Wang XY, Liu L, Guan MS, Liu Q, Zhao T, Li HB. The accuracy and learning curves of active and passive dynamic navigation-guided dental implant surgery: An in vitro study.
J Dent 2022;
124:104240. [PMID:
35872224 DOI:
10.1016/j.jdent.2022.104240]
[Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES
Infrared dynamic navigation principles can be categorized into active and passive navigation systems based on whether the surgical instruments can emit or only reflect light, respectively. This in vitro study aimed to compare the accuracy of implant placement and the learning curves of both active and passive dynamic navigation systems using different registration methods.
METHODS
Implants (n=704) were placed in 64 sets of models and divided into active (Yizhime, DCARER, Suzhou, China) and passive (Iris-Clinic, EPED, Kaohsiung, China) dynamic navigation groups. Both marker point-based registration (M-PBR) and feature point-based registration (F-PBR) were employed by two groups mentioned above. Based on preoperative and postoperative cone-beam computed tomography imaging, the coronal, midpoint, apical, and angular deviations were analyzed from 2D and 3D views. The operation time was recorded for each group.
RESULTS
The active dynamic navigation group exhibited significantly greater accuracy than the passive dynamic navigation group for outcome variables (angular deviation, 4.13 ± 2.39° and 4.62 ± 3.32°; coronal global deviation, 1.48 ± 0.60 and 1.86 ± 1.12 mm; apical global deviation, 1.75 ± 0.81 and 2.20 ± 1.68 mm, respectively). Significant interaction effects were observed for both registration methods and four quadrants with different dynamic navigation systems. Learning curves for the two dynamic navigation groups approached each other after 12 procedures, and finally converged after 27 procedures.
CONCLUSIONS
The accuracy of active dynamic navigation system was superior to that of passive dynamic navigation system. Different combinations of dynamic navigation systems, registration methods, and implanted quadrants displayed various interactions.
CLINICAL SIGNIFICANCE
Our findings could provide guidance for surgeons in choosing an appropriate navigation system use in various implant surgeries. Furthermore, the time required by surgeons to master the technique was calculated for reference. Nevertheless, there are certain limitations to this in vitro study, and therefore further research is required.
Collapse