1
|
Sánchez‐Rubio P, Rodríguez‐Romero R, Pinto‐Monedero M, Alejo‐Luque L, Martínez‐Ortega J. New findings on clinical experience on surface-guided radiotherapy for frameless non-coplanar stereotactic radiosurgery treatments. J Appl Clin Med Phys 2024; 25:e14510. [PMID: 39287562 PMCID: PMC11633809 DOI: 10.1002/acm2.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
PURPOSE The aim of this study was to assess the accuracy of a surface-guided radiotherapy (SGRT) system for setup and intra-fraction motion control in frameless non-coplanar stereotactic radiosurgery (fSRS) using actual patient data immobilized with two different types of open-faced masks and employing a novel SGRT systems settings. METHODS AND MATERIALS Forty-four SRS patients were immobilized with two types of open-faced masks. Sixty lesions were treated, involving the analysis of 68 cone-beam scans (CBCT), 157 megavoltage (MV) images, and 521 SGRT monitoring sessions. The average SGRT translations/rotations and 3D vectors (MAG-Trasl and MAG-Rot) were compared with CBCT or antero-posterior MV images for 0° table or non-coplanar beams, respectively. The intrafraction control was evaluated based on the average shifts obtained from each monitoring session. To assess the association between the SGRT system and the CBCT, the two types of masks and the 3D vectors, a generalized estimating equations (GEE) regression analysis was performed. The Wilcoxon singed-rank test for paired samples was performed to detect differences in couch rotation with longitudinal (LNG) and lateral (LAT) translations and/or yaw. RESULTS The average SGRT corrections were smaller than those detected by CBCT (≤0.5 mm and 0.1°), with largest differences in LNG and yaw. The GEE analysis indicated that the average MAG-Trasl, obtained by the SGRT system, was not statistically different (p = 0.09) for both mask types, while, the MAG-Rot was different (p = 0.01). For non-coplanar beams, the Wilcoxon singed-rank test demonstrated no significantly differences for the corrections (LNG, LAT, and yaw) for any table rotation except for LNG corrections at 65° (p = 0.04) and 75° (p = 0.03) table angle position; LAT shifts at 65° (p = 0.03) and 270° (p < 0.001) table angle position, and yaw rotation at 30° (p = 0.02) table angle position. The average intrafraction motion was < 0.1 mm and 0.1° for any table angle. CONCLUSION The SGRT system used, along with the novel workflow performed, can achieve the setup and intra-fraction motion control accuracy required to perform non-coplanar fSRS treatments. Both masks ensure the accuracy required for fSRS while providing a suitable surface for monitoring.
Collapse
Affiliation(s)
- Patricia Sánchez‐Rubio
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Ruth Rodríguez‐Romero
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - María Pinto‐Monedero
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Luis Alejo‐Luque
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Jaime Martínez‐Ortega
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| |
Collapse
|
2
|
Zheng L, Xu C, Wang T, Cheng Y, Christy YB, Li H, Cheng J, Peng G, Guo Q. Low energy X-ray dosimeter based on LYSO:Ce fluorescent powder. APPLIED OPTICS 2023; 62:2734-2739. [PMID: 37133113 DOI: 10.1364/ao.486050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) powder has been synthesized by the co-precipitation method. The influence of the Ce3+ doping concentration on the lattice structure and luminescence characteristics of LYSO:Ce powder was investigated by X-ray diffraction (XRD) and photoluminescence (PL). The XRD measurement indicates that the lattice structure of LYSO:Ce powder was not changed by doping ions. PL results show that LYSO:Ce powder has better luminescence performance when the Ce doping concentration is 0.3 mol%. In addition, the fluorescence lifetime of the samples was measured, and the results show that LYSO:Ce has a short decay time. The radiation dosimeter was prepared by LYSO:Ce powder with a Ce doping concentration of 0.3 mol%. Radioluminescence properties of the radiation dosimeter also were studied under X-ray irradiation at doses from 0.03 to 0.76 Gy, with dose rate from 0.09 to 2.284 Gy/min. The results show that the dosimeter has a certain linear relationship response and stability. The radiation responses of the dosimeter at different energies were obtained under X-ray irradiation with X-ray tube voltages ranging from 20 to 80 kV. The results show that the dosimeter has a certain linear relationship response in the low energy range of radiotherapy. These results indicate the potential application of LYSO:Ce powder dosimeters in remote radiotherapy and online radiation monitoring.
