1
|
Fares J, Wan Y, Mayrand R, Li Y, Mair R, Price SJ. Decoding Glioblastoma Heterogeneity: Neuroimaging Meets Machine Learning. Neurosurgery 2024:00006123-990000000-01449. [PMID: 39570018 DOI: 10.1227/neu.0000000000003260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/18/2024] [Indexed: 11/22/2024] Open
Abstract
Recent advancements in neuroimaging and machine learning have significantly improved our ability to diagnose and categorize isocitrate dehydrogenase (IDH)-wildtype glioblastoma, a disease characterized by notable tumoral heterogeneity, which is crucial for effective treatment. Neuroimaging techniques, such as diffusion tensor imaging and magnetic resonance radiomics, provide noninvasive insights into tumor infiltration patterns and metabolic profiles, aiding in accurate diagnosis and prognostication. Machine learning algorithms further enhance glioblastoma characterization by identifying distinct imaging patterns and features, facilitating precise diagnoses and treatment planning. Integration of these technologies allows for the development of image-based biomarkers, potentially reducing the need for invasive biopsy procedures and enabling personalized therapy targeting specific pro-tumoral signaling pathways and resistance mechanisms. Although significant progress has been made, ongoing innovation is essential to address remaining challenges and further improve these methodologies. Future directions should focus on refining machine learning models, integrating emerging imaging techniques, and elucidating the complex interplay between imaging features and underlying molecular processes. This review highlights the pivotal role of neuroimaging and machine learning in glioblastoma research, offering invaluable noninvasive tools for diagnosis, prognosis prediction, and treatment planning, ultimately improving patient outcomes. These advances in the field promise to usher in a new era in the understanding and classification of IDH-wildtype glioblastoma.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
- Cambridge Brain Tumour Imaging Laboratory, Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yizhou Wan
- Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
- Cambridge Brain Tumour Imaging Laboratory, Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
| | - Roxanne Mayrand
- Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
- Cambridge Brain Tumour Imaging Laboratory, Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
| | - Yonghao Li
- Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
- Cambridge Brain Tumour Imaging Laboratory, Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
| | - Richard Mair
- Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
| | - Stephen J Price
- Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
- Cambridge Brain Tumour Imaging Laboratory, Department of Clinical Neurosciences, Academic Neurosurgery Division, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Mao X, Wang H, Wang Z, Yang S. Mixed Matrix Completion in Complex Survey Sampling under Heterogeneous Missingness. J Comput Graph Stat 2024; 33:1320-1328. [PMID: 39720102 PMCID: PMC11664600 DOI: 10.1080/10618600.2024.2319154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/03/2024] [Indexed: 12/26/2024]
Abstract
Modern surveys with large sample sizes and growing mixed-type questionnaires require robust and scalable analysis methods. In this work, we consider recovering a mixed dataframe matrix, obtained by complex survey sampling, with entries following different canonical exponential distributions and subject to heterogeneous missingness. To tackle this challenging task, we propose a two-stage procedure: in the first stage, we model the entry-wise missing mechanism by logistic regression, and in the second stage, we complete the target parameter matrix by maximizing a weighted log-likelihood with a low-rank constraint. We propose a fast and scalable estimation algorithm that achieves sublinear convergence, and the upper bound for the estimation error of the proposed method is rigorously derived. Experimental results support our theoretical claims, and the proposed estimator shows its merits compared to other existing methods. The proposed method is applied to analyze the National Health and Nutrition Examination Survey data. Supplementary materialsfor this article are available online.
