1
|
Zhang J, Huang C, Lok UW, Dong Z, Liu H, Gong P, Song P, Chen S. Enhancing Row-Column Array (RCA)-Based 3D Ultrasound Vascular Imaging With Spatial-Temporal Similarity Weighting. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:297-309. [PMID: 39106128 DOI: 10.1109/tmi.2024.3439615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Ultrasound vascular imaging (UVI) is a valuable tool for monitoring the physiological states and evaluating the pathological diseases. Advancing from conventional two-dimensional (2D) to three-dimensional (3D) UVI would enhance the vasculature visualization, thereby improving its reliability. Row-column array (RCA) has emerged as a promising approach for cost-effective ultrafast 3D imaging with a low channel count. However, ultrafast RCA imaging is often hampered by high-level sidelobe artifacts and low signal-to-noise ratio (SNR), which makes RCA-based UVI challenging. In this study, we propose a spatial-temporal similarity weighting (St-SW) method to overcome these challenges by exploiting the incoherence of sidelobe artifacts and noise between datasets acquired using orthogonal transmissions. Simulation, in vitro blood flow phantom, and in vivo experiments were conducted to compare the proposed method with existing orthogonal plane wave imaging (OPW), row-column-specific frame-multiply-and-sum beamforming (RC-FMAS), and XDoppler techniques. Qualitative and quantitative results demonstrate the superior performance of the proposed method. In simulations, the proposed method reduced the sidelobe level by 31.3 dB, 20.8 dB, and 14.0 dB, compared to OPW, XDoppler, and RC-FMAS, respectively. In the blood flow phantom experiment, the proposed method significantly improved the contrast-to-noise ratio (CNR) of the tube by 26.8 dB, 25.5 dB, and 19.7 dB, compared to OPW, XDoppler, and RC-FMAS methods, respectively. In the human submandibular gland experiment, it not only reconstructed a more complete vasculature but also improved the CNR by more than 15 dB, compared to OPW, XDoppler, and RC-FMAS methods. In summary, the proposed method effectively suppresses the side-lobe artifacts and noise in images collected using an RCA under low SNR conditions, leading to improved visualization of 3D vasculatures.
Collapse
|
2
|
Masoumi MH, Kaddoura T, Zemp R. TOBE-Costas Arrays for Fast High-Resolution 3-D Power Doppler Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:648-658. [PMID: 38743556 DOI: 10.1109/tuffc.2024.3400229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Two-dimensional sparse arrays and row-column arrays are both alternatives to 2-D fully addressed arrays with lower channel counts. Row-column arrays have recently demonstrated fast 3-D structural and flow imaging but commonly suffer from high grating lobes or require multiplexing to achieve better quality. Two-dimensional sparse arrays enable full-volume acquisitions for each transmit event, but plane-wave transmissions with them usually lack quality in terms of uniformity of wavefronts. Here, we propose a novel architecture that combines both types of these arrays in one aperture, enabling imaging using row-column or sparse arrays alone or a hybrid imaging scheme where the row-column array is used in transmission and a 2-D sparse array in reception. This hybrid imaging scheme can potentially solve the shortcomings of each of these approaches. The sparse array layout chosen is a Costas array, characterized by having only one element per row and column, facilitating its integration with row-column arrays. We simulate images acquired with TOBE-Costas arrays using the hybrid imaging scheme and compare them to row-column and sparse spiral arrays of equivalent aperture size (128λ × 128λ at 7.5 MHz) in ultrafast plane-wave imaging of point targets and 3-D power Doppler imaging of synthetic flow phantoms. Our simulation results show that TOBE-Costas arrays exhibit superior resolution and lower sidelobe levels compared with plane-wave compounding with row-column arrays. Compared with density-tapered spiral arrays, they provide a larger field of view and finer resolution.
Collapse
|
3
|
Liang S, Wang L. A study of wide unfocused wavefront for convex-array ultrasound imaging. ULTRASONICS 2023; 134:107080. [PMID: 37320966 DOI: 10.1016/j.ultras.2023.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
Ultrafast ultrasound imaging modalities have attracted a lot of attention in the ultrasound community. It breaks the compromise between the frame rate and the region of interest by insonifying the whole medium with wide unfocused waves. Coherent compounding can be performed to enhance the image quality at a cost of frame rate. Ultrafast imaging has wide clinical applications, such as vector Doppler imaging and shear elastography. On the other hand, the use of unfocused waves is still marginal with convex-array transducers. For convex array, plane wave imaging is limited by the complicated transmission delay calculation, limited field-of-view, and inefficient coherent compounding. In this article, we study three wide unfocused wavefronts, namely, lateral virtual-source defined diverging wave imaging (latDWI), tilt virtual-source defined diverging wave imaging (tiltDWI), and Archimedean-spiral-based imaging (AMI) for convex-array imaging using the full-aperture transmission. The analytical monochromatic wave solutions to this three imaging are given. The mainlobe width and grating lobe position are given explicitly. Theoretical -6 dB beamwidth and synthetic transmit field response are studied. Simulation studies are carried on with the point targets and hypoechoic cysts. Time-of-flight formulas are given explicitly for beamforming. The conclusions are in good agreement with the theory: latDWI provides the finest lateral resolution but generates the severest axial lobe level for scatterers with large obliquities (i.e., for scatterers located at the image border) which degrades the image contrast. This effect gets worsen as the compound number increases. The tiltDWI and AMI give a very close performance on resolution and image contrast. AMI displays better contrast with a small compound number.