Collapse
|
3
|
Li G. Advances and potential of optical surface imaging in radiotherapy. Phys Med Biol 2022; 67:10.1088/1361-6560/ac838f. [PMID: 35868290 PMCID: PMC10958463 DOI: 10.1088/1361-6560/ac838f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/22/2022] [Indexed: 11/12/2022]
Abstract
This article reviews the recent advancements and future potential of optical surface imaging (OSI) in clinical applications as a four-dimensional (4D) imaging modality for surface-guided radiotherapy (SGRT), including OSI systems, clinical SGRT applications, and OSI-based clinical research. The OSI is a non-ionizing radiation imaging modality, offering real-time 3D surface imaging with a large field of view (FOV), suitable for in-room interactive patient setup, and real-time motion monitoring at any couch rotation during radiotherapy. So far, most clinical SGRT applications have focused on treating superficial breast cancer or deep-seated brain cancer in rigid anatomy, because the skin surface can serve as tumor surrogates in these two clinical scenarios, and the procedures for breast treatments in free-breathing (FB) or at deep-inspiration breath-hold (DIBH), and for cranial stereotactic radiosurgery (SRS) and radiotherapy (SRT) are well developed. When using the skin surface as a body-position surrogate, SGRT promises to replace the traditional tattoo/laser-based setup. However, this requires new SGRT procedures for all anatomical sites and new workflows from treatment simulation to delivery. SGRT studies in other anatomical sites have shown slightly higher accuracy and better performance than a tattoo/laser-based setup. In addition, radiographical image-guided radiotherapy (IGRT) is still necessary, especially for stereotactic body radiotherapy (SBRT). To go beyond the external body surface and infer an internal tumor motion, recent studies have shown the clinical potential of OSI-based spirometry to measure dynamic tidal volume as a tumor motion surrogate, and Cherenkov surface imaging to guide and assess treatment delivery. As OSI provides complete datasets of body position, deformation, and motion, it offers an opportunity to replace fiducial-based optical tracking systems. After all, SGRT has great potential for further clinical applications. In this review, OSI technology, applications, and potential are discussed since its first introduction to radiotherapy in 2005, including technical characterization, different commercial systems, and major clinical applications, including conventional SGRT on top of tattoo/laser-based alignment and new SGRT techniques attempting to replace tattoo/laser-based setup. The clinical research for OSI-based tumor tracking is reviewed, including OSI-based spirometry and OSI-guided tumor tracking models. Ongoing clinical research has created more SGRT opportunities for clinical applications beyond the current scope.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States of America
| |
Collapse
|
4
|
Jia M, Yang Y, Wu Y, Li X, Xing L, Wang L. Deep learning-augmented radioluminescence imaging for radiotherapy dose verification. Med Phys 2021; 48:6820-6831. [PMID: 34523131 DOI: 10.1002/mp.15229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 07/15/2021] [Accepted: 09/05/2021] [Indexed: 11/12/2022] Open
Abstract
PURPOSE We developed a novel dose verification method using a camera-based radioluminescence imaging system (CRIS) combined with a deep learning-based signal processing technique. METHODS The CRIS consists of a cylindrical chamber coated with scintillator material on the inner surface of the cylinder, coupled with a hemispherical mirror and a digital camera at the two ends. After training, the deep learning model is used for image-to-dose conversion to provide absolute dose prediction at multiple depths of a specific water phantom from a single CRIS image under the assumption of a good consistency between the TPS setting and actual beam energy. The model was trained using a set of captured radioluminescence images and the corresponding dose maps from the clinical treatment planning system (TPS) for the sake of acceptable data collection. To overcome the latent error and inconsistency that exists between the TPS calculation and the corresponding measurement, the model was trained in an unsupervised manner. Validation experiments were performed on five square fields (ranging from 2 × 2 to 10 × 10 cm2 ) and three clinical intensity-modulated radiation therapy (IMRT) cases. The results were compared to the TPS calculations in terms of gamma index at 1.5, 5, and 10 cm depths. RESULTS The mean 2%/2 mm gamma pass rates were 100% for square fields and 97.2% (range from 95.5% to 99.5%) for the IMRT fields. Further validations were performed by comparing the CRIS results with measurements on various regular fields. The results show a mean gamma pass rate of 91% (1%/1 mm) for cross-profiles and a mean percentage deviation of 1.15% for percentage depth doses (PDDs). CONCLUSIONS The system is capable of converting the irradiated radioluminescence image to corresponding water-based dose maps at multiple depths with a spatial resolution comparable to the TPS calculations.
Collapse
Affiliation(s)
- Mengyu Jia
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Yong Yang
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Yan Wu
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Xiaomeng Li
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Lei Wang
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Andreozzi JM, Brůža P, Cammin J, Alexander DA, Pogue BW, Green O, Gladstone DJ. Optical emission-based phantom to verify coincidence of radiotherapy and imaging isocenters on an MR-linac. J Appl Clin Med Phys 2021; 22:252-261. [PMID: 34409766 PMCID: PMC8425893 DOI: 10.1002/acm2.13377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/03/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose Demonstrate a novel phantom design using a remote camera imaging method capable of concurrently measuring the position of the x‐ray isocenter and the magnetic resonance imaging (MRI) isocenter on an MR‐linac. Methods A conical frustum with distinct geometric features was machined out of plastic. The phantom was submerged in a small water tank, and aligned using room lasers on a MRIdian MR‐linac (ViewRay Inc., Cleveland, OH). The phantom physical isocenter was visualized in the MR images and related to the DICOM coordinate isocenter. To view the x‐ray isocenter, an intensified CMOS camera system (DoseOptics LLC., Hanover, NH) was placed at the foot of the treatment couch, and centered such that the optical axis of the camera was coincident with the central axis of the treatment bore. Two or four 8.3mm x 24.1cm beams irradiated the phantom from cardinal directions, producing an optical ring on the conical surface of the phantom. The diameter of the ring, measured at the peak intensity, was compared to the known diameter at the position of irradiation to determine the Z‐direction offset of the beam. A star‐shot method was employed on the front face of the frustum to determine X‐Y alignment of the MV beam. Known shifts were applied to the phantom to establish the sensitivity of the method. Results Couch translations, demonstrative of possible isocenter misalignments, on the order of 1mm were detectable for both the radiotherapy and MRI isocenters. Data acquired on the MR‐linac demonstrated an average error of 0.28mm(N=10, R2=0.997, σ=0.37mm) in established Z displacement, and 0.10mm(N=5, σ=0.34mm) in XY directions of the radiotherapy isocenter. Conclusions The phantom was capable of measuring both the MRI and radiotherapy treatment isocenters. This method has the potential to be of use in MR‐linac commissioning, and could be streamlined to be valuable in daily constancy checks of isocenter coincidence.
