1
|
Lee S, Lee S, Willbrand EH, Parker BJ, Bunge SA, Weiner KS, Lyu I. Leveraging Input-Level Feature Deformation With Guided-Attention for Sulcal Labeling. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:915-926. [PMID: 39325613 PMCID: PMC11910724 DOI: 10.1109/tmi.2024.3468727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The identification of cortical sulci is key for understanding functional and structural development of the cortex. While large, consistent sulci (or primary/secondary sulci) receive significant attention in most studies, the exploration of smaller and more variable sulci (or putative tertiary sulci) remains relatively under-investigated. Despite its importance, automatic labeling of cortical sulci is challenging due to (1) the presence of substantial anatomical variability, (2) the relatively small size of the regions of interest (ROIs) compared to unlabeled regions, and (3) the scarcity of annotated labels. In this paper, we propose a novel end-to-end learning framework using a spherical convolutional neural network (CNN). Specifically, the proposed method learns to effectively warp geometric features in a direction that facilitates the labeling of sulci while mitigating the impact of anatomical variability. Moreover, we introduce a guided-attention mechanism that takes into account the extent of deformation induced by the learned warping. This extracts discriminative features that emphasize sulcal ROIs, while suppressing irrelevant information of unlabeled regions. In the experiments, we evaluate the proposed method on 8 sulci of the posterior medial cortex. Our method outperforms existing methods particularly in the putative tertiary sulci. The code is publicly available at https://github.com/Shape-Lab/DSPHARM-Net.
Collapse
|
2
|
Li S, Qiao P, Wang L, Ning M, Yuan L, Zheng Y, Chen J. An Organ-Aware Diagnosis Framework for Radiology Report Generation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:4253-4265. [PMID: 38949933 DOI: 10.1109/tmi.2024.3421599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Radiology report generation (RRG) is crucial to save the valuable time of radiologists in drafting the report, therefore increasing their work efficiency. Compared to typical methods that directly transfer image captioning technologies to RRG, our approach incorporates organ-wise priors into the report generation. Specifically, in this paper, we propose Organ-aware Diagnosis (OaD) to generate diagnostic reports containing descriptions of each physiological organ. During training, we first develop a task distillation (TD) module to extract organ-level descriptions from reports. We then introduce an organ-aware report generation module that, for one thing, provides a specific description for each organ, and for another, simulates clinical situations to provide short descriptions for normal cases. Furthermore, we design an auto-balance mask loss to ensure balanced training for normal/abnormal descriptions and various organs simultaneously. Being intuitively reasonable and practically simple, our OaD outperforms SOTA alternatives by large margins on commonly used IU-Xray and MIMIC-CXR datasets, as evidenced by a 3.4% BLEU-1 improvement on MIMIC-CXR and 2.0% BLEU-2 improvement on IU-Xray.
Collapse
|
3
|
Stoebner ZA, Hett K, Lyu I, Johnson H, Paulsen JS, Long JD, Oguz I. Comprehensive shape analysis of the cortex in Huntington's disease. Hum Brain Mapp 2023; 44:1417-1431. [PMID: 36409662 PMCID: PMC9921229 DOI: 10.1002/hbm.26125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
The striatum has traditionally been the focus of Huntington's disease research due to the primary insult to this region and its central role in motor symptoms. Beyond the striatum, evidence of cortical alterations caused by Huntington's disease has surfaced. However, findings are not coherent between studies which have used cortical thickness for Huntington's disease since it is the well-established cortical metric of interest in other diseases. In this study, we propose a more comprehensive approach to cortical morphology in Huntington's disease using cortical thickness, sulcal depth, and local gyrification index. Our results show consistency with prior findings in cortical thickness, including its limitations. Our comparison between cortical thickness and local gyrification index underscores the complementary nature of these two measures-cortical thickness detects changes in the sensorimotor and posterior areas while local gyrification index identifies insular differences. Since local gyrification index and cortical thickness measures detect changes in different regions, the two used in tandem could provide a clinically relevant measure of disease progression. Our findings suggest that differences in insular regions may correspond to earlier neurodegeneration and may provide a complementary cortical measure for detection of subtle early cortical changes due to Huntington's disease.
