1
|
Madore B, Belsley G, Cheng CC, Preiswerk F, Foley Kijewski M, Wu PH, Martell LB, Pluim JPW, Di Carli M, Moore SC. Ultrasound-based sensors for respiratory motion assessment in multimodality PET imaging. Phys Med Biol 2021; 67. [PMID: 34891142 DOI: 10.1088/1361-6560/ac4213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
Breathing motion can displace internal organs by up to several cm; as such, it is a primary factor limiting image quality in medical imaging. Motion can also complicate matters when trying to fuse images from different modalities, acquired at different locations and/or on different days. Currently available devices for monitoring breathing motion often do so indirectly, by detecting changes in the outline of the torso rather than the internal motion itself, and these devices are often fixed to floors, ceilings or walls, and thus cannot accompany patients from one location to another. We have developed small ultrasound-based sensors, referred to as 'organ configuration motion' (OCM) sensors, that attach to the skin and provide rich motion-sensitive information. In the present work we tested the ability of OCM sensors to enable respiratory gating during in vivo PET imaging. A motion phantom involving an FDG solution was assembled, and two cancer patients scheduled for a clinical PET/CT exam were recruited for this study. OCM signals were used to help reconstruct phantom and in vivo data into time series of motion-resolved images. As expected, the motion-resolved images captured the underlying motion. In Patient #1, a single large lesion proved to be mostly stationary through the breathing cycle. However, in Patient #2, several small lesions were mobile during breathing, and our proposed new approach captured their breathing-related displacements. In summary, a relatively inexpensive hardware solution was developed here for respiration monitoring. Because the proposed sensors attach to the skin, as opposed to walls or ceilings, they can accompany patients from one procedure to the next, potentially allowing data gathered in different places and at different times to be combined and compared in ways that account for breathing motion.
Collapse
Affiliation(s)
- Bruno Madore
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Gabriela Belsley
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxford, OX3 9DU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Cheng-Chieh Cheng
- Computer Science and Engineering, National Sun Yat-sen University, 70 Lianhai Road, Kaohsiung, 804, TAIWAN
| | - Frank Preiswerk
- Amazon Robotics, Westborough, MA, USA, Amazon Robotics, 50 Otis St, Westborough, Massachusetts, 01581, UNITED STATES
| | - Marie Foley Kijewski
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Pei-Hsin Wu
- Electrical Engineering, National Sun Yat-sen University, 70 Lianhai Road, Kaohsiung, 804, TAIWAN
| | - Laurel B Martell
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Josien P W Pluim
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, Eindhoven, PO Box 513, NETHERLANDS
| | - Marcelo Di Carli
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Stephen C Moore
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, Pennsylvania, 19104, UNITED STATES
| |
Collapse
|
2
|
Madore B, Preiswerk F, Bredfeldt JS, Zong S, Cheng CC. Ultrasound-based sensors to monitor physiological motion. Med Phys 2021; 48:3614-3622. [PMID: 33999423 DOI: 10.1002/mp.14949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 12/28/2020] [Accepted: 05/01/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Medical procedures can be difficult to perform on anatomy that is constantly moving. Respiration displaces internal organs by up to several centimeters with respect to the surface of the body, and patients often have limited ability to hold their breath. Strategies to compensate for motion during diagnostic and therapeutic procedures require reliable information to be available. However, current devices often monitor respiration indirectly, through changes on the outline of the body, and they may be fixed to floors or ceilings, and thus unable to follow a given patient through different locations. Here we show that small ultrasound-based sensors referred to as "organ configuration motion" (OCM) sensors can be fixed to the abdomen and/or chest and provide information-rich, breathing-related signals. METHODS By design, the proposed sensors are relatively inexpensive. Breathing waveforms were obtained from tissues at varying depths and/or using different sensor placements. Validation was performed against breathing waveforms derived from magnetic resonance imaging (MRI) and optical tracking signals in five and eight volunteers, respectively. RESULTS Breathing waveforms from different modalities were scaled so they could be directly compared. Differences between waveforms were expressed in the form of a percentage, as compared to the amplitude of a typical breath. Expressed in this manner, for shallow tissues, OCM-derived waveforms on average differed from MRI and optical tracking results by 13.1% and 15.5%, respectively. CONCLUSION The present results suggest that the proposed sensors provide measurements that properly characterize breathing states. While OCM-based waveforms from shallow tissues proved similar in terms of information content to those derived from MRI or optical tracking, OCM further captured depth-dependent and position-dependent (i.e., chest and abdomen) information. In time, the richer information content of OCM-based waveforms may enable better respiratory gating to be performed, to allow diagnostic and therapeutic equipment to perform at their best.
