologists reviewed and scored all images at random, blind to the CT dose and reconstruction algorithms. The radiologists identified the nodules in each image including the 133 biopsy target nodules and 66 other non-target nodules. For target nodule characterization, only MRF-T at 40mAs showed no statistically significant difference from FBP at 100mAs. For localizing both the target nodules and the non-target nodules, some as small as 3mm, MRF-T at 40 and 20mAs levels showed no statistically significant difference from FBP at 100mAs, respectively. MRF-H and FBP at 40 and 20mAs levels performed statistically differently from FBP at 100mAs. This investigation concluded that (1) the textures in the MRF-T reconstructions improves both the tasks of localizing and characterizing nodules at low dose CT and (2) the task of characterizing nodules is more challenging than the task of localizing nodules and needs more dose or enhanced textures from reconstruction.
Collapse
Affiliation(s)
- Yongfeng Gao
- Department of Radiology, Stony Brook University, Stony Brook, NY
11794, USA
| | - Zhengrong Liang
- Departments of Radiology, Biomedical Engineering, Computer Science,
and Electrical Engineering, Stony Brook University, Stony Brook, NY 11794,
USA
| | - Hao Zhang
- Departments of Radiology and Biomedical Engineering, Stony Brook
University, Stony Brook, NY 11794, USA and now with the Department of
Radiation Oncology, Stanford University, Stanford, CA 94035, USA
| | - Jie Yang
- Department of Family, Population and Preventive Medicine, Stony
Brook University, Stony Brook, NY 11794, USA
| | - John Ferretti
- Department of Radiology, Stony Brook University, Stony Brook, NY
11794, USA
| | - Thomas Bilfinger
- Department of Surgery, Stony Brook University, Stony Brook, NY
11794, USA)
| | | | - Mark Schweitzer
- Department of Radiology, Stony Brook University, Stony Brook, NY
11794, USA
| | - Priya Bhattacharji
- Department of Radiology, Stony Brook University, Stony Brook, NY
11794, USA, and now with the Department of Radiology, New York University,
New York, NY 10016, USA
| | - William Moore
- Department of Radiology, Stony Brook University, Stony Brook, NY
11794, USA, and now with the Department of Radiology, New York University,
New York, NY 10016, USA
| |
Collapse
|
12
|
Gao Y, Tan J, Shi Y, Lu S, Gupta A, Li H, Liang Z. Constructing a tissue-specific texture prior by machine learning from previous full-dose scan for Bayesian reconstruction of current ultralow-dose CT images. J Med Imaging (Bellingham) 2020; 7:032502. [PMID: 32118093 PMCID: PMC7040436 DOI: 10.1117/1.jmi.7.3.032502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/27/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: Bayesian theory provides a sound framework for ultralow-dose computed tomography (ULdCT) image reconstruction with two terms for modeling the data statistical property and incorporating a priori knowledge for the image that is to be reconstructed. We investigate the feasibility of using a machine learning (ML) strategy, particularly the convolutional neural network (CNN), to construct a tissue-specific texture prior from previous full-dose computed tomography. Approach: Our study constructs four tissue-specific texture priors, corresponding with lung, bone, fat, and muscle, and integrates the prior with the prelog shift Poisson (SP) data property for Bayesian reconstruction of ULdCT images. The Bayesian reconstruction was implemented by an algorithm called SP-CNN-T and compared with our previous Markov random field (MRF)-based tissue-specific texture prior algorithm called SP-MRF-T. Results: In addition to conventional quantitative measures, mean squared error and peak signal-to-noise ratio, structure similarity index, feature similarity, and texture Haralick features were used to measure the performance difference between SP-CNN-T and SP-MRF-T algorithms in terms of the structure and tissue texture preservation, demonstrating the feasibility and the potential of the investigated ML approach. Conclusions: Both training performance and image reconstruction results showed the feasibility of constructing CNN texture prior model and the potential of improving the structure preservation of the nodule comparing to our previous regional tissue-specific MRF texture prior model.
Collapse
Affiliation(s)
- Yongfeng Gao
- State University of New York, Department of Radiology, Stony Brook, New York, United States
| | - Jiaxing Tan
- State University of New York, Department of Radiology, Stony Brook, New York, United States
| | - Yongyi Shi
- State University of New York, Department of Radiology, Stony Brook, New York, United States
| | - Siming Lu
- State University of New York, Department of Radiology, Stony Brook, New York, United States
- State University of New York, Department of Biomedical Engineering, Stony Brook, New York, United States
| | - Amit Gupta
- State University of New York, Department of Radiology, Stony Brook, New York, United States
| | - Haifang Li
- State University of New York, Department of Radiology, Stony Brook, New York, United States
| | - Zhengrong Liang
- State University of New York, Department of Radiology, Stony Brook, New York, United States
- State University of New York, Department of Biomedical Engineering, Stony Brook, New York, United States
| |
Collapse
|
13
|
Yang F, Zhang D, Zhang H, Huang K, Du Y, Teng M. Streaking artifacts suppression for cone-beam computed tomography with the residual learning in neural network. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.09.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Gao Y, Shi Y, Cao W, Zhang S, Liang Z. Energy enhanced tissue texture in spectral computed tomography for lesion classification. Vis Comput Ind Biomed Art 2019; 2:16. [PMID: 32226923 PMCID: PMC7089716 DOI: 10.1186/s42492-019-0028-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
Tissue texture reflects the spatial distribution of contrasts of image voxel gray levels, i.e., the tissue heterogeneity, and has been recognized as important biomarkers in various clinical tasks. Spectral computed tomography (CT) is believed to be able to enrich tissue texture by providing different voxel contrast images using different X-ray energies. Therefore, this paper aims to address two related issues for clinical usage of spectral CT, especially the photon counting CT (PCCT): (1) texture enhancement by spectral CT image reconstruction, and (2) spectral energy enriched tissue texture for improved lesion classification. For issue (1), we recently proposed a tissue-specific texture prior in addition to low rank prior for the individual energy-channel low-count image reconstruction problems in PCCT under the Bayesian theory. Reconstruction results showed the proposed method outperforms existing methods of total variation (TV), low-rank TV and tensor dictionary learning in terms of not only preserving texture features but also suppressing image noise. For issue (2), this paper will investigate three models to incorporate the enriched texture by PCCT in accordance with three types of inputs: one is the spectral images, another is the co-occurrence matrices (CMs) extracted from the spectral images, and the third one is the Haralick features (HF) extracted from the CMs. Studies were performed on simulated photon counting data by introducing attenuation-energy response curve to the traditional CT images from energy integration detectors. Classification results showed the spectral CT enriched texture model can improve the area under the receiver operating characteristic curve (AUC) score by 7.3%, 0.42% and 3.0% for the spectral images, CMs and HFs respectively on the five-energy spectral data over the original single energy data only. The CM- and HF-inputs can achieve the best AUC of 0.934 and 0.927. This texture themed study shows the insight that incorporating clinical important prior information, e.g., tissue texture in this paper, into the medical imaging, such as the upstream image reconstruction, the downstream diagnosis, and so on, can benefit the clinical tasks.
