1
|
Ghahramani E, Grimm PD, Weiss BE, Schoenleb NS, Knapp AJ, Wang J, Ahmad SA, Shah SA, Quillin Iii RC, Patel SH, Mast TD. Real-time control of radiofrequency ablation using three-dimensional ultrasound echo decorrelation imaging in normal and diseased ex vivohuman liver. Phys Med Biol 2025; 70:045007. [PMID: 39813814 DOI: 10.1088/1361-6560/adaacb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Objective. Ultrasound echo decorrelation imaging can successfully monitor and control thermal ablation of animal liver and tumor tissueex vivoandin vivo. However, normal and diseased human liver has substantially different physical properties that affect echo decorrelation. Here, effects of human liver tissue condition on ablation guidance by three-dimensional echo decorrelation imaging are elucidated in experiments testing closed-loop control of radiofrequency ablation (RFA) in normal and diseased human liver tissueex vivo. Approach. Samples of normal, steatotic, and cirrhotic human liver tissue underwent RFA, targeting a 20 mm-diameter spherical ablation zone. For each tissue condition, RFA was controlled by echo decorrelation inN> 14 trials, automatically ceasing if average cumulative decorrelation within the targeted ablation zone surpassed a predetermined threshold (successfully controlled trials), or otherwise completing a standard ablation cycle of the RFA generator (unsuccessfully controlled). For comparison,N= 14 RFA trials for each tissue condition followed the RFA generator's standard algorithm without echo decorrelation feedback (uncontrolled). Receiver operating characteristic (ROC) and precision-recall curve analyses compared 3D echo decorrelation maps to segmented ablation zones. To assess effects of closed-loop control and liver condition on treatment reliability, ablation volumes, rates, and Dice coefficients for measured vs. targeted ablation zones were statistically compared among control conditions and liver types.Results. ROC curves showed effective prediction of local ablation by echo decorrelation across all liver types and control conditions (0.876 ⩽AUROC ⩽ 0.953). Successful control was significantly more frequent, ablated volumes were generally larger, and optimal echo decorrelation thresholds were smaller for normal compared to diseased liver.Significance. This study validates three-dimensional echo decorrelation imaging for monitoring and control of RFA in healthy and diseased human liver while elucidating the dependence of RFA and echo decorrelation outcomes on liver condition and resulting implications for clinical applications.
Collapse
Affiliation(s)
- Elmira Ghahramani
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| | - Peter D Grimm
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| | - Benjamin E Weiss
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| | - Nicholas S Schoenleb
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| | - Alexander J Knapp
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| | - Jiang Wang
- Department of Pathology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Syed A Ahmad
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - Shimul A Shah
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ralph C Quillin Iii
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - Sameer H Patel
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| |
Collapse
|
2
|
Zhang C, Shi J, Li B, Yu X, Feng X, Yang H. Magnetic resonance imaging-guided radiofrequency ablation of breast cancer: a current state of the art review. Diagn Interv Radiol 2024; 30:48-54. [PMID: 36971252 PMCID: PMC10773175 DOI: 10.4274/dir.2022.221429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/22/2022] [Indexed: 03/31/2023]
Abstract
With a gradual increase in breast cancer incidence and mortality rates and an urgent need to improve patient prognosis and cosmetology, magnetic resonance imaging (MRI)-guided radiofrequency ablation (RFA) therapy has attracted wide attention as a new treatment method for breast cancer. MRI-RFA results in a higher complete ablation rate and extremely low recurrence and complication rates. Thus, it may be used as an independent treatment for breast cancer or adjuvant to breast-conserving surgery to reduce the extent of breast resection. Furthermore, with MRI guidance, accurate control of RFA can be achieved, and breast cancer treatment can enter a new stage of minimally invasive, safe, and comprehensive therapy. With progress in MR thermometry technology, the applications of MRI are expected to broaden.