Collapse
Affiliation(s)
- Zachary A Stoebner
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA.,University of Texas at Austin, Austin, Texas, USA
| | - Kilian Hett
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Ilwoo Lyu
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Computer Science and Engineering, UNIST, Ulsan, South Korea
| | - Hans Johnson
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA.,Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Ipek Oguz
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Liu Y, Bao S, Englot DJ, Morgan VL, Taylor WD, Wei Y, Oguz I, Landman BA, Lyu I. Hierarchical particle optimization for cortical shape correspondence in temporal lobe resection. Comput Biol Med 2023; 152:106414. [PMID: 36525831 PMCID: PMC9832438 DOI: 10.1016/j.compbiomed.2022.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anterior temporal lobe resection is an effective treatment for temporal lobe epilepsy. The post-surgical structural changes could influence the follow-up treatment. Capturing post-surgical changes necessitates a well-established cortical shape correspondence between pre- and post-surgical surfaces. Yet, most cortical surface registration methods are designed for normal neuroanatomy. Surgical changes can introduce wide ranging artifacts in correspondence, for which conventional surface registration methods may not work as intended. METHODS In this paper, we propose a novel particle method for one-to-one dense shape correspondence between pre- and post-surgical surfaces with temporal lobe resection. The proposed method can handle partial structural abnormality involving non-rigid changes. Unlike existing particle methods using implicit particle adjacency, we consider explicit particle adjacency to establish a smooth correspondence. Moreover, we propose hierarchical optimization of particles rather than full optimization of all particles at once to avoid trappings of locally optimal particle update. RESULTS We evaluate the proposed method on 25 pairs of T1-MRI with pre- and post-simulated resection on the anterior temporal lobe and 25 pairs of patients with actual resection. We show improved accuracy over several cortical regions in terms of ROI boundary Hausdorff distance with 4.29 mm and Dice similarity coefficients with average value 0.841, compared to existing surface registration methods on simulated data. In 25 patients with actual resection of the anterior temporal lobe, our method shows an improved shape correspondence in qualitative and quantitative evaluation on parcellation-off ratio with average value 0.061 and cortical thickness changes. We also show better smoothness of the correspondence without self-intersection, compared with point-wise matching methods which show various degrees of self-intersection. CONCLUSION The proposed method establishes a promising one-to-one dense shape correspondence for temporal lobe resection. The resulting correspondence is smooth without self-intersection. The proposed hierarchical optimization strategy could accelerate optimization and improve the optimization accuracy. According to the results on the paired surfaces with temporal lobe resection, the proposed method outperforms the compared methods and is more reliable to capture cortical thickness changes.
Collapse
Affiliation(s)
- Yue Liu
- College of Information Science and Engineering, Northeastern University, Shenyang, China; Department of Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Shunxing Bao
- Department of Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, TN, USA
| | - Victoria L Morgan
- Department of Radiology & Radiological Science, Vanderbilt University Medical Center, TN, USA
| | - Warren D Taylor
- Department of Psychiatry & Behavioral Science, Vanderbilt University Medical Center, TN, USA
| | - Ying Wei
- College of Information Science and Engineering, Northeastern University, Shenyang, China; Information Technology R&D Innovation Center of Peking University, Shaoxing, China; Changsha Hisense Intelligent System Research Institute Co., Ltd, China
| | - Ipek Oguz
- Department of Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Ilwoo Lyu
- Department of Computer Science and Engineering, UNIST, Ulsan, South Korea.
| |
Collapse
|
5
|
Fernández-Pena A, Martín de Blas D, Navas-Sánchez FJ, Marcos-Vidal L, M Gordaliza P, Santonja J, Janssen J, Carmona S, Desco M, Alemán-Gómez Y. ABLE: Automated Brain Lines Extraction Based on Laplacian Surface Collapse. Neuroinformatics 2023; 21:145-162. [PMID: 36008650 DOI: 10.1007/s12021-022-09601-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
The archetypical folded shape of the human cortex has been a long-standing topic for neuroscientific research. Nevertheless, the accurate neuroanatomical segmentation of sulci remains a challenge. Part of the problem is the uncertainty of where a sulcus transitions into a gyrus and vice versa. This problem can be avoided by focusing on sulcal fundi and gyral crowns, which represent the topological opposites of cortical folding. We present Automated Brain Lines Extraction (ABLE), a method based on Laplacian surface collapse to reliably segment sulcal fundi and gyral crown lines. ABLE is built to work on standard FreeSurfer outputs and eludes the delineation of anastomotic sulci while maintaining sulcal fundi lines that traverse the regions with the highest depth and curvature. First, it segments the cortex into gyral and sulcal surfaces; then, each surface is spatially filtered. A Laplacian-collapse-based algorithm is applied to obtain a thinned representation of the surfaces. This surface is then used for careful detection of the endpoints of the lines. Finally, sulcal fundi and gyral crown lines are obtained by eroding the surfaces while preserving the connectivity between the endpoints. The method is validated by comparing ABLE with three other sulcal extraction methods using the Human Connectome Project (HCP) test-retest database to assess the reproducibility of the different tools. The results confirm ABLE as a reliable method for obtaining sulcal lines with an accurate representation of the sulcal topology while ignoring anastomotic branches and the overestimation of the sulcal fundi lines. ABLE is publicly available via https://github.com/HGGM-LIM/ABLE .