Collapse
Affiliation(s)
- Yongfeng Gao
- 1Department of Radiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Yongyi Shi
- 1Department of Radiology, Stony Brook University, Stony Brook, NY 11794 USA.,2Institute of Image Processing and Pattern Recognition, Xi'an Jiaotong University, Xi'an, 710049 Shanxi China
| | - Weiguo Cao
- 1Department of Radiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Shu Zhang
- 1Department of Radiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Zhengrong Liang
- 3Departments of Radiology, Biomedical Engineering, Computer Science, and Electrical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| |
Collapse
|
15
|
Gao Y, Liang Z, Moore WH, Zhang H, Pomeroy MJ, Ferretti JA, Bilfinger TV, Ma J, Lu H. A Feasibility Study of Extracting Tissue Textures From a Previous Full-Dose CT Database as Prior Knowledge for Bayesian Reconstruction of Current Low-Dose CT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1981-1992. [PMID: 30605098 PMCID: PMC6610633 DOI: 10.1109/tmi.2018.2890788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Markov random field (MRF) has been widely used to incorporate a priori knowledge as penalty or regularizer to preserve edge sharpness while smoothing the region enclosed by the edge for pieces-wise smooth image reconstruction. In our earlier study, we proposed a type of MRF reconstruction method for low-dose CT (LdCT) scans using tissue-specific textures extracted from the same patient's previous full-dose CT (FdCT) scans as prior knowledge. It showed advantages in clinical applications. This paper aims to remove the constraint of using previous data of the same patient. We investigated the feasibility of extracting the tissue-specific MRF textures from an FdCT database to reconstruct a LdCT image of another patient. This feasibility study was carried out by experiments designed as follows. We constructed a tissue-specific MRF-texture database from 3990 FdCT scan slices of 133 patients who were scheduled for lung nodule biopsy. Each patient had one FdCT scan (120 kVp/100 mAs) and one LdCT scan (120 kVp/20 mAs) prior to biopsy procedure. When reconstructing the LdCT image of one patient among the 133 patients, we ranked the closeness of the MRF-textures from the other 132 patients saved in the database and used them as the a prior knowledge. Then, we evaluated the reconstructed image quality using Haralick texture measures. For any patient within our database, we found more than eighteen patients' FdCT MRF texures can be used without noticeably changing the Haralick texture measures on the lung nodules (to be biopsied). These experimental outcomes indicate it is promising that a sizable FdCT texture database could be used to enhance Bayesian reconstructions of any incoming LdCT scans.
Collapse
Affiliation(s)
- Yongfeng Gao
- Department of Radiology, State University of New York at Stony Brook, Stony Brook, NY 11974 USA
| | - Zhengrong Liang
- Departments of Radiology, Electrical and Computer Engineering, Computer Science and Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA ()
| | - William H. Moore
- Department of Radiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA, and now is with the Department of Radiology, New York University, New York, NY 10016, USA
| | - Hao Zhang
- Department of Radiation Oncology, Stanford University, Stanford, CA 94035, USA
| | - Marc J. Pomeroy
- Departments of Radiology and Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - John A. Ferretti
- Department of Radiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Thomas V. Bilfinger
- Department of Surgery, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Hongbing Lu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
16
|
Manickavasagam R, Selvan S. Automatic Detection and Classification of Lung Nodules in CT Image Using Optimized Neuro Fuzzy Classifier with Cuckoo Search Algorithm. J Med Syst 2019; 43:77. [DOI: 10.1007/s10916-019-1177-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
|
17
|
Yao L, Zeng D, Chen G, Liao Y, Li S, Zhang Y, Wang Y, Tao X, Niu S, Lv Q, Bian Z, Ma J, Huang J. Multi-energy computed tomography reconstruction using a nonlocal spectral similarity model. Phys Med Biol 2019; 64:035018. [PMID: 30577033 DOI: 10.1088/1361-6560/aafa99] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multi-energy computed tomography (MECT) is able to acquire simultaneous multi-energy measurements from one scan. In addition, it allows material differentiation and quantification effectively. However, due to the limited energy bin width, the number of photons detected in an energy-specific channel is smaller than that in traditional CT, which results in image quality degradation. To address this issue, in this work, we develop a statistical iterative reconstruction algorithm to acquire high-quality MECT images and high-accuracy material-specific images. Specifically, this algorithm fully incorporates redundant self-similarities within nonlocal regions in the MECT image at one bin and rich spectral similarities among MECT images at all bins. For simplicity, the presented algorithm is referred to as 'MECT-NSS'. Moreover, an efficient optimization algorithm is developed to solve the MECT-NSS objective function. Then, a comprehensive evaluation of parameter selection for the MECT-NSS algorithm is conducted. In the experiment, the datasets include images from three phantoms and one patient to validate and evaluate the MECT-NSS reconstruction performance. The qualitative and quantitative results demonstrate that the presented MECT-NSS can successfully yield better MECT image quality and more accurate material estimation than the competing algorithms.