Collapse
Affiliation(s)
- Chuan Zhang
- Affiliated Hospital of North Sichuan Medical College, Department of Radiology, Nanchong, China
| | - Jing Shi
- North Sichuan Medical College, School of Medical Imaging, Sichuan Province Nanchong, China
| | - Bing Li
- Affiliated Hospital of North Sichuan Medical College, Department of Radiology, Nanchong, China
| | - Xiaoxuan Yu
- Affiliated Hospital of North Sichuan Medical College, Department of Radiology, Nanchong, China
| | - Xu Feng
- Affiliated Hospital of North Sichuan Medical College, Department of Radiology, Nanchong, China
| | - Hanfeng Yang
- Affiliated Hospital of North Sichuan Medical College, Department of Radiology, Nanchong, China
| |
Collapse
|
3
|
Noetscher GM, Serano PJ, Horner M, Prokop A, Hanson J, Fujimoto K, Brown J, Nazarian A, Ackerman J, Makaroff SN. An in silico testbed for fast and accurate MR labeling of orthopedic implants. eLife 2023; 12:RP90440. [PMID: 38096104 PMCID: PMC10721214 DOI: 10.7554/elife.90440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
One limitation on the ability to monitor health in older adults using magnetic resonance (MR) imaging is the presence of implants, where the prevalence of implantable devices (orthopedic, cardiac, neuromodulation) increases in the population, as does the pervasiveness of conditions requiring MRI studies for diagnosis (musculoskeletal diseases, infections, or cancer). The present study describes a novel multiphysics implant modeling testbed using the following approaches with two examples: (1) an in silico human model based on the widely available Visible Human Project (VHP) cryo-section dataset; (2) a finite element method (FEM) modeling software workbench from Ansys (Electronics Desktop/Mechanical) to model MR radio frequency (RF) coils and the temperature rise modeling in heterogeneous media. The in silico VHP-Female model (250 parts with an additional 40 components specifically characterizing embedded implants and resultant surrounding tissues) corresponds to a 60-year-old female with a body mass index of 36. The testbed includes the FEM-compatible in silico human model, an implant embedding procedure, a generic parameterizable MRI RF birdcage two-port coil model, a workflow for computing heat sources on the implant surface and in adjacent tissues, and a thermal FEM solver directly linked to the MR coil simulator to determine implant heating based on an MR imaging study protocol. The primary target is MR labeling of large orthopedic implants. The testbed has very recently been approved by the US Food and Drug Administration (FDA) as a medical device development tool for 1.5 T orthopedic implant examinations.
Collapse
Affiliation(s)
- Gregory M Noetscher
- Electrical & Computer Eng. Dept, Worcester Polytechnic InstituteWorcesterUnited States
| | | | | | | | | | | | - James Brown
- Micro Systems Enigineering, Inc, an affiliate of BiotronikLake OswegoUnited States
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUnited States
| | - Jerome Ackerman
- Harvard Medical SchoolBostonUnited States
- Athinoula A Martinos Center for Biomed. Imaging, Massachusetts General HospitalCharlestownUnited States
| | - Sergey N Makaroff
- Electrical & Computer Eng. Dept, Worcester Polytechnic InstituteWorcesterUnited States
- Athinoula A Martinos Center for Biomed. Imaging, Massachusetts General HospitalCharlestownUnited States
| |
Collapse
|
4
|
Noetscher GM, Serano PJ, Horner M, Prokop A, Hanson J, Fujimoto K, Brown JE, Nazarian A, Ackerman J, Makaroff SN. An In-Silico Testbed for Fast and Accurate MR Labeling of Orthopaedic Implants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549234. [PMID: 37649909 PMCID: PMC10465017 DOI: 10.1101/2023.07.16.549234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
One limitation on the ability to monitor health in older adults using Magnetic Resonance (MR) imaging is the presence of implants, where the prevalence of implantable devices (orthopedic, cardiac, neuromodulation) increases in the population, as does the pervasiveness of conditions requiring MRI studies for diagnosis (musculoskeletal diseases, infections, or cancer). The present study describes a novel multiphysics implant modeling testbed using the following approaches with two examples: - an in-silico human model based on the widely available Visible Human Project (VHP) cryo-section dataset; - a finite element method (FEM) modeling software workbench from Ansys (Electronics Desktop/Mechanical) to model MR radio frequency (RF) coils and the temperature rise modeling in heterogeneous media. The in-silico VHP Female model (250 parts with an additional 40 components specifically characterizing embedded implants and resultant surrounding tissues) corresponds to a 60-year-old female with a body mass index (BMI) of 36. The testbed includes the FEM-compatible in-silico human model, an implant embedding procedure, a generic parameterizable MRI RF birdcage two-port coil model, a workflow for computing heat sources on the implant surface and in adjacent tissues, and a thermal FEM solver directly linked to the MR coil simulator to determine implant heating based on an MR imaging study protocol. The primary target is MR labeling of large orthopaedic implants. The testbed has very recently been approved by the US Food and Drug Administration (FDA) as a medical device development tool (MDDT) for 1.5 T orthopaedic implant examinations.