Collapse
Affiliation(s)
- Jacqueline M Andreozzi
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA.,Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Petr Brůža
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Jochen Cammin
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel A Alexander
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Brian W Pogue
- Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire, USA
| | - Olga Green
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David J Gladstone
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Geisel School of Medicine, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
6
|
Tsuneda M, Nishio T, Ezura T, Karasawa K. Plastic scintillation dosimeter with a conical mirror for measuring 3D dose distribution. Med Phys 2021; 48:5639-5650. [PMID: 34389992 DOI: 10.1002/mp.15164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/22/2021] [Accepted: 08/01/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To test the measurement technique of the three-dimensional (3D) dose distribution measured image by capturing the scintillation light generated using a plastic scintillator and a scintillating screen. METHODS Our imaging system constituted a column shaped plastic scintillator covered by a Gd2 O2 S:Tb scintillating screen, a conical mirror and a cooled CCD camera. The scintillator was irradiated with 6 MV photon beams. Meanwhile, the irradiated plan was prepared for the static field plans, two-field plan (2F plan) and the conformal arc plan (CA plan). The 2F plan contained 16 mm2 and 10 mm2 fields irradiated from gantry angles of 0° and 25°, respectively. The gantry was rotated counterclockwise from 45° to 315° for the CA plan. The field size was then obtained as 10 mm2 . A Monte Carlo simulation was performed in the experimental geometry to obtain the calculated 3D dose distribution as the reference data. Dose response was acquired by comparing between the reference and the measurement. The dose rate dependence was verified by irradiating the same MU value at different dose rates ranging from 100 to 600 MU/min. Deconvolution processing was applied to the measured images for the correction of light blurring. The measured 3D dose distribution was reconstructed from each measured image. Gamma analysis was performed to these 3D dose distributions. The gamma criteria were 3% for the dose difference, 2 mm for the distance-to-agreement and 10% for the threshold. RESULTS Dose response for the scintillation light was linear. The variation in the light intensity for the dose rate ranging from 100 to 600 MU/min was less than 0.5%, while our system presents dose rate independence. For the 3D dose measurement, blurring of light through deconvolution processing worked well. The 3D gamma passing rate (3D GPR) for the 10 × 10 mm2 , 16 × 16 mm2 , and 20 × 20 mm2 fields were observed to be 99.3%, 98.8%, and 97.8%, respectively. Reproducibility of measurement was verified. The 3D GPR results for the 2F plan and the CA plan were 99.7% and 100%, respectively. CONCLUSIONS We developed a plastic scintillation dosimeter and demonstrated that our system concept can act as a suitable technique for measuring the 3D dose distribution from the gamma results. In the future, we will attempt to measure the 4D dose distribution for clinical volumetric modulated arc radiation therapy (VMAT)-SBRTplans.
Collapse
Affiliation(s)
- Masato Tsuneda
- Department of Radiation Oncology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Teiji Nishio
- Department of Medical Physics, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Takatomo Ezura
- Division of Radiation Medical Physics, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kumiko Karasawa
- Department of Radiation Oncology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
7
|
Wang M, Samant P, Wang S, Merill J, Chen Y, Ahmad S, Li D, Xiang L. Towards in vivo Dosimetry for Prostate Radiotherapy with a Transperineal Ultrasound Array: A Simulation Study. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:373-382. [PMID: 33969250 PMCID: PMC8104130 DOI: 10.1109/trpms.2020.3015109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X-ray-induced acoustic computed tomography (XACT) is a promising imaging modality to monitor the position of the radiation beam and the deposited dose during external beam radiotherapy delivery. The purpose of this study was to investigate the feasibility of using a transperineal ultrasound transducer array for XACT imaging to guide the prostate radiotherapy. A customized two-dimensional (2D) matrix ultrasound transducer array with 10000 (100×100 elements) ultrasonic sensors with a central frequency of 1 MHz was designed on a 5 cm×5 cm plane to optimize three-dimensional (3D) volumetric imaging. The CT scan and dose treatment plan for a prostate patient undergoing intensity modulated radiation therapy (IMRT) were obtained. In-house simulation was developed to model the time varying X-ray induced acoustic (XA) signals detected by the transperineal ultrasound array. A 3D filtered back projection (FBP) algorithm has been used for 3D XACT image reconstruction. Results of this study will greatly enhance the potential of XACT imaging for real time in vivo dosimetry during radiotherapy.