Collapse
Affiliation(s)
- Alberto Fernández-Pena
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Daniel Martín de Blas
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Francisco J Navas-Sánchez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Luis Marcos-Vidal
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Pedro M Gordaliza
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Javier Santonja
- PhD Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | - Joost Janssen
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Susanna Carmona
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | - Yasser Alemán-Gómez
- Connectomics Lab, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
6
|
Shishegar R, Gandomkar Z, Fallahi A, Nazem-Zadeh MR, Soltanian-Zadeh H. Global and local shape features of the hippocampus based on Laplace–Beltrami eigenvalues and eigenfunctions: a potential application in the lateralization of temporal lobe epilepsy. Neurol Sci 2022; 43:5543-5552. [DOI: 10.1007/s10072-022-06204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/14/2022] [Indexed: 10/17/2022]
|
7
|
Cai LY, Tanase C, Anderson AW, Ramadass K, Rheault F, Lee CA, Patel NJ, Jones S, LeStourgeon LM, Mahon A, Pruthi S, Gwal K, Ozturk A, Kang H, Glaser N, Ghetti S, Jaser SS, Jordan LC, Landman BA. Multimodal neuroimaging in pediatric type 1 diabetes: a pilot multisite feasibility study of acquisition quality, motion, and variability. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12032:120323U. [PMID: 36303580 PMCID: PMC9604061 DOI: 10.1117/12.2611553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Type 1 diabetes (T1D) affects over 200,000 children and is associated with an increased risk of cognitive dysfunction. Prior imaging studies suggest the neurological changes underlying this risk are multifactorial, including macrostructural, microstructural, and inflammatory changes. However, these studies have yet to be integrated, limiting investigation into how these phenomena interact. To better understand these complex mechanisms of brain injury, a well-powered, prospective, multisite, and multimodal neuroimaging study is needed. We take the first step in accomplishing this with a preliminary characterization of multisite, multimodal MRI quality, motion, and variability in pediatric T1D. We acquire structural T1 weighted (T1w) MRI, diffusion tensor MRI (DTI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS) of 5-7 participants from each of two sites. First, we assess the contrast-to-noise ratio of the T1w MRI and find no differences between sites. Second, we characterize intervolume motion in DTI and fMRI and find it to be on the subvoxel level. Third, we investigate variability in regional gray matter volumes and local gyrification indices, bundle-wise DTI microstructural measures, and N-acetylaspartate to creatine ratios. We find the T1-based measures to be comparable between sites before harmonization and the DTI and MRS-based measures to be comparable after. We find a 5-15% coefficient of variation for most measures, suggesting ~150-200 participants per group on average are needed to detect a 5% difference across these modalities at 0.9 power. We conclude that multisite, multimodal neuroimaging of pediatric T1D is feasible with low motion artifact after harmonization of DTI and MRS.