Collapse
|
5
|
Wang C, Chen L, Tian B, Jiang Z. High-Linearity Wireless Passive Temperature Sensor Based on Metamaterial Structure with Rotation-Insensitive Distance-Based Warning Ability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2482. [PMID: 37686990 PMCID: PMC10490172 DOI: 10.3390/nano13172482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
A wireless passive temperature sensor based on a metamaterial structure is proposed that is capable of measuring the temperature of moving parts. The sensor structure consists of an alumina ceramic substrate with a square metal double split-ring resonator fixed centrally on the ceramic substrate. Since the dielectric constant of the alumina ceramic substrate is temperature sensitive, the resonant frequency of the sensor is altered due to changes in temperature. A wireless antenna is used to detect the change in the resonant frequency of the sensor using a wireless antenna, thereby realizing temperature sensing operation of the sensor. The temperature sensitivity of the sensor is determined to be 205.22 kHz/°C with a strong linear response when tested over the temperature range of 25-135 °C, which is evident from the R2 being 0.995. Additionally, the frequency variation in this sensor is insensitive to the angle of rotation and can be used for temperature measurement of rotating parts. The sensor also has a distance warning functionality, which offers additional safety for the user by providing early warning signals when the heating equipment overheats after operating for extended durations.
Collapse
Affiliation(s)
- Chenying Wang
- School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (L.C.); (Z.J.)
| | - Luntao Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (L.C.); (Z.J.)
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Bian Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (L.C.); (Z.J.)
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (L.C.); (Z.J.)
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
6
|
Schmidt VF, Arnone F, Dietrich O, Seidensticker M, Armbruster M, Ricke J, Kazmierczak PM. Artifact reduction of coaxial needles in magnetic resonance imaging-guided abdominal interventions at 1.5 T: a phantom study. Sci Rep 2021; 11:22963. [PMID: 34824361 PMCID: PMC8617285 DOI: 10.1038/s41598-021-02434-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/10/2021] [Indexed: 11/12/2022] Open
Abstract
Needle artifacts pose a major limitation for MRI-guided interventions, as they impact the visually perceived needle size and needle-to-target-distance. The objective of this agar liver phantom study was to establish an experimental basis to understand and reduce needle artifact formation during MRI-guided abdominal interventions. Using a vendor-specific prototype fluoroscopic T1-weighted gradient echo sequence with real-time multiplanar acquisition at 1.5 T, the influence of 6 parameters (flip angle, bandwidth, matrix, slice thickness, read-out direction, intervention angle relative to B0) on artifact formation of 4 different coaxial MR-compatible coaxial needles (Nitinol, 16G–22G) was investigated. As one parameter was modified, the others remained constant. For each individual parameter variation, 2 independent and blinded readers rated artifact diameters at 2 predefined positions (15 mm distance from the perceived needle tip and at 50% of the needle length). Differences between the experimental subgroups were assessed by Bonferroni-corrected non-parametric tests. Correlations between continuous variables were expressed by the Bravais–Pearson coefficient and interrater reliability was quantified using the intraclass classification coefficient. Needle artifact size increased gradually with increasing flip angles (p = 0.002) as well as increasing intervention angles (p < 0.001). Artifact diameters differed significantly between the chosen matrix sizes (p = 0.002) while modifying bandwidth, readout direction, and slice thickness showed no significant differences. Interrater reliability was high (intraclass correlation coefficient 0.776–0.910). To minimize needle artifacts in MRI-guided abdominal interventions while maintaining optimal visibility of the coaxial needle, we suggest medium-range flip angles and low intervention angles relative to B0.
