1
|
Zopf LM, Heimel P, Geyer SH, Kavirayani A, Reier S, Fröhlich V, Stiglbauer-Tscholakoff A, Chen Z, Nics L, Zinnanti J, Drexler W, Mitterhauser M, Helbich T, Weninger WJ, Slezak P, Obenauf A, Bühler K, Walter A. Cross-Modality Imaging of Murine Tumor Vasculature-a Feasibility Study. Mol Imaging Biol 2021. [PMID: 34101107 DOI: 10.1007/s11307-021-01615-y/figures/6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Tumor vasculature and angiogenesis play a crucial role in tumor progression. Their visualization is therefore of utmost importance to the community. In this proof-of-principle study, we have established a novel cross-modality imaging (CMI) pipeline to characterize exactly the same murine tumors across scales and penetration depths, using orthotopic models of melanoma cancer. This allowed the acquisition of a comprehensive set of vascular parameters for a single tumor. The workflow visualizes capillaries at different length scales, puts them into the context of the overall tumor vessel network and allows quantification and comparison of vessel densities and morphologies by different modalities. The workflow adds information about hypoxia and blood flow rates. The CMI approach includes well-established technologies such as magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), and ultrasound (US), and modalities that are recent entrants into preclinical discovery such as optical coherence tomography (OCT) and high-resolution episcopic microscopy (HREM). This novel CMI platform establishes the feasibility of combining these technologies using an extensive image processing pipeline. Despite the challenges pertaining to the integration of microscopic and macroscopic data across spatial resolutions, we also established an open-source pipeline for the semi-automated co-registration of the diverse multiscale datasets, which enables truly correlative vascular imaging. Although focused on tumor vasculature, our CMI platform can be used to tackle a multitude of research questions in cancer biology.
Collapse
Affiliation(s)
- Lydia M Zopf
- Austrian BioImaging/CMI, Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center, Austrian BioImaging/CMI, Vienna, Austria
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, University Clinic of Dentistry, Medical University Vienna, Vienna, Austria
| | - Stefan H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Austrian BioImaging/CMI, Vienna, Austria
| | - Anoop Kavirayani
- Austrian BioImaging/CMI, Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Susanne Reier
- Austrian BioImaging/CMI, Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Vanessa Fröhlich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Alexander Stiglbauer-Tscholakoff
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Zhe Chen
- Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Medical University of Vienna, Vienna, Austria
| | - Jelena Zinnanti
- Austrian BioImaging/CMI, Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | | | - Markus Mitterhauser
- Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Thomas Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Weninger
- Division of Anatomy, MIC, Medical University of Vienna, Austrian BioImaging/CMI, Vienna, Austria
| | - Paul Slezak
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center, Austrian BioImaging/CMI, Vienna, Austria
| | - Anna Obenauf
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Katja Bühler
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Austrian BioImaging/CMI, Vienna, Austria
| | - Andreas Walter
- Austrian BioImaging/CMI, Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria.
| |
Collapse
|
2
|
Zopf LM, Heimel P, Geyer SH, Kavirayani A, Reier S, Fröhlich V, Stiglbauer-Tscholakoff A, Chen Z, Nics L, Zinnanti J, Drexler W, Mitterhauser M, Helbich T, Weninger WJ, Slezak P, Obenauf A, Bühler K, Walter A. Cross-Modality Imaging of Murine Tumor Vasculature-a Feasibility Study. Mol Imaging Biol 2021; 23:874-893. [PMID: 34101107 PMCID: PMC8578087 DOI: 10.1007/s11307-021-01615-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022]
Abstract
Tumor vasculature and angiogenesis play a crucial role in tumor progression. Their visualization is therefore of utmost importance to the community. In this proof-of-principle study, we have established a novel cross-modality imaging (CMI) pipeline to characterize exactly the same murine tumors across scales and penetration depths, using orthotopic models of melanoma cancer. This allowed the acquisition of a comprehensive set of vascular parameters for a single tumor. The workflow visualizes capillaries at different length scales, puts them into the context of the overall tumor vessel network and allows quantification and comparison of vessel densities and morphologies by different modalities. The workflow adds information about hypoxia and blood flow rates. The CMI approach includes well-established technologies such as magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), and ultrasound (US), and modalities that are recent entrants into preclinical discovery such as optical coherence tomography (OCT) and high-resolution episcopic microscopy (HREM). This novel CMI platform establishes the feasibility of combining these technologies using an extensive image processing pipeline. Despite the challenges pertaining to the integration of microscopic and macroscopic data across spatial resolutions, we also established an open-source pipeline for the semi-automated co-registration of the diverse multiscale datasets, which enables truly correlative vascular imaging. Although focused on tumor vasculature, our CMI platform can be used to tackle a multitude of research questions in cancer biology.