Collapse
Affiliation(s)
- Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Costin Tanase
- Department of Psychiatry, University of California, Davis, Davis, CA, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Karthik Ramadass
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Francois Rheault
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Chelsea A Lee
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niral J Patel
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sky Jones
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren M LeStourgeon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alix Mahon
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - Sumit Pruthi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kriti Gwal
- Department of Radiology, UC Davis Health, UC Davis School of Medicine, Sacramento, CA, USA
| | - Arzu Ozturk
- Department of Radiology, UC Davis Health, UC Davis School of Medicine, Sacramento, CA, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicole Glaser
- Department of Pediatrics, UC Davis Health, UC Davis School of Medicine, Sacramento, CA, USA
| | - Simona Ghetti
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - Sarah S Jaser
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori C Jordan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett A Landman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Zoltowski AR, Lyu I, Failla M, Mash LE, Dunham K, Feldman JI, Woynaroski TG, Wallace MT, Barquero LA, Nguyen TQ, Cutting LE, Kang H, Landman BA, Cascio CJ. Cortical Morphology in Autism: Findings from a Cortical Shape-Adaptive Approach to Local Gyrification Indexing. Cereb Cortex 2021; 31:5188-5205. [PMID: 34195789 DOI: 10.1093/cercor/bhab151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 11/14/2022] Open
Abstract
It has been challenging to elucidate the differences in brain structure that underlie behavioral features of autism. Prior studies have begun to identify patterns of changes in autism across multiple structural indices, including cortical thickness, local gyrification, and sulcal depth. However, common approaches to local gyrification indexing used in prior studies have been limited by low spatial resolution relative to functional brain topography. In this study, we analyze the aforementioned structural indices, utilizing a new method of local gyrification indexing that quantifies this index adaptively in relation to specific sulci/gyri, improving interpretation with respect to functional organization. Our sample included n = 115 autistic and n = 254 neurotypical participants aged 5-54, and we investigated structural patterns by group, age, and autism-related behaviors. Differing structural patterns by group emerged in many regions, with age moderating group differences particularly in frontal and limbic regions. There were also several regions, particularly in sensory areas, in which one or more of the structural indices of interest either positively or negatively covaried with autism-related behaviors. Given the advantages of this approach, future studies may benefit from its application in hypothesis-driven examinations of specific brain regions and/or longitudinal studies to assess brain development in autism.
Collapse
Affiliation(s)
- Alisa R Zoltowski
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ilwoo Lyu
- Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Michelle Failla
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,College of Nursing, Ohio State University, Columbus, OH 43210, USA
| | - Lisa E Mash
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA 92120, USA
| | - Kacie Dunham
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacob I Feldman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN 37212, USA
| | - Tiffany G Woynaroski
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN 37212, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN 37212, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA
| | - Laura A Barquero
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA
| | - Tin Q Nguyen
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Special Education, Vanderbilt University, Nashville, TN 37203, USA
| | - Laurie E Cutting
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA.,Department of Special Education, Vanderbilt University, Nashville, TN 37203, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Bennett A Landman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
| | - Carissa J Cascio
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN 37212, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA
| |
Collapse
|
9
|
Lyu I, Bao S, Hao L, Yao J, Miller JA, Voorhies W, Taylor WD, Bunge SA, Weiner KS, Landman BA. Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training. Neuroimage 2021; 229:117758. [PMID: 33497773 PMCID: PMC8366030 DOI: 10.1016/j.neuroimage.2021.117758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The inference of cortical sulcal labels often focuses on deep (primary and secondary) sulcal regions, whereas shallow (tertiary) sulcal regions are largely overlooked in the literature due to the scarcity of manual/well-defined annotations and their large neuroanatomical variability. In this paper, we present an automated framework for regional labeling of both primary/secondary and tertiary sulci of the dorsal portion of lateral prefrontal cortex (LPFC) using spherical convolutional neural networks. We propose two core components that enhance the inference of sulcal labels to overcome such large neuroanatomical variability: (1) surface data augmentation and (2) context-aware training. (1) To take into account neuroanatomical variability, we synthesize training data from the proposed feature space that embeds intermediate deformation trajectories of spherical data in a rigid to non-rigid fashion, which bridges an augmentation gap in conventional rotation data augmentation. (2) Moreover, we design a two-stage training process to improve labeling accuracy of tertiary sulci by informing the biological associations in neuroanatomy: inference of primary/secondary sulci and then their spatial likelihood to guide the definition of tertiary sulci. In the experiments, we evaluate our method on 13 deep and shallow sulci of human LPFC in two independent data sets with different age ranges: pediatric (N=60) and adult (N=36) cohorts. We compare the proposed method with a conventional multi-atlas approach and spherical convolutional neural networks without/with rotation data augmentation. In both cohorts, the proposed data augmentation improves labeling accuracy of deep and shallow sulci over the baselines, and the proposed context-aware training offers further improvement in the labeling of shallow sulci over the proposed data augmentation. We share our tools with the field and discuss applications of our results for understanding neuroanatomical-functional organization of LPFC and the rest of cortex (https://github.com/ilwoolyu/SphericalLabeling).
