1
|
Rai S, Graff K, Tansey R, Bray S. How do tasks impact the reliability of fMRI functional connectivity? Hum Brain Mapp 2024; 45:e26535. [PMID: 38348730 PMCID: PMC10884875 DOI: 10.1002/hbm.26535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 02/24/2024] Open
Abstract
While there is growing interest in the use of functional magnetic resonance imaging-functional connectivity (fMRI-FC) for biomarker research, low measurement reliability of conventional acquisitions may limit applications. Factors known to impact FC reliability include scan length, head motion, signal properties, such as temporal signal-to-noise ratio (tSNR), and the acquisition state or task. As tasks impact signal in a region-wise fashion, they likely impact FC reliability differently across the brain, making task an important decision in study design. Here, we use the densely sampled Midnight Scan Club (MSC) dataset, comprising 5 h of rest and 6 h of task fMRI data in 10 healthy adults, to investigate regional effects of tasks on FC reliability. We further considered how BOLD signal properties contributing to tSNR, that is, temporal mean signal (tMean) and temporal standard deviation (tSD), vary across the brain, associate with FC reliability, and are modulated by tasks. We found that, relative to rest, tasks enhanced FC reliability and increased tSD for specific task-engaged regions. However, FC signal variability and reliability is broadly dampened during tasks outside task-engaged regions. From our analyses, we observed signal variability was the strongest driver of FC reliability. Overall, our findings suggest that the choice of task can have an important impact on reliability and should be considered in relation to maximizing reliability in networks of interest as part of study design.
Collapse
Affiliation(s)
- Shefali Rai
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of NeuroscienceUniversity of CalgaryCalgaryAlbertaCanada
| | - Kirk Graff
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of NeuroscienceUniversity of CalgaryCalgaryAlbertaCanada
| | - Ryann Tansey
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of NeuroscienceUniversity of CalgaryCalgaryAlbertaCanada
| | - Signe Bray
- Child and Adolescent Imaging Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of RadiologyUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
2
|
Cho JW, Korchmaros A, Vogelstein JT, Milham MP, Xu T. Impact of concatenating fMRI data on reliability for functional connectomics. Neuroimage 2021; 226:117549. [PMID: 33248255 PMCID: PMC7983579 DOI: 10.1016/j.neuroimage.2020.117549] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
Compelling evidence suggests the need for more data per individual to reliably map the functional organization of the human connectome. As the notion that 'more data is better' emerges as a golden rule for functional connectomics, researchers find themselves grappling with the challenges of how to obtain the desired amounts of data per participant in a practical manner, particularly for retrospective data aggregation. Increasingly, the aggregation of data across all fMRI scans available for an individual is being viewed as a solution, regardless of scan condition (e.g., rest, task, movie). A number of open questions exist regarding the aggregation process and the impact of different decisions on the reliability of resultant aggregate data. We leveraged the availability of highly sampled test-retest datasets to systematically examine the impact of data aggregation strategies on the reliability of cortical functional connectomics. Specifically, we compared functional connectivity estimates derived after concatenating from: 1) multiple scans under the same state, 2) multiple scans under different states (i.e. hybrid or general functional connectivity), and 3) subsets of one long scan. We also varied connectivity processing (i.e. global signal regression, ICA-FIX, and task regression) and estimation procedures. When the total number of time points is equal, and the scan state held constant, concatenating multiple shorter scans had a clear advantage over a single long scan. However, this was not necessarily true when concatenating across different fMRI states (i.e. task conditions), where the reliability from the aggregate data varied across states. Concatenating fewer numbers of states that are more reliable tends to yield higher reliability. Our findings provide an overview of multiple dependencies of data concatenation that should be considered to optimize reliability in analysis of functional connectivity data.
Collapse
Affiliation(s)
- Jae Wook Cho
- The Child Mind Institute, 101 East 56th Street, New York, NY 10022, United States
| | | | - Joshua T Vogelstein
- Department of Biomedical Engineering, Institute for Computational Medicine, Kavli Neuroscience Discovery Institute, Johns Hopkins University, 3400N. Charles St Baltimore, MD 21218, United States
| | - Michael P Milham
- The Child Mind Institute, 101 East 56th Street, New York, NY 10022, United States
| | - Ting Xu
- The Child Mind Institute, 101 East 56th Street, New York, NY 10022, United States.
| |
Collapse
|
3
|
Liu X, Shen Y, Liu J, Yang J, Xiong P, Lin F. Parallel Spatial-Temporal Self-Attention CNN-Based Motor Imagery Classification for BCI. Front Neurosci 2020; 14:587520. [PMID: 33362458 PMCID: PMC7759669 DOI: 10.3389/fnins.2020.587520] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022] Open
Abstract
Motor imagery (MI) electroencephalography (EEG) classification is an important part of the brain-computer interface (BCI), allowing people with mobility problems to communicate with the outside world via assistive devices. However, EEG decoding is a challenging task because of its complexity, dynamic nature, and low signal-to-noise ratio. Designing an end-to-end framework that fully extracts the high-level features of EEG signals remains a challenge. In this study, we present a parallel spatial–temporal self-attention-based convolutional neural network for four-class MI EEG signal classification. This study is the first to define a new spatial-temporal representation of raw EEG signals that uses the self-attention mechanism to extract distinguishable spatial–temporal features. Specifically, we use the spatial self-attention module to capture the spatial dependencies between the channels of MI EEG signals. This module updates each channel by aggregating features over all channels with a weighted summation, thus improving the classification accuracy and eliminating the artifacts caused by manual channel selection. Furthermore, the temporal self-attention module encodes the global temporal information into features for each sampling time step, so that the high-level temporal features of the MI EEG signals can be extracted in the time domain. Quantitative analysis shows that our method outperforms state-of-the-art methods for intra-subject and inter-subject classification, demonstrating its robustness and effectiveness. In terms of qualitative analysis, we perform a visual inspection of the new spatial–temporal representation estimated from the learned architecture. Finally, the proposed method is employed to realize control of drones based on EEG signal, verifying its feasibility in real-time applications.
Collapse
Affiliation(s)
- Xiuling Liu
- College of Electronic Information Engineering, Hebei University, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
| | - Yonglong Shen
- College of Electronic Information Engineering, Hebei University, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
| | - Jing Liu
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China.,College of Computer and Cyber Security, Hebei Normal University, Shijiazhuang, China.,Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Jianli Yang
- College of Electronic Information Engineering, Hebei University, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
| | - Peng Xiong
- College of Electronic Information Engineering, Hebei University, Baoding, China.,Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
| | - Feng Lin
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|