Collapse
Affiliation(s)
- Lisha Yao
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China. Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangzhou 510515, People's Republic of China. These authors contributed equally
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang H, Gang GJ, Dang H, Stayman JW. Regularization Analysis and Design for Prior-Image-Based X-Ray CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2675-2686. [PMID: 29994249 PMCID: PMC6295916 DOI: 10.1109/tmi.2018.2847250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Prior-image-based reconstruction (PIBR) methods have demonstrated great potential for radiation dose reduction in computed tomography applications. PIBR methods take advantage of shared anatomical information between sequential scans by incorporating a patient-specific prior image into the reconstruction objective function, often as a form of regularization. However, one major challenge with PIBR methods is how to optimally determine the prior image regularization strength which balances anatomical information from the prior image with data fitting to the current measurements. Too little prior information yields limited improvements over traditional model-based iterative reconstruction, while too much prior information can force anatomical features from the prior image not supported by the measurement data, concealing true anatomical changes. In this paper, we develop quantitative measures of the bias associated with PIBR. This bias exhibits as a fractional reconstructed contrast of the difference between the prior image and current anatomy, which is quite different from traditional reconstruction biases that are typically quantified in terms of spatial resolution or artifacts. We have derived an analytical relationship between the PIBR bias and prior image regularization strength and illustrated how this relationship can be used as a predictive tool to prospectively determine prior image regularization strength to admit specific kinds of anatomical change in the reconstruction. Because bias is dependent on local statistics, we further generalized shift-variant prior image penalties that permit uniform (shift invariant) admission of anatomical changes across the imaging field of view. We validated the mathematical framework in phantom studies and compared bias predictions with estimates based on brute force exhaustive evaluation using numerous iterative reconstructions across regularization values. The experimental results demonstrate that the proposed analytical approach can predict the bias-regularization relationship accurately, allowing for prospective determination of the prior image regularization strength in PIBR. Thus, the proposed approach provides an important tool for controlling image quality of PIBR methods in a reliable, robust, and efficient fashion.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA (telephone: 410-955-1314, )
| | - Grace J. Gang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA (telephone: 410-955-1314, )
| | - Hao Dang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA (telephone: 410-955-1314, )
| | - J. Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA (telephone: 410-955-1314, )
| |
Collapse
|
19
|
Jia X, Liao Y, Zeng D, Zhang H, Zhang Y, He J, Bian Z, Wang Y, Tao X, Liang Z, Huang J, Ma J. Statistical CT reconstruction using region-aware texture preserving regularization learning from prior normal-dose CT image. Phys Med Biol 2018; 63:225020. [PMID: 30457116 PMCID: PMC6309620 DOI: 10.1088/1361-6560/aaebc9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In some clinical applications, prior normal-dose CT (NdCT) images are available, and the valuable textures and structure features in them may be used to promote follow-up low-dose CT (LdCT) reconstruction. This study aims to learn texture information from the NdCT images and leverage it for follow-up LdCT image reconstruction to preserve textures and structure features. Specifically, the proposed reconstruction method first learns the texture information from those patches with similar structures in NdCT image, and the similar patches can be clustered by searching context features efficiently from the surroundings of the current patch. Then it utilizes redundant texture information from the similar patches as a priori knowledge to describe specific regions in the LdCT image. The advanced region-aware texture preserving prior is termed as 'RATP'. The main advantage of the PATP prior is that it can properly learn the texture features from available NdCT images and adaptively characterize the region-specific structures in the LdCT image. The experiments using patient data were performed to evaluate the performance of the proposed method. The proposed RATP method demonstrated superior performance in LdCT imaging compared to the filtered back projection (FBP) and statistical iterative reconstruction (SIR) methods using Gaussian regularization, Huber regularization and the original texture preserving regularization.