Collapse
Affiliation(s)
- Xiaojun Mao
- School of Mathematical Sciences, Ministry of Education Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hengfang Wang
- School of Mathematics and Statistics & Fujian Provincial Key Laboratory of Statistics and Artificial Intelligence, Fujian Normal University, Fujian 350007, China
| | - Zhonglei Wang
- Wang Yanan Institute for Studies in Economics and School of Economics, Xiamen University, Xiamen, Fujian 361005, China
| | - Shu Yang
- Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Wei R, Lu S, Lai S, Liang F, Zhang W, Jiang X, Zhen X, Yang R. A subregion-based RadioFusionOmics model discriminates between grade 4 astrocytoma and glioblastoma on multisequence MRI. J Cancer Res Clin Oncol 2024; 150:73. [PMID: 38305926 PMCID: PMC10837235 DOI: 10.1007/s00432-023-05603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To explore a subregion-based RadioFusionOmics (RFO) model for discrimination between adult-type grade 4 astrocytoma and glioblastoma according to the 2021 WHO CNS5 classification. METHODS 329 patients (40 grade 4 astrocytomas and 289 glioblastomas) with histologic diagnosis was retrospectively collected from our local institution and The Cancer Imaging Archive (TCIA). The volumes of interests (VOIs) were obtained from four multiparametric MRI sequences (T1WI, T1WI + C, T2WI, T2-FLAIR) using (1) manual segmentation of the non-enhanced tumor (nET), enhanced tumor (ET), and peritumoral edema (pTE), and (2) K-means clustering of four habitats (H1: high T1WI + C, high T2-FLAIR; (2) H2: high T1WI + C, low T2-FLAIR; (3) H3: low T1WI + C, high T2-FLAIR; and (4) H4: low T1WI + C, low T2-FLAIR). The optimal VOI and best MRI sequence combination were determined. The performance of the RFO model was evaluated using the area under the precision-recall curve (AUPRC) and the best signatures were identified. RESULTS The two best VOIs were manual VOI3 (putative peritumoral edema) and clustering H34 (low T1WI + C, high T2-FLAIR (H3) combined with low T1WI + C and low T2-FLAIR (H4)). Features fused from four MRI sequences ([Formula: see text]) outperformed those from either a single sequence or other sequence combinations. The RFO model that was trained using fused features [Formula: see text] achieved the AUPRC of 0.972 (VOI3) and 0.976 (H34) in the primary cohort (p = 0.905), and 0.971 (VOI3) and 0.974 (H34) in the testing cohort (p = 0.402). CONCLUSION The performance of subregions defined by clustering was comparable to that of subregions that were manually defined. Fusion of features from the edematous subregions of multiple MRI sequences by the RFO model resulted in differentiation between grade 4 astrocytoma and glioblastoma.
Collapse
Affiliation(s)
- Ruili Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Songlin Lu
- School of Biomedical Engineering, Southern Medical University, GuangZhou, China
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Fangrong Liang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Wanli Zhang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Xinqing Jiang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Xin Zhen
- School of Biomedical Engineering, Southern Medical University, GuangZhou, China.
| | - Ruimeng Yang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China.
| |
Collapse
|
4
|
Samartha MVS, Dubey NK, Jena B, Maheswar G, Lo WC, Saxena S. AI-driven estimation of O6 methylguanine-DNA-methyltransferase (MGMT) promoter methylation in glioblastoma patients: a systematic review with bias analysis. J Cancer Res Clin Oncol 2024; 150:57. [PMID: 38291266 PMCID: PMC10827977 DOI: 10.1007/s00432-023-05566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Accurate and non-invasive estimation of MGMT promoter methylation status in glioblastoma (GBM) patients is of paramount clinical importance, as it is a predictive biomarker associated with improved overall survival (OS). In response to the clinical need, recent studies have focused on the development of non-invasive artificial intelligence (AI)-based methods for MGMT estimation. In this systematic review, we not only delve into the technical aspects of these AI-driven MGMT estimation methods but also emphasize their profound clinical implications. Specifically, we explore the potential impact of accurate non-invasive MGMT estimation on GBM patient care and treatment decisions. METHODS Employing a PRISMA search strategy, we identified 33 relevant studies from reputable databases, including PubMed, ScienceDirect, Google Scholar, and IEEE Explore. These studies were comprehensively assessed using 21 diverse attributes, encompassing factors such as types of imaging modalities, machine learning (ML) methods, and cohort sizes, with clear rationales for attribute scoring. Subsequently, we ranked these studies and established a cutoff value to categorize them into low-bias and high-bias groups. RESULTS By analyzing the 'cumulative plot of mean score' and the 'frequency plot curve' of the studies, we determined a cutoff value of 6.00. A higher mean score indicated a lower risk of bias, with studies scoring above the cutoff mark categorized as low-bias (73%), while 27% fell into the high-bias category. CONCLUSION Our findings underscore the immense potential of AI-based machine learning (ML) and deep learning (DL) methods in non-invasively determining MGMT promoter methylation status. Importantly, the clinical significance of these AI-driven advancements lies in their capacity to transform GBM patient care by providing accurate and timely information for treatment decisions. However, the translation of these technical advancements into clinical practice presents challenges, including the need for large multi-institutional cohorts and the integration of diverse data types. Addressing these challenges will be critical in realizing the full potential of AI in improving the reliability and accessibility of MGMT estimation while lowering the risk of bias in clinical decision-making.