Collapse
Affiliation(s)
- Vanessa Franziska Schmidt
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Federica Arnone
- Department of Radiology Sciences, University of Palermo, Palermo, Italy
| | - Olaf Dietrich
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Marco Armbruster
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | | |
Collapse
|
7
|
Khan MS, Hawlitzki M, Taheri SM, Rose G, Schweizer B, Brensing A. Investigation of Microwave Ablation Process in Sweet Potatoes as Substitute Liver. SENSORS 2021; 21:s21113894. [PMID: 34200011 PMCID: PMC8200201 DOI: 10.3390/s21113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
The microwave ablation technique to destroy cancer tissues in liver is practiced clinically and is the subject of ongoing research, e.g., ablation monitoring. For studies, liver tissue from cattle or pigs is often used as a substitute material. In this work, sweet potato is presented as an alternative material for microwave ablation experiments in liver due to similar material properties. Sweet potatoes as a substitute for liver have the advantages of better handling, easy procurement and stable material properties over time for microwave ablation experiments. The dielectric constant and electrical conductivity of sweet potato are characterized for temperature variation with the help of high-temperature dielectric probe. Furthermore, a test setup is presented for microwave ablation experiments in which a bowtie slot antenna matched to sweet potato is placed on its surface to directly receive the microwave power from a self-developed microwave applicator inserted into a sweet potato 4 cm below the surface antenna. A high-power source was used to excite the microwave powers up to 80 W and a spectrum analyzer was used to measure the signal received by the surface antenna. The experiments were performed in an anechoic chamber for safety reasons. Power at 50 W and 80 W was stimulated for a maximum of 600 s at the 2.45 GHz ISM band in different sweet potato experiments. A correlation is found between the power received by the surface antenna and rise of temperature inside sweet potato; relative received power drops from 1 at 76 ∘C to 0.6 at 88 ∘C (max. temperature) represents a 40% relative change in a 50 W microwave ablation experiment. The received power envelope at the surface antenna is between 10 mW and 32 mW during 50 W microwave ablation. Other important results for 10 min, 80 W microwave ablation include: a maximum ablation zone short axis diameter of 4.5 cm and a maximum ablation temperature reached at 99 ∘C, 3 mm away from the applicator’s slot. The results are compared with the state of the art in microwave ablation in animal liver. The dielectric constant and electrical conductivity evolution of sweet potato with rising temperature is comparable to animal liver in 50–60 ∘C range. The reflection loss of self-developed applicator in sweet potato is below 15 dB which is equal to reflection loss in liver experiments for 600 s. The temperature rise for the first 90 s in sweet potato is 76 ∘C as compared to 73 ∘C in liver with 50 W microwave ablation. Similarly, with 80–75 W microwave ablation, for the first 60 s, the temperature is 98 ∘C in sweet potato as compared to 100 ∘C in liver. The ablation zone short-axis diameter after 600 s is 3.3 cm for 50 W microwave ablation in sweet potato as compared to 3.5 cm for 30 W microwave ablation in liver. The reasons for difference in microwave ablation results in sweet potato and animal liver are discussed. This is the first study to directly receive a signal from microwave applicator during a microwave ablation process with the help of a surface antenna. The work can be extended to multiple array antennas for microwave ablation monitoring.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- Department of Engineering, RheinMain University of Applied Sciences, 65428 Ruesselsheim, Germany; (M.H.); (S.M.T.); (B.S.); (A.B.)
- Correspondence:
| | - Michael Hawlitzki
- Department of Engineering, RheinMain University of Applied Sciences, 65428 Ruesselsheim, Germany; (M.H.); (S.M.T.); (B.S.); (A.B.)
| | - Shadan Mofrad Taheri
- Department of Engineering, RheinMain University of Applied Sciences, 65428 Ruesselsheim, Germany; (M.H.); (S.M.T.); (B.S.); (A.B.)
| | - Georg Rose
- Institute of Medical Engineering and Research Campus STIMULATE, Otto Von Guericke University, 39106 Magdeburg, Germany;
| | - Bernd Schweizer
- Department of Engineering, RheinMain University of Applied Sciences, 65428 Ruesselsheim, Germany; (M.H.); (S.M.T.); (B.S.); (A.B.)
| | - Andreas Brensing
- Department of Engineering, RheinMain University of Applied Sciences, 65428 Ruesselsheim, Germany; (M.H.); (S.M.T.); (B.S.); (A.B.)
| |
Collapse
|