Collapse
Affiliation(s)
- Xiao Jia
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- School of Software Engineering, Nanyang Normal University, Nanyang, Henan 473061, People’s Republic of China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - Yuting Liao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - Hao Zhang
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America
| | - Yuanke Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - Ji He
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - Yongbo Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - Xi Tao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - Zhengrong Liang
- Department of Radiology and Biomedical Engineering, State University of New York at Stony Brook, NY 11794, United States of America
| | - Jing Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| |
Collapse
|
20
|
Wang Y, Liao Y, Zhang Y, He J, Li S, Bian Z, Zhang H, Gao Y, Meng D, Zuo W, Zeng D, Ma J. Iterative quality enhancement via residual-artifact learning networks for low-dose CT. Phys Med Biol 2018; 63:215004. [PMID: 30265251 DOI: 10.1088/1361-6560/aae511] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiation exposure and the associated risk of cancer for patients in computed tomography (CT) scans have been major clinical concerns. The radiation exposure can be reduced effectively via lowering the x-ray tube current (mA). However, this strategy may lead to excessive noise and streak artifacts in the conventional filtered back-projection reconstructed images. To address this issue, some deep convolutional neural network (ConvNet) based approaches have been developed for low-dose CT imaging inspired by the recent development of machine learning. Nevertheless, some of the image textures reconstructed by the ConvNet could be corrupted by the severe streaks, especially in ultra-low-dose cases, which could be close to prostheses and hamper diagnosis. Therefore, in this work, we propose an iterative residual-artifact learning ConvNet (IRLNet) approach to improve the reconstruction performance over the ConvNet based approaches. Specifically, the proposed IRLNet estimates the high-frequency details within the noise and then removes them iteratively; after eliminating severe streaks in the low-dose CT images, the residual low-frequency details can be processed through the conventional network. Moreover, the proposed IRLNet scheme can be extended for robust handling of quantitative dual energy CT/cerebral perfusion CT imaging, and statistical iterative reconstruction. Real patient data are used to evaluate the proposed IRLNet, and the experimental results demonstrate that the proposed IRLNet approach outperforms the previous ConvNet based approaches in reducing the image noise and streak artifacts efficiently at the same time as preserving edge details well, suggesting that the proposed IRLNet approach can be used to improve the CT image quality, especially in ultra-low-dose cases.
Collapse
Affiliation(s)
- Yongbo Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China. Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China. These authors contributed equally
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang H, Wang J, Zeng D, Tao X, Ma J. Regularization strategies in statistical image reconstruction of low-dose x-ray CT: A review. Med Phys 2018; 45:e886-e907. [PMID: 30098050 PMCID: PMC6181784 DOI: 10.1002/mp.13123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 08/04/2018] [Indexed: 12/17/2022] Open
Abstract
Statistical image reconstruction (SIR) methods have shown potential to substantially improve the image quality of low-dose x-ray computed tomography (CT) as compared to the conventional filtered back-projection (FBP) method. According to the maximum a posteriori (MAP) estimation, the SIR methods are typically formulated by an objective function consisting of two terms: (a) a data-fidelity term that models imaging geometry and physical detection processes in projection data acquisition, and (b) a regularization term that reflects prior knowledge or expectations of the characteristics of the to-be-reconstructed image. SIR desires accurate system modeling of data acquisition, while the regularization term also has a strong influence on the quality of reconstructed images. A variety of regularization strategies have been proposed for SIR in the past decades, based on different assumptions, models, and prior knowledge. In this paper, we review the conceptual and mathematical bases of these regularization strategies and briefly illustrate their efficacies in SIR of low-dose CT.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiation OncologyStanford UniversityStanfordCA94304USA
| | - Jing Wang
- Department of Radiation OncologyUT Southwestern Medical CenterDallasTX75390USA
| | - Dong Zeng
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Xi Tao
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Jianhua Ma
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
22
|
Chen W, You J, Pan B, Liang Z, Chen B. A sparse representation and dictionary learning based algorithm for image restoration in the presence of Rician noise. Neurocomputing 2018; 286:130-140. [PMID: 30214129 DOI: 10.1016/j.neucom.2018.01.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rician noise removal for Magnetic Resonance Imaging (MRI) is very important because the MRI has been widely used in various clinical applications and the associated Rician noise deteriorates the image quality and causes errors in interpreting the images. Great efforts have recently been devoted to develop the corresponding noise-removal algorithms, particularly the development based on the newly-established Total Variation (TV) theorem. However, all the TV-based algorithms depend mainly on the gradient information and have been shown to produce the so called "blocky" artifact, which also deteriorates the image quality and causes image interpretation errors. In order to avoid producing the artifact, this paper presents a new de-noising model based on sparse representation and dictionary learning. The Split Bregman Iteration strategy is employed to implement the model. Furthermore, an appropriate dictionary is designed by the use of the Kernel Singular Value Decomposition method, resulting in a new Rician noise removal algorithm. Compared with other de-noising algorithms, the presented new algorithm can achieve superior performance, in terms of quantitative measures of the Structural Similarity Index and Peak Signal to Noise Ratio, by a series of experiments using different images in the presence of Rician noise.