Collapse
Affiliation(s)
- Ilwoo Lyu
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN, 37235 USA.
| | - Shuxing Bao
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN, 37235 USA
| | - Lingyan Hao
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jewelia Yao
- Department of Psychology, The University of California, Berkeley, CA 94720, USA
| | - Jacob A Miller
- Helen Wills Neuroscience Institute, The University of California, Berkeley, CA 94720, USA
| | - Willa Voorhies
- Department of Psychology, The University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, The University of California, Berkeley, CA 94720, USA
| | - Warren D Taylor
- Psychiatry & Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| | - Silvia A Bunge
- Department of Psychology, The University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, The University of California, Berkeley, CA 94720, USA
| | - Kevin S Weiner
- Department of Psychology, The University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, The University of California, Berkeley, CA 94720, USA
| | - Bennett A Landman
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN, 37235 USA
| |
Collapse
|
10
|
Kerley CI, Cai LY, Yu C, Crawford LM, Elenberger JM, Singh ES, Schilling KG, Aboud KS, Landman BA, Rex TS. Joint analysis of structural connectivity and cortical surface features: correlates with mild traumatic brain injury. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2021; 11596:115960R. [PMID: 34354324 PMCID: PMC8336656 DOI: 10.1117/12.2580902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mild traumatic brain injury (mTBI) is a complex syndrome that affects up to 600 per 100,000 individuals, with a particular concentration among military personnel. About half of all mTBI patients experience a diverse array of chronic symptoms which persist long after the acute injury. Hence, there is an urgent need for better understanding of the white matter and gray matter pathologies associated with mTBI to map which specific brain systems are impacted and identify courses of intervention. Previous works have linked mTBI to disruptions in white matter pathways and cortical surface abnormalities. Herein, we examine these hypothesized links in an exploratory study of joint structural connectivity and cortical surface changes associated with mTBI and its chronic symptoms. Briefly, we consider a cohort of 12 mTBI and 26 control subjects. A set of 588 cortical surface metrics and 4,753 structural connectivity metrics were extracted from cortical surface regions and diffusion weighted magnetic resonance imaging in each subject. Principal component analysis (PCA) was used to reduce the dimensionality of each metric set. We then applied independent component analysis (ICA) both to each PCA space individually and together in a joint ICA approach. We identified a stable independent component across the connectivity-only and joint ICAs which presented significant group differences in subject loadings (p<0.05, corrected). Additionally, we found that two mTBI symptoms, slowed thinking and forgetfulness, were significantly correlated (p<0.05, corrected) with mTBI subject loadings in a surface-only ICA. These surface-only loadings captured an increase in bilateral cortical thickness.
Collapse
Affiliation(s)
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University
| | - Chang Yu
- Department of Computer Science, Vanderbilt University
| | - Logan M Crawford
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center
| | - Jason M Elenberger
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center
| | - Eden S Singh
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University
| | | | - Bennett A Landman
- Department of Electrical Engineering, Vanderbilt University
- Department of Biomedical Engineering, Vanderbilt University
- Department of Computer Science, Vanderbilt University
- Vanderbilt University Institute of Imaging Science, Vanderbilt University
- Vanderbilt Brain Institute, Vanderbilt University
| | - Tonia S Rex
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center
| |
Collapse
|
11
|
Cai LY, Kerley CI, Yu C, Aboud KS, Beason-Held LL, Shafer AT, Resnick SM, Jordan LC, Anderson AW, Schilling KG, Lyu I, Landman BA. Joint cortical surface and structural connectivity analysis of Alzheimer's Disease. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2021; 11596:1159630. [PMID: 34354323 PMCID: PMC8336655 DOI: 10.1117/12.2580956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prior neuroimaging studies have demonstrated isolated structural and connectivity changes in the brain due to Alzheimer's Disease (AD). However, how these changes relate to each other is not well understood. We present a preliminary study to begin to fill this gap by leveraging joint independent component analysis (jICA). We explore how jICA performs in an analysis of T1 and diffusion weighted MRI by characterizing the joint changes of complex cortical surface and structural connectivity metrics in AD in subjects from the Baltimore Longitudinal Study of Aging. We calculate 588 region-based cortical metrics and 4,753 fractional anisotropy-based connectivity metrics and project them into a low-dimensional manifold with principal component analysis. We perform jICA on the manifold and subsequently backproject the independent components to the original data space. We demonstrate component stability with 3-fold cross validation and find differential component loadings between 776 cognitively unimpaired control subjects and 23 with AD that generalizes across folds. In addition, we perform the same analysis on the surface and connectivity metrics separately and find that the joint approach identifies both novel and similar components to the separate approaches. To illustrate the joint approach's primary utility, we provide an example hypothesis for how surface and connectivity components may vary together with AD. These preliminary results suggest jointly varying independent cortical surface and structural connectivity components can be consistently extracted from MRI data and provide a data-driven way for generating novel hypotheses about AD that may not be captured by separate analyses.