Collapse
Affiliation(s)
- Mengxiao Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250358, China
| | - Pratik Samant
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Siqi Wang
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Jack Merill
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma city, OK, USA
| | - Salahuddin Ahmad
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma city, OK, USA
| | - Dengwang Li
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250358, China
| | - Liangzhong Xiang
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
8
|
Ashraf M, Rahman M, Zhang R, Cao X, Williams BB, Hoopes PJ, Gladstone DJ, Pogue BW, Bruza P. Technical Note: Single-pulse beam characterization for FLASH-RT using optical imaging in a water tank. Med Phys 2021; 48:2673-2681. [PMID: 33730367 PMCID: PMC10771323 DOI: 10.1002/mp.14843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE High dose rate conditions, coupled with problems related to small field dosimetry, make dose characterization for FLASH-RT challenging. Most conventional dosimeters show significant dependence on dose rate at ultra-high dose rate conditions or fail to provide sufficiently fast temporal data for pulse to pulse dosimetry. Here fast 2D imaging of radioluminescence from a water and quinine phantom was tested for dosimetry of individual 4 μs linac pulses. METHODS A modified clinical linac delivered an electron FLASH beam of >50 Gy/s to clinical isocenter. This modification removed the x-ray target and flattening filter, leading to a beam that was symmetric and gaussian, as verified with GafChromic EBT-XD film. Lateral projected 2D dose distributions for each linac pulse were imaged in a quinine-doped water tank using a gated intensified camera, and an inverse Abel transform reconstruction provided 3D images for on-axis depth dose values. A total of 20 pulses were delivered with a 10 MeV, 1.5 cm circular beam, and beam with jaws wide open (40 × 40 cm2 ), and a 3D dose distribution was recovered for each pulse. Beam output was analyzed on a pulse by pulse basis. RESULTS The Rp , Dmax , and the R50 measured with film and optical methods agreed to within 1 mm for the 1.5 cm circular beam and the beam with jaws wide open. Cross beam profiles for both beams agreed with film data with >95% passing rate (2%/2 mm gamma criteria). The optical central axis depth dose agreed with film data, except for near the surface. A temporal pulse analysis revealed a ramp-up period where the dose per pulse increased for the first few pulses and then stabilized. CONCLUSIONS Optical imaging of radioluminescence was presented as a valuable tool for establishing a baseline for the recently initiated electron FLASH beam at our institution.
Collapse
Affiliation(s)
- M.Ramish Ashraf
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| | - Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Xu Cao
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| | - Benjamin B. Williams
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - P. Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover NH 0375 USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover NH 0375 USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| |
Collapse
|
9
|
Li Y, Liu H, Huang N, Wang Z, Zhang C. Analysis of corrected Cerenkov emission during electron radiotherapy by Monte Carlo method. Appl Radiat Isot 2021; 168:109481. [PMID: 33658131 DOI: 10.1016/j.apradiso.2020.109481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
Cerenkov emission during electron radiotherapy had been emerging as a new dose assessment approach for clinical radiotherapy and could be imaged through a standard commercial camera. The purpose of this work aimed to study the accuracy of corrected Cerenkov emission method during electron radiotherapy by Monte Carlo (MC) method. GAMOS MC software was used to model the physics of electron therapy and calculated dose and Cerenkov photon distribution in water phantom. Compared to ionization chamber and diode measurement, MC simulated dose discrepancy was less than 1% in percentage depth dose (PDD) curves and less than. 2% in crossline profile curves, which was acceptable for clinical criterion. Compared to ionization chamber dose measurement, MC simulated Cerenkov discrepancy was less than 2% in crossline profile distribution, which was acceptable for clinical criterion. However, the Cerenkov PDD curves tended to overestimate the dose at the build-up region and underestimate the dose at the remaining attenuation region. After increasing the Cerenkov distribution depth to 2-3 mm, the discrepancy became well within 1% at the remaining attenuation region, which was acceptable for clinical criterion. Therefore, corrected Cerenkov emission could be used to assess PDD accuracy and crossline profile accuracy during electron radiotherapy.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China; School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China; University of Chinese Academy of Science, Beijing, 100084, China
| | - Hongjun Liu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
| | - Nan Huang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Zhaolu Wang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Chunmin Zhang
- School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
10
|
Ashraf MR, Bruza P, Pogue BW, Nelson N, Williams BB, Jarvis LA, Gladstone DJ. Optical imaging provides rapid verification of static small beams, radiosurgery, and VMAT plans with millimeter resolution. Med Phys 2019; 46:5227-5237. [PMID: 31472093 DOI: 10.1002/mp.13797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 11/07/2022] Open
Abstract