Collapse
Affiliation(s)
- Wensheng Chen
- College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen 518060, China
| | - Jie You
- College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
| | - Binbin Pan
- College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen 518060, China
| | - Zhengrong Liang
- Department of Radiology, State University of New York, Stony Brook, NY 11790, USA
| | - Bo Chen
- College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen 518060, China
- Department of Radiology, State University of New York, Stony Brook, NY 11790, USA
| |
Collapse
|
23
|
Zhang H, Ma J, Wang J, Moore W, Liang Z. Assessment of prior image induced nonlocal means regularization for low-dose CT reconstruction: Change in anatomy. Med Phys 2018; 44:e264-e278. [PMID: 28901622 DOI: 10.1002/mp.12378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/04/2017] [Accepted: 05/18/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Repeated computed tomography (CT) scans are prescribed for some clinical applications such as lung nodule surveillance. Several studies have demonstrated that incorporating a high-quality prior image into the reconstruction of subsequent low-dose CT (LDCT) acquisitions can either improve image quality or reduce data fidelity requirements. Our proposed previous normal-dose image induced nonlocal means (ndiNLM) regularization method for LDCT is an example of such a method. However, one major concern with prior image based methods is that they might produce false information when the prior image and the current LDCT image show different structures (for example, if a lung nodule emerges, grows, shrinks, or disappears over time). This study aims to assess the performance of the ndiNLM regularization method in situations with change in anatomy. METHOD We incorporated the ndiNLM regularization into the statistical image reconstruction (SIR) framework for reconstruction of subsequent LDCT images. Because of its patch-based search mechanism, a rough registration between the prior image and the current LDCT image is adequate for the SIR-ndiNLM method. We assessed the performance of the SIR-ndiNLM method in lung nodule surveillance for two different scenarios: (a) the nodule was not found in a baseline exam but appears in a follow-up LDCT scan; (b) the nodule was present in a baseline exam but disappears in a follow-up LDCT scan. We further investigated the effect of nodule size on the performance of the SIR-ndiNLM method. RESULTS We found that a relatively large search-window (e.g., 33 × 33) should be used for the SIR-ndiNLM method to account for misalignment between the prior image and the current LDCT image, and to ensure that enough similar patches can be found in the prior image. With proper selection of other parameters, experimental results with two patient datasets demonstrated that the SIR-ndiNLM method did not miss true nodules nor introduce false nodules in the lung nodule surveillance scenarios described above. We also found that the SIR-ndiNLM reconstruction shows improved image quality when the prior image is similar to the current LDCT image in anatomy. These gains in image quality might appear small upon visual inspection, but they can be detected using quantitative measures. Finally, the SIR-ndiNLM method also performed well in ultra-low-dose conditions and with different nodule sizes. CONCLUSIONS This study assessed the performance of the SIR-ndiNLM method in situations in which the prior image and the current LDCT image show substantial anatomical differences, specifically, changes in lung nodules. The experimental results demonstrate that the SIR-ndiNLM method does not introduce false lung nodules nor miss true nodules, which relieves the concern that this method might produce false information. However, there is insufficient evidence that these findings will hold true for all kinds of anatomical changes.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiology, Stony Brook University, NY, 11794, USA.,Department of Biomedical Engineering, Stony Brook University, NY, 11794, USA
| | - Jianhua Ma
- Department of Biomedical Engineering, Southern Medical University, Guangdong, 510515, China
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, TX, 75390, USA
| | - William Moore
- Department of Radiology, Stony Brook University, NY, 11794, USA
| | - Zhengrong Liang
- Department of Radiology, Stony Brook University, NY, 11794, USA.,Department of Biomedical Engineering, Stony Brook University, NY, 11794, USA
| |
Collapse
|
24
|
Zhang Z, Liang X, Dong X, Xie Y, Cao G. A Sparse-View CT Reconstruction Method Based on Combination of DenseNet and Deconvolution. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1407-1417. [PMID: 29870369 DOI: 10.1109/tmi.2018.2823338] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sparse-view computed tomography (CT) holds great promise for speeding up data acquisition and reducing radiation dose in CT scans. Recent advances in reconstruction algorithms for sparse-view CT, such as iterative reconstruction algorithms, obtained high-quality image while requiring advanced computing power. Lately, deep learning (DL) has been widely used in various applications and has obtained many remarkable outcomes. In this paper, we propose a new method for sparse-view CT reconstruction based on the DL approach. The method can be divided into two steps. First, filter backprojection (FBP) was used to reconstruct the CT image from sparsely sampled sinogram. Then, the FBP results were fed to a DL neural network, which is a DenseNet and deconvolution-based network (DD-Net). The DD-Net combines the advantages of DenseNet and deconvolution and applies shortcut connections to concatenate DenseNet and deconvolution to accelerate the training speed of the network; all of those operations can greatly increase the depth of network while enhancing the expression ability of the network. After the training, the proposed DD-Net achieved a competitive performance relative to the state-of-the-art methods in terms of streaking artifacts removal and structure preservation. Compared with the other state-of-the-art reconstruction methods, the DD-Net method can increase the structure similarity by up to 18% and reduce the root mean square error by up to 42%. These results indicate that DD-Net has great potential for sparse-view CT image reconstruction.
Collapse
|
25
|
Zhang H, Gang GJ, Dang H, Sussman MS, Lin CT, Siewerdsen JH, Stayman JW. Prospective Image Quality Analysis and Control for Prior-Image-Based Reconstruction of Low-Dose CT. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10573. [PMID: 29622855 DOI: 10.1117/12.2293135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Purpose Prior-image-based reconstruction (PIBR) is a powerful tool for low-dose CT, however, the nonlinear behavior of such approaches are generally difficult to predict and control. Similarly, traditional image quality metrics do not capture potential biases exhibited in PIBR images. In this work, we identify a new bias metric and construct an analytical framework for prospectively predicting and controlling the relationship between prior image regularization strength and this bias in a reliable and quantitative fashion. Methods Bias associated with prior image regularization in PIBR can be described as the fraction of actual contrast change (between the prior image and current anatomy) that appears in the reconstruction. Using local approximation of the nonlinear PIBR objective, we develop an analytical relationship between local regularization, fractional contrast reconstructed, and true contrast change. This analytic tool allows prediction bias properties in a reconstructed PIBR image and includes the dependencies on the data acquisition, patient anatomy and change, and reconstruction parameters. Predictions are leveraged to provide reliable and repeatable image properties for varying data fidelity in simulation and physical cadaver experiments. Results The proposed analytical approach permits accurate prediction of reconstructed contrast relative to a gold standard based on exhaustive search based on numerous iterative reconstructions. The framework is used to control regularization parameters to enforce consistent change reconstructions over varying fluence levels and varying numbers of projection angles - enabling bias properties that are less location- and acquisition-dependent. Conclusions While PIBR methods have demonstrated a substantial ability for dose reduction, image properties associated with those images have been difficult to express and quantify using traditional metrics. The novel framework presented in this work not only quantifies this bias in an intuitive fashion, but it gives a way to predict and control the bias. Reliable and predictable reconstruction methods are a requirement for clinical imaging systems and the proposed framework is an important step translating PIBR methods to clinical application.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Grace J Gang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hao Dang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Marc S Sussman
- Department of Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cheng Ting Lin
- Department of Radiology and Radiologic Science, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeffrey H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - J Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Gong C, Cai Y, Zeng L. Geometric artifacts reduction for cone-beam CT via L0-norm minimization without dedicated phantoms. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2018; 26:241-261. [PMID: 29036878 DOI: 10.3233/xst-17303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
For cone-beam computed tomography (CBCT), transversal shifts of the rotation center exist inevitably, which will result in geometric artifacts in CT images. In this work, we propose a novel geometric calibration method for CBCT, which can also be used in micro-CT. The symmetry property of the sinogram is used for the first calibration, and then L0-norm of the gradient image from the reconstructed image is used as the cost function to be minimized for the second calibration. An iterative search method is adopted to pursue the local minimum of the L0-norm minimization problem. The transversal shift value is updated with affirmatory step size within a search range determined by the first calibration. In addition, graphic processing unit (GPU)-based FDK algorithm and acceleration techniques are designed to accelerate the calibration process of the presented new method. In simulation experiments, the mean absolute difference (MAD) and the standard deviation (SD) of the transversal shift value were less than 0.2 pixels between the noise-free and noisy projection images, which indicated highly accurate calibration applying the new calibration method. In real data experiments, the smaller entropies of the corrected images also indicated that higher resolution image was acquired using the corrected projection data and the textures were well protected. Study results also support the feasibility of applying the proposed method to other imaging modalities.