Collapse
Affiliation(s)
- Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Cailey I Kerley
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Chang Yu
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Katherine S Aboud
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Lori L Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Andrea T Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Ilwoo Lyu
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
12
|
Shishegar R, Pizzagalli F, Georgiou-Karistianis N, Egan GF, Jahanshad N, Johnston LA. A gyrification analysis approach based on Laplace Beltrami eigenfunction level sets. Neuroimage 2021; 229:117751. [PMID: 33460799 DOI: 10.1016/j.neuroimage.2021.117751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022] Open
Abstract
An accurate measure of the complexity of patterns of cortical folding or gyrification is necessary for understanding normal brain development and neurodevelopmental disorders. Conventional gyrification indices (GIs) are calculated based on surface curvature (curvature-based GI) or an outer hull surface of the cortex (outer surface-based GI). The latter is dependent on the definition of the outer hull surface and a corresponding function between surfaces. In the present study, we propose the Laplace Beltrami-based gyrification index (LB-GI). This is a new curvature-based local GI computed using the first three Laplace Beltrami eigenfunction level sets. As with outer surface-based GI methods, this method is based on the hypothesis that gyrification stems from a flat surface during development. However, instead of quantifying gyrification with reference to corresponding points on an outer hull surface, LB-GI quantifies the gyrification at each point on the cortical surface with reference to their surrounding gyral points, overcoming several shortcomings of existing methods. The LB-GI was applied to investigate the cortical maturation profile of the human brain from preschool to early adulthood using the PING database. The results revealed more detail in patterns of cortical folding than conventional curvature-based methods, especially on frontal and posterior tips of the brain, such as the frontal pole, lateral occipital, lateral cuneus, and lingual. Negative associations of cortical folding with age were observed at cortical regions, including bilateral lingual, lateral occipital, precentral gyrus, postcentral gyrus, and superior frontal gyrus. The results also indicated positive significant associations between age and the LB-GI of bilateral insula, the medial orbitofrontal, frontal pole and rostral anterior cingulate regions. It is anticipated that the LB-GI will be advantageous in providing further insights in the understanding of brain development and degeneration in large clinical neuroimaging studies.
Collapse
Affiliation(s)
- Rosita Shishegar
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia; Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia; The Australian e-Health Research Centre, CSIRO, Melbourne, Australia.
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA; Department of Neurosciences, University of Turin, Italy
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Gary F Egan
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Leigh A Johnston
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia; Melbourne Brain Centre Imaging Unit, University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Huang SG, Lyu I, Qiu A, Chung MK. Fast Polynomial Approximation of Heat Kernel Convolution on Manifolds and Its Application to Brain Sulcal and Gyral Graph Pattern Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2201-2212. [PMID: 31976883 PMCID: PMC7778732 DOI: 10.1109/tmi.2020.2967451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heat diffusion has been widely used in brain imaging for surface fairing, mesh regularization and cortical data smoothing. Motivated by diffusion wavelets and convolutional neural networks on graphs, we present a new fast and accurate numerical scheme to solve heat diffusion on surface meshes. This is achieved by approximating the heat kernel convolution using high degree orthogonal polynomials in the spectral domain. We also derive the closed-form expression of the spectral decomposition of the Laplace-Beltrami operator and use it to solve heat diffusion on a manifold for the first time. The proposed fast polynomial approximation scheme avoids solving for the eigenfunctions of the Laplace-Beltrami operator, which is computationally costly for large mesh size, and the numerical instability associated with the finite element method based diffusion solvers. The proposed method is applied in localizing the male and female differences in cortical sulcal and gyral graph patterns obtained from MRI in an innovative way. The MATLAB code is available at http://www.stat.wisc.edu/~mchung/chebyshev.