Collapse
Affiliation(s)
- Siyi Liang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
4
|
Hakakzadeh S, Amjadian M, Zhang Y, Mostafavi SM, Kavehvash Z, Wang L. Signal restoration algorithm for photoacoustic imaging systems. BIOMEDICAL OPTICS EXPRESS 2023; 14:651-666. [PMID: 36874483 PMCID: PMC9979682 DOI: 10.1364/boe.480842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
In a photoacoustic (PA) imaging system, the detectors are bandwidth-limited. Therefore, they capture PA signals with some unwanted ripples. This limitation degrades the resolution/contrast and induces sidelobes and artifacts in the reconstructed images along the axial direction. To compensate for the limited bandwidth effect, we present a PA signal restoration algorithm, where a mask is designed to extract the signals at the absorber positions and remove the unwanted ripples. This restoration improves the axial resolution and contrast in the reconstructed image. The restored PA signals can be considered as the input of the conventional reconstruction algorithms (e.g., Delay-and-sum (DAS) and Delay-multiply-and-sum (DMAS)). To compare the performance of the proposed method, DAS and DMAS reconstruction algorithms were performed with both the initial and restored PA signals on numerical and experimental studies (numerical targets, tungsten wires, and human forearm). The results show that, compared with the initial PA signals, the restored PA signals can improve the axial resolution and contrast by 45% and 16.1 dB, respectively, and suppress background artifacts by 80%.
Collapse
Affiliation(s)
- Soheil Hakakzadeh
- Electrical Engineering Department of Sharif University of Technology, Tehran, Iran
- Equal Contribution
| | - Mohammadreza Amjadian
- Electrical Engineering Department of Sharif University of Technology, Tehran, Iran
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Equal Contribution
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | | | - Zahra Kavehvash
- Electrical Engineering Department of Sharif University of Technology, Tehran, Iran
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Soozande M, Ossenkoppele BW, Hopf Y, Pertijs MAP, Verweij MD, de Jong N, Vos HJ, Bosch JG. Imaging Scheme for 3-D High-Frame-Rate Intracardiac Echography: A Simulation Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2862-2874. [PMID: 35759589 DOI: 10.1109/tuffc.2022.3186487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and is normally treated by RF ablation. Intracardiac echography (ICE) is widely employed during RF ablation procedures to guide the electrophysiologist in navigating the ablation catheter, although only 2-D probes are currently clinically used. A 3-D ICE catheter would not only improve visualization of the atrium and ablation catheter, but it might also provide the 3-D mapping of the electromechanical wave (EW) propagation pattern, which represents the mechanical response of cardiac tissue to electrical activity. The detection of this EW needs 3-D high-frame-rate imaging, which is generally only realizable in tradeoff with channel count and image quality. In this simulation-based study, we propose a high volume rate imaging scheme for a 3-D ICE probe design that employs 1-D micro-beamforming in the elevation direction. Such a probe can achieve a high frame rate while reducing the channel count sufficiently for realization in a 10-Fr catheter. To suppress the grating-lobe (GL) artifacts associated with micro-beamforming in the elevation direction, a limited number of fan-shaped beams with a wide azimuthal and narrow elevational opening angle are sequentially steered to insonify slices of the region of interest. An angular weighted averaging of reconstructed subvolumes further reduces the GL artifacts. We optimize the transmit beam divergence and central frequency based on the required image quality for EW imaging (EWI). Numerical simulation results show that a set of seven fan-shaped transmission beams can provide a frame rate of 1000 Hz and a sufficient spatial resolution to visualize the EW propagation on a large 3-D surface.