Collapse
Affiliation(s)
- Changcheng Gong
- Key Laboratory of Optoelectronic Technology and System of the Education Ministry of China, Chongqing University, Chongqing, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing of the Education Ministry of China, Chongqing University, Chongqing, China
| | - Yufang Cai
- Key Laboratory of Optoelectronic Technology and System of the Education Ministry of China, Chongqing University, Chongqing, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing of the Education Ministry of China, Chongqing University, Chongqing, China
| | - Li Zeng
- Key Laboratory of Optoelectronic Technology and System of the Education Ministry of China, Chongqing University, Chongqing, China
- College of Mathematics and Statistics, Chongqing University, Chongqing, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing of the Education Ministry of China, Chongqing University, Chongqing, China
| |
Collapse
|
27
|
Lin J, Zhang H, Huang J, Bian Z, Zhang S, Wang Y, Liao Y, Li S, Zhang H, Zeng D, Ma J. Iterative reconstruction for low dose dual energy CT using information-divergence constrained spectral redundancy information. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2018; 26:311-330. [PMID: 29562570 DOI: 10.3233/xst-17272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dual energy computed tomography (DECT) can improve the capability of differentiating different materials compared with conventional CT. However, due to non-negligible radiation exposure to patients, dose reduction has recently become a critical concern in CT imaging field. In this work, to reduce noise at the same time maintain DECT images quality, we present an iterative reconstruction algorithm for low-dose DECT images where in the objective function of the algorithm consists of a data-fidelity term and a regularization term. The former term is based on alpha-divergence to describe the statistical distribution of the DE sinogram data. And the latter term is based on the redundant information to reflect the prior information of the desired DECT images. For simplicity, the presented algorithm is termed as "AlphaD-aviNLM". To minimize the associative objective function, a modified proximal forward-backward splitting algorithm is proposed. Digital phantom, physical phantom, and patient data were utilized to validate and evaluate the presented AlphaD-aviNLM algorithm. The experimental results characterize the performance of the presented AlphaD-aviNLM algorithm. Speficically, in the digital phantom study, the presented AlphaD-aviNLM algorithm performs better than the PWLS-TV, PWLS-aviNLM, and AlphaD-TV with more than 49%, 34%, and 40% gains for the RMSE metric, 1.3%, 0.4%, and 0.7% gains for the FSIM metric and 13%, 8%, and 11% gains for the PSNR metric. In the physical phantom study, the presented AlphaD-aviNLM algorithm performs better than the PWLS-TV, PWLS-aviNLM, and AlphaD-TV with more than 0.55%, 0.07%, and 0.16% gains for the FSIM metric.
Collapse
Affiliation(s)
- Jiahui Lin
- Department of Biomedical Engineering, Guangdong Provincial Key Laborary of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Jing Huang
- Department of Biomedical Engineering, Guangdong Provincial Key Laborary of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaoying Bian
- Department of Biomedical Engineering, Guangdong Provincial Key Laborary of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanli Zhang
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongbo Wang
- Department of Biomedical Engineering, Guangdong Provincial Key Laborary of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuting Liao
- Department of Biomedical Engineering, Guangdong Provincial Key Laborary of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Sui Li
- Department of Biomedical Engineering, Guangdong Provincial Key Laborary of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Zhang
- Department of Biomedical Engineering, Guangdong Provincial Key Laborary of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Dong Zeng
- Department of Biomedical Engineering, Guangdong Provincial Key Laborary of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Ma
- Department of Biomedical Engineering, Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
Liu J, Ma J, Zhang Y, Chen Y, Yang J, Shu H, Luo L, Coatrieux G, Yang W, Feng Q, Chen W. Discriminative Feature Representation to Improve Projection Data Inconsistency for Low Dose CT Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:2499-2509. [PMID: 28816658 DOI: 10.1109/tmi.2017.2739841] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In low dose computed tomography (LDCT) imaging, the data inconsistency of measured noisy projections can significantly deteriorate reconstruction images. To deal with this problem, we propose here a new sinogram restoration approach, the sinogram- discriminative feature representation (S-DFR) method. Different from other sinogram restoration methods, the proposed method works through a 3-D representation-based feature decomposition of the projected attenuation component and the noise component using a well-designed composite dictionary containing atoms with discriminative features. This method can be easily implemented with good robustness in parameter setting. Its comparison to other competing methods through experiments on simulated and real data demonstrated that the S-DFR method offers a sound alternative in LDCT.