Collapse
|
14
|
Hao L, Bao S, Tang Y, Gao R, Parvathaneni P, Miller JA, Voorhies W, Yao J, Bunge SA, Weiner KS, Landman BA, Lyu I. AUTOMATIC LABELING OF CORTICAL SULCI USING SPHERICAL CONVOLUTIONAL NEURAL NETWORKS IN A DEVELOPMENTAL COHORT. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2020; 2020:412-415. [PMID: 32547677 PMCID: PMC7296783 DOI: 10.1109/isbi45749.2020.9098414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this paper, we present the automatic labeling framework for sulci in the human lateral prefrontal cortex (PFC). We adapt an existing spherical U-Net architecture with our recent surface data augmentation technique to improve the sulcal labeling accuracy in a developmental cohort. Specifically, our framework consists of the following key components: (1) augmented geometrical features being generated during cortical surface registration, (2) spherical U-Net architecture to efficiently fit the augmented features, and (3) postrefinement of sulcal labeling by optimizing spatial coherence via a graph cut technique. We validate our method on 30 healthy subjects with manual labeling of sulcal regions within PFC. In the experiments, we demonstrate significantly improved labeling performance (0.7749) in mean Dice overlap compared to that of multi-atlas (0.6410) and standard spherical U-Net (0.7011) approaches, respectively (p < 0.05). Additionally, the proposed method achieves a full set of sulcal labels in 20 seconds in this developmental cohort.
Collapse
Affiliation(s)
- Lingyan Hao
- Department of Mathematics, Vanderbilt University, TN, USA
- Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Shunxing Bao
- Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Yucheng Tang
- Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Riqiang Gao
- Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Prasanna Parvathaneni
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, MD, USA
| | - Jacob A Miller
- Helen Wills Neuroscience Institute, University of California at Berkeley, CA, USA
| | - Willa Voorhies
- Department of Psychology, University of California at Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California at Berkeley, CA, USA
| | - Jewelia Yao
- Department of Psychology, University of California at Berkeley, CA, USA
| | - Silvia A Bunge
- Department of Psychology, University of California at Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California at Berkeley, CA, USA
| | - Kevin S Weiner
- Department of Psychology, University of California at Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California at Berkeley, CA, USA
| | - Bennett A Landman
- Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Ilwoo Lyu
- Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| |
Collapse
|
15
|
Lyu I, Kang H, Woodward ND, Styner MA, Landman BA. Hierarchical spherical deformation for cortical surface registration. Med Image Anal 2019; 57:72-88. [PMID: 31280090 PMCID: PMC6733638 DOI: 10.1016/j.media.2019.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 11/30/2022]
Abstract
We present hierarchical spherical deformation for a group-wise shape correspondence to address template selection bias and to minimize registration distortion. In this work, we aim at a continuous and smooth deformation field to guide accurate cortical surface registration. In conventional spherical registration methods, a global rigid alignment and local deformation are independently performed. Motivated by the composition of precession and intrinsic rotation, we simultaneously optimize global rigid rotation and non-rigid local deformation by utilizing spherical harmonics interpolation of local composite rotations in a single framework. To this end, we indirectly encode local displacements by such local composite rotations as functions of spherical locations. Furthermore, we introduce an additional regularization term to the spherical deformation, which maximizes its rigidity while reducing registration distortion. To improve surface registration performance, we employ the second order approximation of the energy function that enables fast convergence of the optimization. In the experiments, we validate our method on healthy normal subjects with manual cortical surface parcellation in registration accuracy and distortion. We show an improved shape correspondence with high accuracy in cortical surface parcellation and significantly low registration distortion in surface area and edge length. In addition to validation, we discuss parameter tuning, optimization, and implementation design with potential acceleration.
Collapse
Affiliation(s)
- Ilwoo Lyu
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA.