Collapse
|
6
|
Li X, Wang P, Li Q, Du T, Luo C. Application of condition coherence factor based on truncated composite method in ultrasound imaging. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
High-resolution and high-contrast ultrafast ultrasound imaging using coherent plane wave adaptive compounding. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Lee HK, Greenleaf JF, Urban MW. A New Plane Wave Compounding Scheme Using Phase Compensation for Motion Detection. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:702-710. [PMID: 34914585 PMCID: PMC8867602 DOI: 10.1109/tuffc.2021.3136127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plane wave (PW) transmission has enabled multiple new applications, such as shear wave elastography, ultrafast Doppler imaging, and functional ultrasound imaging. PW compounding (PWC), which coherently sums the echo signals from multiple PW transmits with different angles, is widely used to improve B-mode image quality. When the motion between two speckle images is estimated, PWC suffers from an inherent displacement estimation error. This is derived theoretically and experimentally demonstrated in this work. We show that the phase difference between the acquired data with PW emissions with different angles is related to this error. When the absolute value of the phase difference is larger than π /2, the displacement estimation error occurs. A new scheme, named initial-phase-compensated PWC (IPCPWC), is proposed, which compensates the phase of echo signals from each PW transmit and maintains the absolute value of the phase difference smaller than π /2. The increased signal-to-noise ratio and reduced jitter of IPCPWC in motion data are demonstrated using tissue mimicking phantoms compared with PWC.
Collapse
|
9
|
Pang Z, Wang Y, Wang Y, Sun Z, Qi W, Xi L. Multi-modality photoacoustic/ultrasound imaging based on a commercial ultrasound platform. OPTICS LETTERS 2021; 46:4382-4385. [PMID: 34470021 DOI: 10.1364/ol.435989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Multimodal imaging takes advantage of each modality and has become a recent trend in the field of biomedical imaging. In this Letter, we develop and evaluate an integrated multi-modality imaging system combining photoacoustic computed tomography, optical resolution photoacoustic microscopy, brightness mode, and power Doppler ultrasound imaging on a commercial ultrasonographic platform. Using different imaging modalities enables the hybrid system to recover dense vascular networks and hemodynamic and morphological variations in both superficial and deep tissues. To evaluate the performance and illustrate the advantages of this system, we carried out both phantom and in vivo experiments. In addition to the complementary tissue information offered by different imaging modalities, the use of a commercial ultrasound platform shows the feasibility of the proposed method for future clinical translation.
Collapse
|
10
|
Wang Y, Zheng C, Zhao X, Peng H. Adaptive scaling Wiener postfilter using generalized coherence factor for coherent plane-wave compounding. Comput Biol Med 2020; 116:103564. [DOI: 10.1016/j.compbiomed.2019.103564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022]
|
11
|
Zheng C, Wang H, Xu X, Peng H, Chen Q. An adaptive imaging method for ultrasound coherent plane-wave compounding based on the subarray zero-cross factor. ULTRASONICS 2020; 100:105978. [PMID: 31479963 DOI: 10.1016/j.ultras.2019.105978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Coherent plane-wave compounding (CPWC) has the ability to generate high quality image using the backscattered signals from plane wave emitting at different steer angles. To improve the image quality of CPWC, adaptive weighting techniques have been introduced in the compounding procedure. This paper proposes subarray zeros-cross factor (SZF) for CPWC, and it is used as an adaptive weighting factor to improve image quality. The SZF is calculated based on polarity of plane-wave imaging results with adjacent steering angle to estimate the coherence of plane wave emitting events. It is effective to suppress noise and maintain background speckle pattern. Simulations and experiments were conducted to evaluate the performance of the proposed method. Results demonstrate that the SZF can achieve better performance on contrast ratio (CR) and resolution than traditional CPWC. For simulated cysts, a maximal CR improvement of 125.4% is achieved. For experimental cysts, the maximal CR improvement is 197.9%. Compared with coherence factor (CF) and generalized coherence factor (GCF), SZF can obtain improvements in contrast-to-noise ratio and speckle signal-to-noise ratio at near field and increase CR at far field. In addition, when subarray length L is in the range of [10,12], SZF can obtain satisfying comprehensive performance.