Collapse
Affiliation(s)
- Lydia M Zopf
- Austrian BioImaging/CMI, Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center, Austrian BioImaging/CMI, Vienna, Austria.,Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, University Clinic of Dentistry, Medical University Vienna, Vienna, Austria
| | - Stefan H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Austrian BioImaging/CMI, Vienna, Austria
| | - Anoop Kavirayani
- Austrian BioImaging/CMI, Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Susanne Reier
- Austrian BioImaging/CMI, Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Vanessa Fröhlich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Alexander Stiglbauer-Tscholakoff
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Zhe Chen
- Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Medical University of Vienna, Vienna, Austria
| | - Jelena Zinnanti
- Austrian BioImaging/CMI, Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | | | - Markus Mitterhauser
- Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Thomas Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Weninger
- Division of Anatomy, MIC, Medical University of Vienna, Austrian BioImaging/CMI, Vienna, Austria
| | - Paul Slezak
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center, Austrian BioImaging/CMI, Vienna, Austria
| | - Anna Obenauf
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Katja Bühler
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Austrian BioImaging/CMI, Vienna, Austria
| | - Andreas Walter
- Austrian BioImaging/CMI, Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria.
| |
Collapse
|
3
|
Golla AK, Bauer DF, Schmidt R, Russ T, Norenberg D, Chung K, Tonnes C, Schad LR, Zollner FG. Convolutional Neural Network Ensemble Segmentation With Ratio-Based Sampling for the Arteries and Veins in Abdominal CT Scans. IEEE Trans Biomed Eng 2021; 68:1518-1526. [DOI: 10.1109/tbme.2020.3042640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Mistelbauer G, Morar A, Schernthaner R, Strassl A, Fleischmann D, Moldoveanu F, Gröller ME. Semi-automatic vessel detection for challenging cases of peripheral arterial disease. Comput Biol Med 2021; 133:104344. [PMID: 33915360 DOI: 10.1016/j.compbiomed.2021.104344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Manual or semi-automated segmentation of the lower extremity arterial tree in patients with Peripheral arterial disease (PAD) remains a notoriously difficult and time-consuming task. The complex manifestations of the disease, including discontinuities of the vascular flow channels, the presence of calcified atherosclerotic plaque in close vicinity to adjacent bone, and the presence of metal or other imaging artifacts currently preclude fully automated vessel identification. New machine learning techniques may alleviate this challenge, but require large and reasonably well segmented training data. METHODS We propose a novel semi-automatic vessel tracking approach for peripheral arteries to facilitate and accelerate the creation of annotated training data by expert cardiovascular radiologists or technologists, while limiting the number of necessary manual interactions, and reducing processing time. After automatically classifying blood vessels, bones, and other tissue, the relevant vessels are tracked and organized in a tree-like structure for further visualization. RESULTS We conducted a pilot (N = 9) and a clinical study (N = 24) in which we assess the accuracy and required time for our approach to achieve sufficient quality for clinical application, with our current clinically established workflow as the standard of reference. Our approach enabled expert physicians to readily identify all clinically relevant lower extremity arteries, even in problematic cases, with an average sensitivity of 92.9%, and an average specificity and overall accuracy of 99.9%. CONCLUSIONS Compared to the clinical workflow in our collaborating hospitals (28:40 ± 7:45 [mm:ss]), our approach (17:24 ± 6:44 [mm:ss]) is on average 11:16 [mm:ss] (39%) faster.
Collapse
Affiliation(s)
- Gabriel Mistelbauer
- Department of Simulation and Graphics, Otto-von-Guericke University Magdeburg, Germany.
| | - Anca Morar
- Department of Computer Science, University Politehnica of Bucharest, Romania.
| | | | - Andreas Strassl
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria.
| | - Dominik Fleischmann
- Department of Radiology, Stanford University School of Medicine, Stanford, USA.
| | - Florica Moldoveanu
- Department of Computer Science, University Politehnica of Bucharest, Romania.
| | - M Eduard Gröller
- Institute of Visual Computing and Human-Centered Technology, TU Wien, Austria; VRVis Research Center, Austria.
| |
Collapse
|