PURPOSE We demonstrate the feasibility of optical imaging as a quality assurance tool for static small beamlets, and pretreatment verification tool for radiosurgery and volumetric-modulated arc therapy (VMAT) plans. METHODS Small static beams and clinical VMAT plans were simulated in a treatment planning system (TPS) and delivered to a cylindrical tank filled with water-based liquid scintillator. Emission was imaged using a blue-sensitive, intensified CMOS camera time-gated to the linac pulses. For static beams, percentage depth and cross beam profiles of projected intensity distribution were compared to TPS data. Two-dimensional (2D) gamma analysis was performed on all clinical plans, and the technique was tested for sensitivity against common errors (multileaf collimator position, gantry angle) by inducing deliberate errors in the VMAT plans control points. The technique's detection limits for spatial resolution and the smallest number of control points that could be imaged reliably were also tested. The sensitivity to common delivery errors was also compared against a commercial 2.5D diode array dosimeter. RESULTS A spatial resolution of 1 mm was achieved with our imaging setup. The optical projected percentage depth intensity profiles agreed to within 2% relative to the TPS data for small static square beams (5, 10, and 50 mm2 ). For projected cross beam profiles, a gamma pass rate >99% was achieved for a 3%/1 mm criteria. All clinical plans passed the 3%/3 mm criteria with >95% passing rate. A static 5 mm beam with 20 Monitor Units could be measured with an average percent difference of 5.5 ± 3% relative to the TPS. The technique was sensitive to multileaf collimator errors down to 1 mm and gantry angle errors of 1°. CONCLUSIONS Optical imaging provides ample spatial resolution for imaging small beams. The ability to faithfully image down to 20 MU of 5 mm, 6 MV beamlets prove the ability to perform quality assurance for each control point within dynamic plans. The technique is sensitive to small offset errors in gantry angles and multileaf collimator (MLC) leaf positions, and at certain scenario, it exhibits higher sensitivity than a commercial 2.5D diode array.
Collapse
Affiliation(s)
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College Hanover, Hanover, NH, 03755, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College Hanover, Hanover, NH, 03755, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Nathan Nelson
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Benjamin B Williams
- Thayer School of Engineering, Dartmouth College Hanover, Hanover, NH, 03755, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA.,Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover, Hanover, NH, 03755, USA
| | - Lesley A Jarvis
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA.,Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover, Hanover, NH, 03755, USA
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College Hanover, Hanover, NH, 03755, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA.,Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover, Hanover, NH, 03755, USA
| |
Collapse
|
11
|
Brůža P, Gladstone D, Cammin J, Green O, Pogue BW. 4D scintillation dosimetry for the MRI-linac: proof of concept. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1742-6596/1305/1/012015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Brost E, Watanabe Y. Space-variant deconvolution of Cerenkov light images acquired from a curved surface. Med Phys 2019; 46:4021-4036. [PMID: 31274192 DOI: 10.1002/mp.13698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Cerenkov photons are generated by high-energy radiation used in external beam radiation therapy (EBRT). This study expands upon the Cerenkov light dosimetry formula previously developed to relate an image of Cerenkov photons to the primary beam fluence. Extension of this formulation allows for deconvolution to be performed on images acquired from curved geometries. METHODS The integral equation, which represented the formation of Cerenkov photon image from an incident high-energy photon beam, was expanded to allow for space-variance of the convolution kernel called as the Cerenkov scatter function (CSF). The GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations) Monte Carlo (MC) particle simulation software was used to obtain the CSF for different incident beam angles. The image of a curved surface was first projected to a flat plane by using a perspective correction method. Then, the planar image was partitioned into small segments (or blocks), where a CSF corresponding to a specific beam incident angle was applied for deconvolution. The block size and the margin around the block were optimized by studying the effects of those parameters on the deconvolution accuracy for a test image. We evaluated three deconvolution techniques: Richardson-Lucy, Blind, and Total Variation minimization (TV/L2) algorithms, to select the most accurate method for the current applications. RESULTS Analysis of deconvolution algorithms showed that the TV/L2 method provided the most accurate solution to the deconvolution problem for Cerenkov imaging. Optimization of space-variant deconvolution parameters showed that including a margin that is at least 42.9% of the image width provided the most accurate product image. There was no optimal size for the deconvolution area and should be chosen based on the presence of unique CSF kernels within an image. Space-variant deconvolution improved measured field size in Cerenkov photon images by 7.37%, as compared with 1.74% by space-invariant deconvolution. Space-variant deconvolution improved measured penumbra by 99.3%, as compared with 76.7% by space-invariant deconvolution. Space-variant deconvolution introduced artifacts in flat regions of the beam. Artifacts were avoided through selective space-variant deconvolution in only the penumbra region. CONCLUSIONS Primary photon fluence distributions of a curved surface can be obtained by using space-variant deconvolution methods in Cerenkov light dosimetry. The TV/L2 algorithm is the best method for deconvolution of Cerenkov photon images from an open-field beam derived from either a flat or curved surface. The partition size chosen for space-variant deconvolution should be at least six times the full width at half maximum (FWHM) of the corresponding scatter kernel used in deconvolution. Space-variant deconvolution is necessary if the incident beam angle difference is larger than 6 ∘ between regions of an image.