Collapse
|
29
|
Zhang Y, Rong J, Lu H, Xing Y, Meng J. Low-Dose Lung CT Image Restoration Using Adaptive Prior Features From Full-Dose Training Database. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:2510-2523. [PMID: 28961108 DOI: 10.1109/tmi.2017.2757035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The valuable structure features in full-dose computed tomography (FdCT) scans can be exploited as prior knowledge for low-dose CT (LdCT) imaging. However, lacking the capability to represent local characteristics of interested structures of the LdCT image adaptively may result in poor preservation of details/textures in LdCT image. This paper aims to explore a novel prior knowledge retrieval and representation paradigm, called adaptive prior features assisted restoration algorithm, for the purpose of better restoration of the low-dose lung CT images by capturing local features from FdCT scans adaptively. The innovation lies in the construction of an offline training database and the online patch-search scheme integrated with the principal components analysis (PCA). Specifically, the offline training database is composed of 3-D patch samples extracted from existing full-dose lung scans. For online patch-search, 3-D patches with structure similar to the noisy target patch are first selected from the database as the training samples. Then, PCA is applied on the training samples to retrieve their local prior principal features adaptively. By employing the principal features to decompose the noisy target patch and using an adaptive coefficient shrinkage technique for inverse transformation, the noise of the target patch can be efficiently removed and the detailed texture can be well preserved. The effectiveness of the proposed algorithm was validated by CT scans of patients with lung cancer. The results show that it can achieve a noticeable gain over some state-of-the-art methods in terms of noise suppression and details/textures preservation.
Collapse
|
30
|
Wu D, Kim K, El Fakhri G, Li Q. Iterative Low-Dose CT Reconstruction With Priors Trained by Artificial Neural Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:2479-2486. [PMID: 28922116 PMCID: PMC5897914 DOI: 10.1109/tmi.2017.2753138] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Dose reduction in computed tomography (CT) is essential for decreasing radiation risk in clinical applications. Iterative reconstruction algorithms are one of the most promising way to compensate for the increased noise due to reduction of photon flux. Most iterative reconstruction algorithms incorporate manually designed prior functions of the reconstructed image to suppress noises while maintaining structures of the image. These priors basically rely on smoothness constraints and cannot exploit more complex features of the image. The recent development of artificial neural networks and machine learning enabled learning of more complex features of image, which has the potential to improve reconstruction quality. In this letter, K-sparse auto encoder was used for unsupervised feature learning. A manifold was learned from normal-dose images and the distance between the reconstructed image and the manifold was minimized along with data fidelity during reconstruction. Experiments on 2016 Low-dose CT Grand Challenge were used for the method verification, and results demonstrated the noise reduction and detail preservation abilities of the proposed method.
Collapse
|
31
|
Zhang H, Zeng D, Lin J, Zhang H, Bian Z, Huang J, Gao Y, Zhang S, Zhang H, Feng Q, Liang Z, Chen W, Ma J. Iterative reconstruction for dual energy CT with an average image-induced nonlocal means regularization. Phys Med Biol 2017; 62:5556-5574. [PMID: 28471750 PMCID: PMC5497789 DOI: 10.1088/1361-6560/aa7122] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reducing radiation dose in dual energy computed tomography (DECT) is highly desirable but it may lead to excessive noise in the filtered backprojection (FBP) reconstructed DECT images, which can inevitably increase the diagnostic uncertainty. To obtain clinically acceptable DECT images from low-mAs acquisitions, in this work we develop a novel scheme based on measurement of DECT data. In this scheme, inspired by the success of edge-preserving non-local means (NLM) filtering in CT imaging and the intrinsic characteristics underlying DECT images, i.e. global correlation and non-local similarity, an averaged image induced NLM-based (aviNLM) regularization is incorporated into the penalized weighted least-squares (PWLS) framework. Specifically, the presented NLM-based regularization is designed by averaging the acquired DECT images, which takes the image similarity within the two energies into consideration. In addition, the weighted least-squares term takes into account DECT data-dependent variance. For simplicity, the presented scheme was termed as 'PWLS-aviNLM'. The performance of the presented PWLS-aviNLM algorithm was validated and evaluated on digital phantom, physical phantom and patient data. The extensive experiments validated that the presented PWLS-aviNLM algorithm outperforms the FBP, PWLS-TV and PWLS-NLM algorithms quantitatively. More importantly, it delivers the best qualitative results with the finest details and the fewest noise-induced artifacts, due to the aviNLM regularization learned from DECT images. This study demonstrated the feasibility and efficacy of the presented PWLS-aviNLM algorithm to improve the DECT reconstruction and resulting material decomposition.