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Martin A Styner
- Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Bennett A Landman
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
16
|
Parvathaneni P, Nath V, McHugo M, Huo Y, Resnick SM, Woodward ND, Landman BA, Lyu I. Improving human cortical sulcal curve labeling in large scale cross-sectional MRI using deep neural networks. J Neurosci Methods 2019; 324:108311. [PMID: 31201823 PMCID: PMC6663093 DOI: 10.1016/j.jneumeth.2019.108311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Human cortical primary sulci are relatively stable landmarks and commonly observed across the population. Despite their stability, the primary sulci exhibit phenotypic variability. NEW METHOD We propose a fully automated pipeline that integrates both sulcal curve extraction and labeling. In this study, we use a large normal control population (n = 1424) to train neural networks for accurately labeling the primary sulci. Briefly, we use sulcal curve distance map, surface parcellation, mean curvature and spectral features to delineate their sulcal labels. We evaluate the proposed method with 8 primary sulcal curves in the left and right hemispheres compared to an established multi-atlas curve labeling method. RESULTS Sulcal labels by the proposed method reasonably well agree with manual labeling. The proposed method outperforms the existing multi-atlas curve labeling method. COMPARISON WITH EXISTING METHOD Significantly improved sulcal labeling results are achieved with over 12.5 and 20.6 percent improvement on labeling accuracy in the left and right hemispheres, respectively compared to that of a multi-atlas curve labeling method in eight curves (p≪0.001, two-sample t-test). CONCLUSION The proposed method offers a computationally efficient and robust labeling of major sulci.
Collapse
Affiliation(s)
| | - Vishwesh Nath
- Computer Science, Vanderbilt Universitay, Nashville, TN, USA
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Science, Vanderbilt Universitay, Nashville, TN, USA
| | - Yuankai Huo
- Electrical Engineering, Vanderbilt Universitay, Nashville, TN, USA
| | | | - Neil D Woodward
- Department of Psychiatry and Behavioral Science, Vanderbilt Universitay, Nashville, TN, USA
| | - Bennett A Landman
- Electrical Engineering, Vanderbilt Universitay, Nashville, TN, USA; Computer Science, Vanderbilt Universitay, Nashville, TN, USA; Department of Psychiatry and Behavioral Science, Vanderbilt Universitay, Nashville, TN, USA
| | - Ilwoo Lyu
- Computer Science, Vanderbilt Universitay, Nashville, TN, USA.
| |
Collapse
|
17
|
Xia J, Wang F, Meng Y, Wu Z, Wang L, Lin W, Zhang C, Shen D, Li G. A computational method for longitudinal mapping of orientation-specific expansion of cortical surface in infants. Med Image Anal 2018; 49:46-59. [PMID: 30092545 PMCID: PMC6276374 DOI: 10.1016/j.media.2018.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/24/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022]
Abstract
The cortical surface of the human brain expands dynamically and regionally heterogeneously during the first postnatal year. As all primary and secondary cortical folds as well as many tertiary cortical folds are well established at term birth, the cortical surface area expansion during this stage is largely driven by the increase of surface area in two orthogonal orientations in the tangent plane: 1) the expansion parallel to the folding orientation (i.e., increasing the lengths of folds) and 2) the expansion perpendicular to the folding orientation (i.e., increasing the depths of folds). This information would help us better understand the mechanisms of cortical development and provide important insights into neurodevelopmental disorders, but still remains largely unknown due to lack of dedicated computational methods. To address this issue, we propose a novel method for longitudinal mapping of orientation-specific expansion of cortical surface area in these two orthogonal orientations during early infancy. First, to derive the two orientation fields perpendicular and parallel to cortical folds, we propose to adaptively and smoothly fuse the gradient field of sulcal depth and also the maximum principal direction field, by leveraging their region-specific reliability. Specifically, we formulate this task as a discrete labeling problem, in which each vertex is assigned to an orientation label, and solve it by graph cuts. Then, based on the computed longitudinal deformation of the cortical surface, we estimate the Jacobian matrix at each vertex by solving a least-squares problem and derive its corresponding stretch tensor. Finally, to obtain the orientation-specific cortical surface expansion, we project the stretch tensor into the two orthogonal orientations separately. We have applied the proposed method to 30 healthy infants, and for the first time we revealed the orientation-specific longitudinal cortical surface expansion maps during the first postnatal year.
Collapse
Affiliation(s)
- Jing Xia
- Department of Computer Science and Technology, Shandong University, Jinan 250100, China; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Fan Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Yu Meng
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Caiming Zhang
- Digital Media Technology Key Lab of Shandong Province, Jinan 250061, China; Department of Software, Shandong University, Jinan 250100, China
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|