Collapse
Affiliation(s)
- Eric Brost
- Department of Radiation Oncology, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN, MMC-494, USA
| | - Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN, MMC-494, USA
| |
Collapse
|
13
|
Zlateva Y, Muir BR, Seuntjens JP, El Naqa I. Cherenkov emission-based external radiotherapy dosimetry: II. Electron beam quality specification and uncertainties. Med Phys 2019; 46:2383-2393. [PMID: 30706493 DOI: 10.1002/mp.13413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Cherenkov emission (CE) is ubiquitous in external radiotherapy. It is also unique in that it carries the promise of 3D, micrometer-resolution, perturbation-free, in-water dosimetry with a beam quality-independent detector response calibration. Our aim is to bring CE-based dosimetry into the clinic and we motivate this here with electron beams. We Monte Carlo (MC) calculate and characterize broad-beam CE-to-dose conversion factors in water for a clinically representative library of electron beam qualities, address beam quality specification and reference depth selection, and develop a preliminary uncertainty budget based on our MC results and relative experimental work of a companion study (Paper I). METHODS Broad electron beam CE-to-dose conversion factors k C θ ± δ θ include CE generated at polar angles θ ± δθ on beam axis in water. With modifications to the EGSnrc code SPRRZnrc, k C θ ± δ θ factors are calculated for a total of 20 electron beam qualities from four BEAMnrc models (Varian Clinac 2100C/D, Clinac 21EX, TrueBeam, and Elekta Precise). We examine beam quality, depth, and detection angle dependence for θ ± δ θ = 90 ∘ ± 90 ∘ (4π detection), 90 ∘ ± 5 ∘ , 45 ∘ ± 45 ∘ , and 90 ∘ ± 45 ∘ . As discussed in Paper I, 4π detection offers the strongest CE-dose correlation and θ = 90 ∘ with small δθ is most practical. The two additional configurations are considered as a compromise between these two extremes. We address beam quality specification and reference depth selection in terms of the electron beam quality specifier R 50 , obtained from the depth of 50% CE C 50 , and derive a best-case uncertainty budget for the CE-based dosimetry formalism proposed in Paper I at each detection configuration. RESULTS The k C θ ± δ θ factor was demonstrated to capture variations in the beam spectrum, angle, photon contamination, and electron fluence below the CE threshold (∼260 keV in the visible) in accordance with theory. The root-mean-square deviation and maximum deviation of a second-order polynomial fit of simulated R 50 values in terms of C 50 were 0.05 and 0.11 mm at 4π and 0.20 and 0.33 mm at 90 ∘ ± 5 ∘ detection, respectively. The fit performance on experimental data in Paper I was in agreement with these values within experimental uncertainties (±1.5 mm, 95% CI). A two-term power function fit of k C θ ± δ θ in terms of R 50 at a reference depth d ref = a R 50 + b resulted in total d ref -dependent dose uncertainty contribution estimate of 0.8% and 1.1% and preliminary best-case estimate of the combined standard dose uncertainty of 1.1% and 1.3% at 4π and 90 ∘ ± 5 ∘ detection, respectively. The results and corresponding uncertainties with the two intermediate apertures were generally of the same order as the 4π case. In addition, a theoretically consistent downstream shift of the percent-depth CE (PDC) by the difference between R 50 and C 50 improved the depth dependence of the 4π conversion by an order of magnitude (±2.8%). Therefore, a large aperture centered on a θ value between 45 ∘ and 90 ∘ combined with a downstream PDC shift may be recommended for beam-axis CE-based electron beam dosimetry in water. CONCLUSIONS By delivering R 50 -based CE-to-dose conversion data and demonstrating the potential for dosimetric uncertainty on the order of 1%, we bring CE-based electron beam dosimetry closer to clinical realization.