Collapse
Affiliation(s)
- Chichao Zheng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Wang
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiang Xu
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hu Peng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Qiang Chen
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
12
|
Two-Dimensional Spatial Coherence for Ultrasonic DMAS Beamforming in Multi-Angle Plane-Wave Imaging. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9193973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ultrasonic multi-angle plane-wave (PW) coherent compounding relies on delay-and-sum (DAS) beamforming of two-dimensional (2D) echo matrix in both the dimensions PW transmit angle and receiving channel to construct each image pixel. Due to the characteristics of DAS beamforming, PW coherent compounding may suffer from high image clutter when the number of transmit angles is kept low for ultrafast image acquisition. Delay-multiply-and-sum (DMAS) beamforming exploits the spatial coherence of the receiving aperture to suppress clutter interference. Previous attempts to introduce DMAS beamforming into multi-angle PW imaging has been reported but only in either dimension of the 2D echo matrix. In this study, a novel DMAS operation is proposed to extract the 2D spatial coherence of echo matrix for further improvement of image quality. The proposed 2D-DMAS method relies on a flexibly tunable p value to manipulate the signal coherence in the beamforming output. For p = 2.0 as an example, simulation results indicate that 2D-DMAS outperforms other one-dimensional DMAS methods by at least 9.3 dB in terms of ghost-artifact suppression. Experimental results also show that 2D-DMAS provides the highest improvement in lateral resolution by 32% and in image contrast by 15.6 dB relative to conventional 2D-DAS beamforming. Nonetheless, since 2D-DMAS emphasizes signal coherence more than its one-dimensional DMAS counterparts, it suffers from the most elevated speckle variation and the granular pattern in the tissue background.
Collapse
|
13
|
Wang Y, Zheng C, Peng H. Dynamic coherence factor based on the standard deviation for coherent plane-wave compounding. Comput Biol Med 2019; 108:249-262. [DOI: 10.1016/j.compbiomed.2019.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/29/2022]
|
14
|
Wang Y, Zheng C, Peng H, Chen Q. An adaptive beamforming method for ultrasound imaging based on the mean-to-standard-deviation factor. ULTRASONICS 2018; 90:32-41. [PMID: 29906714 DOI: 10.1016/j.ultras.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
The beamforming performance has a large impact on image quality in ultrasound imaging. Previously, several adaptive weighting factors including coherence factor (CF) and generalized coherence factor (GCF) have been proposed to improved image resolution and contrast. In this paper, we propose a new adaptive weighting factor for ultrasound imaging, which is called signal mean-to-standard-deviation factor (SMSF). SMSF is defined as the mean-to-standard-deviation of the aperture data and is used to weight the output of delay-and-sum (DAS) beamformer before image formation. Moreover, we develop a robust SMSF (RSMSF) by extending the SMSF to the spatial frequency domain using an altered spectrum of the aperture data. In addition, a square neighborhood average is applied on the RSMSF to offer a more smoothed square neighborhood RSMSF (SN-RSMSF) value. We compared our methods with DAS, CF, and GCF using simulated and experimental synthetic aperture data sets. The quantitative results show that SMSF results in an 82% lower full width at half-maximum (FWHM) but a 12% lower contrast ratio (CR) compared with CF. Moreover, the SN-RSMSF leads to 15% and 10% improvement, on average, in FWHM and CR compared with GCF while maintaining the speckle quality. This demonstrates that the proposed methods can effectively improve the image resolution and contrast.
Collapse
Affiliation(s)
- Yuanguo Wang
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chichao Zheng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Hu Peng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang Chen
- Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
15
|
Guo W, Wang Y, Wu G, Yu J. Sidelobe reduction for plane wave compounding with a limited frame number. Biomed Eng Online 2018; 17:94. [PMID: 30005614 PMCID: PMC6045879 DOI: 10.1186/s12938-018-0525-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In ultrasound plane wave imaging (PWI), image details are often blurred by the off-axis artefacts resulting from high sidelobe. Recently plane wave compounding (PWC) is proposed as a promising technique for the sidelobe suppression in the PWI. However, its high demand for the frame number results in an obvious frame rate loss, which is intolerable in the ultrafast imaging modality. To reduce the number of frames required for compounding, coherence in the compounding frames should be exploited. METHODS In this paper, we propose a global effective distance-based sidelobe suppressing method for the PWC with a limited frame number, where the global effective distance is introduced to measure the inter-frame coherence. Specifically, the effective distance is firstly computed by using a sparse representation-based algorithm. Then, the sidelobe localization is carried out on the basis of the effective distance. Finally, the target-dependent weighting factor is adopted to suppress the sidelobe. RESULTS To assert the superiority of our proposed method, we compare the performances of different sidelobe reduction methods on both simulated and experimental PWC data. In case of 5 steering angles, our method shows a 19 dB reduction in the peak sidelobe level compared to the normal PWC in the point spread function test, and the contrast ratio is enhanced by more than 10% in both the simulation and phantom studies. CONCLUSIONS Consequently, the proposed method is convinced to be a promising approach in enhancing the PWC image quality.
Collapse
Affiliation(s)
- Wei Guo
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai, China. .,Key laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai, China.
| | - Guoqing Wu
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Jinhua Yu
- Department of Electronic Engineering, Fudan University, Shanghai, China.,Key laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Zhang Y, Guo Y, Lee WN. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:906-917. [PMID: 29610070 DOI: 10.1109/tmi.2017.2781261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.
Collapse
|