Collapse
Affiliation(s)
- Houjin Zhang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Dong Zeng
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Jiahui Lin
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Hao Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Zhaoying Bian
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Jing Huang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Yuanyuan Gao
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Shanli Zhang
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Hua Zhang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Qianjin Feng
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Zhengrong Liang
- Departments of Radiology and Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794 USA
| | - Wufan Chen
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University Guangzhou, Guangdong 510515, China
| | - Jianhua Ma
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Guangzhou 510515, China
| |
Collapse
|
32
|
Zhang H, Zeng D, Zhang H, Wang J, Liang Z, Ma J. Applications of nonlocal means algorithm in low-dose X-ray CT image processing and reconstruction: A review. Med Phys 2017; 44:1168-1185. [PMID: 28303644 PMCID: PMC5381744 DOI: 10.1002/mp.12097] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/12/2016] [Accepted: 12/13/2016] [Indexed: 02/03/2023] Open
Abstract
Low-dose X-ray computed tomography (LDCT) imaging is highly recommended for use in the clinic because of growing concerns over excessive radiation exposure. However, the CT images reconstructed by the conventional filtered back-projection (FBP) method from low-dose acquisitions may be severely degraded with noise and streak artifacts due to excessive X-ray quantum noise, or with view-aliasing artifacts due to insufficient angular sampling. In 2005, the nonlocal means (NLM) algorithm was introduced as a non-iterative edge-preserving filter to denoise natural images corrupted by additive Gaussian noise, and showed superior performance. It has since been adapted and applied to many other image types and various inverse problems. This paper specifically reviews the applications of the NLM algorithm in LDCT image processing and reconstruction, and explicitly demonstrates its improving effects on the reconstructed CT image quality from low-dose acquisitions. The effectiveness of these applications on LDCT and their relative performance are described in detail.
Collapse
Affiliation(s)
- Hao Zhang
- Departments of Radiology and Biomedical EngineeringStony Brook UniversityStony BrookNY11794USA
| | - Dong Zeng
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Medical Image ProcessingSouthern Medical UniversityGuangzhou510515China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection TechnologyGuangzhou510515China
| | - Hua Zhang
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Medical Image ProcessingSouthern Medical UniversityGuangzhou510515China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection TechnologyGuangzhou510515China
| | - Jing Wang
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Zhengrong Liang
- Departments of Radiology and Biomedical EngineeringStony Brook UniversityStony BrookNY11794USA
| | - Jianhua Ma
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Medical Image ProcessingSouthern Medical UniversityGuangzhou510515China
- Guangzhou Key Laboratory of Medical Radiation Imaging and Detection TechnologyGuangzhou510515China
| |
Collapse
|
33
|
Alessio AM, Kinahan PE, Sauer K, Kalra MK, De Man B. Comparison Between Pre-Log and Post-Log Statistical Models in Ultra-Low-Dose CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:707-720. [PMID: 28113926 PMCID: PMC5424567 DOI: 10.1109/tmi.2016.2627004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
X-ray detectors in clinical computed tomography (CT) usually operate in current-integrating mode. Their complicated signal statistics often lead to intractable likelihood functions for practical use in model-based image reconstruction (MBIR). It is therefore desirable to design simplified statistical models without losing the essential factors. Depending on whether the CT transmission data are logarithmically transformed, pre-log and post-log models are two major categories of choices in CT MBIR. Both being approximations, it remains an open question whether one model can notably improve image quality over the other on real scanners. In this study, we develop and compare several pre-log and post-log MBIR algorithms under a unified framework. Their reconstruction accuracy based on simulation and clinical datasets are evaluated. The results show that pre-log MBIR can achieve notably better quantitative accuracy than post-log MBIR in ultra-low-dose CT, although in less extreme cases, post-log MBIR with handcrafted pre-processing remains a competitive alternative. Pre-log MBIR could play a growing role in emerging ultra-low-dose CT applications.
Collapse
|
34
|
Zheng Z, Cai A, Li L, Yan B, Le F, Wang L, Hu G. Sparse-view image reconstruction via total absolute curvature combining total variation for X-ray computed tomography. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2017; 25:959-980. [PMID: 28697576 DOI: 10.3233/xst-16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sparse-view imaging is a promising scanning approach which has fast scanning rate and low-radiation dose in X-ray computed tomography (CT). Conventional L1-norm based total variation (TV) has been widely used in image reconstruction since the advent of compressive sensing theory. However, with only the first order information of the image used, the TV often generates dissatisfactory image for some applications. As is widely known, image curvature is among the most important second order features of images and can potentially be applied in image reconstruction for quality improvement. This study incorporates the curvature in the optimization model and proposes a new total absolute curvature (TAC) based reconstruction method. The proposed model contains both total absolute curvature and total variation (TAC-TV), which are intended for better description of the featured complicated image. As for the practical algorithm development, the efficient alternating direction method of multipliers (ADMM) is utilized, which generates a practical and easy-coded algorithm. The TAC-TV iterations mainly contain FFTs, soft-thresholding and projection operations and can be launched on graphics processing unit, which leads to relatively high performance. To evaluate the presented algorithm, both qualitative and quantitative studies were performed using various few view datasets. The results illustrated that the proposed approach yielded better reconstruction quality and satisfied convergence property compared with TV-based methods.
Collapse
Affiliation(s)
- Zhizhong Zheng
- National Digital Switching System Engineering & Technological Research Centre, Zhengzhou, China
| | - Ailong Cai
- National Digital Switching System Engineering & Technological Research Centre, Zhengzhou, China
| | - Lei Li
- National Digital Switching System Engineering & Technological Research Centre, Zhengzhou, China
| | - Bin Yan
- National Digital Switching System Engineering & Technological Research Centre, Zhengzhou, China
| | - Fulong Le
- National Digital Switching System Engineering & Technological Research Centre, Zhengzhou, China
| | - Linyuan Wang
- National Digital Switching System Engineering & Technological Research Centre, Zhengzhou, China
| | - Guoen Hu
- National Digital Switching System Engineering & Technological Research Centre, Zhengzhou, China
| |
Collapse
|
35
|
Zhang H, Han H, Liang Z, Hu Y, Liu Y, Moore W, Ma J, Lu H. Erratum to "Extracting Information From Previous Full-Dose CT Scan for Knowledge-Based Bayesian Reconstruction of Current Low-Dose CT Images". IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1587. [PMID: 27254852 DOI: 10.1109/tmi.2016.2571878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Advertisement, IEEE.
Collapse
|