Collapse
Affiliation(s)
- Bruno Madore
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frank Preiswerk
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Amazon Robotics, North Reading, MA, USA
| | - Jeremy S Bredfeldt
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shenyan Zong
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cheng-Chieh Cheng
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Büther F, Ernst I, Frohwein LJ, Pouw J, Schäfers KP, Stegger L. Data-driven gating in PET: Influence of respiratory signal noise on motion resolution. Med Phys 2018; 45:3205-3213. [PMID: 29782653 DOI: 10.1002/mp.12987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Data-driven gating (DDG) approaches for positron emission tomography (PET) are interesting alternatives to conventional hardware-based gating methods. In DDG, the measured PET data themselves are utilized to calculate a respiratory signal, that is, subsequently used for gating purposes. The success of gating is then highly dependent on the statistical quality of the PET data. In this study, we investigate how this quality determines signal noise and thus motion resolution in clinical PET scans using a center-of-mass-based (COM) DDG approach, specifically with regard to motion management of target structures in future radiotherapy planning applications. METHODS PET list mode datasets acquired in one bed position of 19 different radiotherapy patients undergoing pretreatment [18 F]FDG PET/CT or [18 F]FDG PET/MRI were included into this retrospective study. All scans were performed over a region with organs (myocardium, kidneys) or tumor lesions of high tracer uptake and under free breathing. Aside from the original list mode data, datasets with progressively decreasing PET statistics were generated. From these, COM DDG signals were derived for subsequent amplitude-based gating of the original list mode file. The apparent respiratory shift d from end-expiration to end-inspiration was determined from the gated images and expressed as a function of signal-to-noise ratio SNR of the determined gating signals. This relation was tested against additional 25 [18 F]FDG PET/MRI list mode datasets where high-precision MR navigator-like respiratory signals were available as reference signal for respiratory gating of PET data, and data from a dedicated thorax phantom scan. RESULTS All original 19 high-quality list mode datasets demonstrated the same behavior in terms of motion resolution when reducing the amount of list mode events for DDG signal generation. Ratios and directions of respiratory shifts between end-respiratory gates and the respective nongated image were constant over all statistic levels. Motion resolution d/dmax could be modeled as d/dmax=1-e-1.52(SNR-1)0.52, with dmax as the actual respiratory shift. Determining dmax from d and SNR in the 25 test datasets and the phantom scan demonstrated no significant differences to the MR navigator-derived shift values and the predefined shift, respectively. CONCLUSIONS The SNR can serve as a general metric to assess the success of COM-based DDG, even in different scanners and patients. The derived formula for motion resolution can be used to estimate the actual motion extent reasonably well in cases of limited PET raw data statistics. This may be of interest for individualized radiotherapy treatment planning procedures of target structures subjected to respiratory motion.
Collapse
Affiliation(s)
- Florian Büther
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Münster, 48149, Germany
| | - Iris Ernst
- German CyberKnife Centre, Senator-Schwartz-Ring 8, Soest, 59494, Germany
| | - Lynn Johann Frohwein
- European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, Münster, 48149, Germany
| | - Joost Pouw
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Münster, 48149, Germany.,Magnetic Detection and Imaging Group, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Klaus Peter Schäfers
- European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, Münster, 48149, Germany
| | - Lars Stegger
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Münster, 48149, Germany
| |
Collapse
|
4
|
Salomon A, Zhang B, Olivier P, Goedicke A. Robust real-time extraction of respiratory signals from PET list-mode data. Phys Med Biol 2018; 63:115009. [PMID: 29714707 DOI: 10.1088/1361-6560/aac1ac] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Respiratory motion, which typically cannot simply be suspended during PET image acquisition, affects lesions' detection and quantitative accuracy inside or in close vicinity to the lungs. Some motion compensation techniques address this issue via pre-sorting ('binning') of the acquired PET data into a set of temporal gates, where each gate is assumed to be minimally affected by respiratory motion. Tracking respiratory motion is typically realized using dedicated hardware (e.g. using respiratory belts and digital cameras). Extracting respiratory signals directly from the acquired PET data simplifies the clinical workflow as it avoids handling additional signal measurement equipment. We introduce a new data-driven method 'combined local motion detection' (CLMD). It uses the time-of-flight (TOF) information provided by state-of-the-art PET scanners in order to enable real-time respiratory signal extraction without additional hardware resources. CLMD applies center-of-mass detection in overlapping regions based on simple back-positioned TOF event sets acquired in short time frames. Following a signal filtering and quality-based pre-selection step, the remaining extracted individual position information over time is then combined to generate a global respiratory signal. The method is evaluated using seven measured FDG studies from single and multiple scan positions of the thorax region, and it is compared to other software-based methods regarding quantitative accuracy and statistical noise stability. Correlation coefficients around 90% between the reference and the extracted signal have been found for those PET scans where motion affected features such as tumors or hot regions were present in the PET field-of-view. For PET scans with a quarter of typically applied radiotracer doses, the CLMD method still provides similar high correlation coefficients which indicates its robustness to noise. Each CLMD processing needed less than 0.4 s in total on a standard multi-core CPU and thus provides a robust and accurate approach enabling real-time processing capabilities using standard PC hardware.
Collapse
Affiliation(s)
- André Salomon
- Philips, Department of Oncology Solutions, High Tech Campus 34, 5656 AE Eindhoven, Netherlands
| | | | | | | |
Collapse
|