Collapse
Affiliation(s)
- Yana Zlateva
- Medical Physics Unit, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Bryan R Muir
- Metrology Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Jan P Seuntjens
- Medical Physics Unit, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103-4943, USA
| |
Collapse
|
14
|
Zlateva Y, Muir BR, El Naqa I, Seuntjens JP. Cherenkov emission-based external radiotherapy dosimetry: I. Formalism and feasibility. Med Phys 2019; 46:2370-2382. [PMID: 31034637 DOI: 10.1002/mp.13414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Cherenkov emission (CE)-based external beam dosimetry is envisioned to involve the detection of CE directly in water with placement of a high-resolution detector out of the field, avoiding perturbations encountered with traditional dosimeters. In this work, we lay out the groundwork for its implementation in the clinic and motivate CE-based dosimeter design efforts. To that end, we examine a formalism for broad-beam in-water CE-based dosimetry of external radiotherapy beams, design and test a Monte Carlo (MC) simulation framework for the calculation of CE-to-dose conversion factors used by the formalism, and demonstrate the experimental feasibility of this method. METHODS The formalism is conceptually analogous to ionization-based dosimetry and employs CE-to-dose conversion factors, k C θ ± δ θ , including only and all CE generated within polar angles θ ± δθ on beam axis. The EGSnrc user code SPRRZnrc is modified to calculate k C θ ± δ θ , as well as CE spectral and angular distributions. The modified code is tested with monoenergetic parallel electrons on a thin water slab. Detector configurations are examined for broad 6-22 MeV electron beams from a BEAMnrc TrueBeam model, with a focus on θ ± δ θ = 90 ∘ ± 90 ∘ (4π detection), 90 ∘ ± 5 ∘ , and 42 ∘ ± 5 ∘ ( θ = 42 ∘ is the CE angle of relativistic electrons in water). We perform a relative experimental validation at 90 ∘ with electron beams, using a simple detector design with spherical optics and geometrical optics approximation of the sensitive volume, which spans the water tank. Due to transient charged particle equilibrium, broad photon beams are generally less sensitive to beam quality, depth, and angle. RESULTS For 0.1-50 MeV electrons on a thin water slab, the code outputs CE photon spectral density per unit mass (calculated from dose and k C θ ± δ θ ) and angle in agreement with theory within ±0.03% and ± 0 . 01 ∘ , respectively, corresponding to the output precision. The 42 ∘ configuration was found impractical due to detection considerations. Detection at 90 ∘ ± δ θ for small δθ exhibited beam quality dependence of the same order as well as strong superficial depth dependence. A 4π configuration ameliorates these effects. A more practical approach may employ a large numerical aperture. In comparing with literature, we find that these effects are less pronounced for broad photon beams in water, as expected. Measured relative k C 90 ∘ ± δ θ at small δθ were within 1% of simulated factors (relative to their local average) for percent-depth CE (PDC) >50%. At other depths, deviations were in accordance with signal-to-noise, known detector limitations, and approximations. It was found that the CE spectrum is beam quality and depth invariant, while for electron beams the CE angular distribution is strongly dependent on beam quality and depth. However, the uncertainty of CE and PDC measurement at 90 ∘ ± δ θ detection for small δθ due to ± 0 . 1 ∘ deviations around δθ was shown to be ≤1% and <0.1% (k = 1), respectively. The robustness to expected detector setup variations was found to result in ≤1% (k = 1) local uncertainty contribution for PDC >50%. CONCLUSIONS Based on our MC and experimental studies, we conclude that the CE-based method is promising for high-resolution, perturbation-free, three-dimensional dosimetry in water, with specific applications contingent on comprehensive detector development and characterization.
Collapse
Affiliation(s)
- Yana Zlateva
- Medical Physics Unit, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Bryan R Muir
- Metrology Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103-4943, USA
| | - Jan P Seuntjens
- Medical Physics Unit, McGill University, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
15
|
Brost E, Watanabe Y. Characterization of the Cerenkov scatter function: a convolution kernel for Cerenkov light dosimetry. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-12. [PMID: 30378350 DOI: 10.1117/1.jbo.23.10.105007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/01/2018] [Indexed: 05/20/2023]
Abstract
Cerenkov light is created in clinical applications involving high-energy radiation such as in radiation therapy. There is considerable interest in using Cerenkov light as a means to perform in vivo dosimetry during radiation therapy; however, a better understanding of the light-to-dose relationship is needed. One such method to solve this relationship is that of a deconvolution formulation, which relies on the Cerenkov scatter function (CSF). The CSF describes the creation of Cerenkov photons by a pencil beam of high-energy radiation, and the subsequent scattering that occurs before emission from the irradiated medium surface. This study investigated the dependence of the CSF on common radiation beam parameters (beam energy and incident angle) and the type of irradiated medium. An analytical equation with fitting coefficients of the CSF was obtained for common beam energies in a stratified skin model and optical phantom. Perturbation analysis was performed to investigate the dependence of the deconvolved Cerenkov images on the full-width at half-maximum and amplitude of the CSF. The irradiated material and beam angle had a large impact on the deconvolution process, whereas the beam energy had little effect.
Collapse
Affiliation(s)
- Eric Brost
- University of Minnesota, Department of Radiation Oncology, Minneapolis, Minnesota, United States
| | - Yoichi Watanabe
- University of Minnesota, Department of Radiation Oncology, Minneapolis, Minnesota, United States
| |
Collapse
|
16
|
Andreozzi JM, Mooney KE, Brůža P, Curcuru A, Gladstone DJ, Pogue BW, Green O. Remote Cherenkov imaging-based quality assurance of a magnetic resonance image-guided radiotherapy system. Med Phys 2018; 45:2647-2659. [PMID: 29663429 DOI: 10.1002/mp.12919] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Tools to perform regular quality assurance of magnetic resonance image-guided radiotherapy (MRIgRT) systems should ideally be independent of interference from the magnetic fields. Remotely acquired optical Cherenkov imaging-based dosimetry measurements in water were investigated for this purpose, comparing measures of dose accuracy, temporal dynamics, and overall integrated IMRT delivery. METHODS A 40 × 30.5 × 37.5 cm3 water tank doped with 1 g/L of quinine sulfate was imaged using an intensified charge-coupled device (ICCD) to capture the Cherenkov emission while being irradiated by a commercial MRIgRT system (ViewRay™). The ICCD was placed down-bore at the end of the couch, 4 m from treatment isocenter and behind the 5-Gauss line of the 0.35-T MRI. After establishing optimal camera acquisition settings, square beams of increasing size (4.2 × 4.2 cm2 , 10.5 × 10.5 cm2 , and 14.7 × 14.7 cm2 ) were imaged at 0.93 frames per second, from an individual cobalt-60 treatment head, to develop projection measures related to percent depth dose (PDD) curves and cross beam profiles (CPB). These Cherenkov-derived measurements were compared to ionization chamber (IC) and radiographic film dosimetry data, as well as simulation data from the treatment planning system (TPS). An intensity-modulated radiotherapy (IMRT) commissioning plan from AAPM TG-119 (C4:C-Shape) was also imaged at 2.1 frames per second, and the single linear sum image from 509 s of plan delivery was compared to the dose volume prediction generated by the TPS using gamma index analysis. RESULTS Analysis of standardized test target images (1024 × 1024 pixels) yielded a pixel resolution of 0.37 mm/pixel. The beam width measured from the Cherenkov image-generated projection CBPs was within 1 mm accuracy when compared to film measurements for all beams. The 502 point measurements (i.e., pixels) of the Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to pPDDs simulated by the treatment planning system (TPS), with an overall average error of 0.60%, 0.56%, and 0.65% for the 4.2, 10.5, and 14.7 cm square beams, respectively. The relationships between pPDDs and central axis PDDs derived from the TPS were used to apply a weighting factor to the Cherenkov pPDD, so that the Cherenkov data could be directly compared to IC PDDs (average error of -0.07%, 0.10%, and -0.01% for the same sized beams, respectively). Finally, the composite image of the TG-119 C4 treatment plan achieved a 95.1% passing rate using 4%/4 mm gamma index agreement criteria between Cherenkov intensity and TPS dose volume data. CONCLUSIONS This is the first examination of Cherenkov-generated pPDDs and pCBPs in an MR-IGRT system. Cherenkov imaging measurements were fast to acquire, and minimal error was observed overall. Cherenkov imaging also provided novel real-time data for IMRT QA. The strengths of this imaging are the rapid data capture ability providing real-time, high spatial resolution data, combined with the remote, noncontact nature of imaging. The biggest limitation of this method is the two-dimensional (2D) projection-based imaging of three-dimensional (3D) dose distributions through the transparent water tank.
Collapse
Affiliation(s)
| | - Karen E Mooney
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Petr Brůža
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Austen Curcuru
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - David J Gladstone
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03766, USA
- Geisel School of Medicine and Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Brian W Pogue
- Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755, USA
| | - Olga Green
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
17
|
Brost EE, Watanabe Y. A mathematical deconvolution formulation for superficial dose distribution measurement by Cerenkov light dosimetry. Med Phys 2018; 45:3880-3892. [PMID: 29856473 DOI: 10.1002/mp.13021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Cerenkov photons are created by high-energy radiation beams used for radiation therapy. In this study, we developed a Cerenkov light dosimetry technique to obtain a two-dimensional dose distribution in a superficial region of medium from the images of Cerenkov photons by using a deconvolution method. METHODS An integral equation was derived to represent the Cerenkov photon image acquired by a camera for a given incident high-energy photon beam by using convolution kernels. Subsequently, an equation relating the planar dose at a depth to a Cerenkov photon image using the well-known relationship between the incident beam fluence and the dose distribution in a medium was obtained. The final equation contained a convolution kernel called the Cerenkov dose scatter function (CDSF). The CDSF function was obtained by deconvolving the Cerenkov scatter function (CSF) with the dose scatter function (DSF). The GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations) Monte Carlo particle simulation software was used to obtain the CSF and DSF. The dose distribution was calculated from the Cerenkov photon intensity data using an iterative deconvolution method with the CDSF. The theoretical formulation was experimentally evaluated by using an optical phantom irradiated by high-energy photon beams. RESULTS The intensity of the deconvolved Cerenkov photon image showed linear dependence on the dose rate and the photon beam energy. The relative intensity showed a field size dependence similar to the beam output factor. Deconvolved Cerenkov images showed improvement in dose profiles compared with the raw image data. In particular, the deconvolution significantly improved the agreement in the high dose gradient region, such as in the penumbra. Deconvolution with a single iteration was found to provide the most accurate solution of the dose. Two-dimensional dose distributions of the deconvolved Cerenkov images agreed well with the reference distributions for both square fields and a multileaf collimator (MLC) defined, irregularly shaped field. CONCLUSIONS The proposed technique improved the accuracy of the Cerenkov photon dosimetry in the penumbra region. The results of this study showed initial validation of the deconvolution method for beam profile measurements in a homogeneous media. The new formulation accounted for the physical processes of Cerenkov photon transport in the medium more accurately than previously published methods.
Collapse
Affiliation(s)
- Eric Edward Brost
- Department of Radiation Oncology, University of Minnesota, 420 Delaware St. SE, MMC-494, Minneapolis, MN, USA
| | - Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota, 420 Delaware St. SE, MMC-494, Minneapolis, MN, USA
| |
Collapse
|