Collapse
Affiliation(s)
- Mullapudi Venkata Sai Samartha
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei, 114757, Taiwan
- Executive Programme in Healthcare Management, Indian Institute of Management, Lucknow, 226013, India
| | - Biswajit Jena
- Institute of Technical Education and Research, SOA Deemed to be University, Bhubaneswar, 751030, India
| | - Gorantla Maheswar
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India
| | - Wen-Cheng Lo
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Sanjay Saxena
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India.
| |
Collapse
|
5
|
Di Salle G, Tumminello L, Laino ME, Shalaby S, Aghakhanyan G, Fanni SC, Febi M, Shortrede JE, Miccoli M, Faggioni L, Cosottini M, Neri E. Accuracy of Radiomics in Predicting IDH Mutation Status in Diffuse Gliomas: A Bivariate Meta-Analysis. Radiol Artif Intell 2024; 6:e220257. [PMID: 38231039 PMCID: PMC10831518 DOI: 10.1148/ryai.220257] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 01/18/2024]
Abstract
Purpose To perform a systematic review and meta-analysis assessing the predictive accuracy of radiomics in the noninvasive determination of isocitrate dehydrogenase (IDH) status in grade 4 and lower-grade diffuse gliomas. Materials and Methods A systematic search was performed in the PubMed, Scopus, Embase, Web of Science, and Cochrane Library databases for relevant articles published between January 1, 2010, and July 7, 2021. Pooled sensitivity and specificity across studies were estimated. Risk of bias was evaluated using Quality Assessment of Diagnostic Accuracy Studies-2, and methods were evaluated using the radiomics quality score (RQS). Additional subgroup analyses were performed according to tumor grade, RQS, and number of sequences used (PROSPERO ID: CRD42021268958). Results Twenty-six studies that included 3280 patients were included for analysis. The pooled sensitivity and specificity of radiomics for the detection of IDH mutation were 79% (95% CI: 76, 83) and 80% (95% CI: 76, 83), respectively. Low RQS scores were found overall for the included works. Subgroup analyses showed lower false-positive rates in very low RQS studies (RQS < 6) (meta-regression, z = -1.9; P = .02) compared with adequate RQS studies. No substantial differences were found in pooled sensitivity and specificity for the pure grade 4 gliomas group compared with the all-grade gliomas group (81% and 86% vs 79% and 79%, respectively) and for studies using single versus multiple sequences (80% and 77% vs 79% and 82%, respectively). Conclusion The pooled data showed that radiomics achieved good accuracy performance in distinguishing IDH mutation status in patients with grade 4 and lower-grade diffuse gliomas. The overall methodologic quality (RQS) was low and introduced potential bias. Keywords: Neuro-Oncology, Radiomics, Integration, Application Domain, Glioblastoma, IDH Mutation, Radiomics Quality Scoring Supplemental material is available for this article. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Gianfranco Di Salle
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Lorenzo Tumminello
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Maria Elena Laino
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Sherif Shalaby
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Gayane Aghakhanyan
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Salvatore Claudio Fanni
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Maria Febi
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Jorge Eduardo Shortrede
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Mario Miccoli
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Lorenzo Faggioni
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Mirco Cosottini
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| | - Emanuele Neri
- From Academic Radiology, Department of Translational Research on New
Technologies in Medicine and Surgery (G.D.S., L.T., G.A., S.C.F., M.F., J.E.S.,
L.F., E.N.), Department of Clinical and Experimental Medicine (M.M.), and
Neuroradiology Unit, Department of Translational Research on New Technologies in
Medicine and Surgery (M.C.), University of Pisa, Via Roma 67, 56126 Pisa, Italy;
Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano,
Milan, Italy (M.E.L.); The Shrewsbury and Telford Hospital NHS Trust,
Shrewsbury, England (S.S.); and Italian Society of Medical and Interventional
Radiology, SIRM Foundation, Milan, Italy (E.N.)
| |
Collapse
|
6
|
Yang N, Xiao X, Gu G, Wang X, Zhang X, Wang Y, Pan C, Zhang P, Ma L, Zhang L, Liao H. Diffusion MRI-based connectomics features improve the noninvasive prediction of H3K27M mutation in brainstem gliomas. Radiother Oncol 2023; 186:109789. [PMID: 37414255 DOI: 10.1016/j.radonc.2023.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE To establish an individualized predictive model to identify patients with brainstem gliomas (BSGs) at high risk of H3K27M mutation, with the inclusion of brain structural connectivity analysis based on diffusion MRI (dMRI). MATERIALS AND METHODS A primary cohort of 133 patients with BSGs (80 H3K27M-mutant) were retrospectively included. All patients underwent preoperative conventional MRI and dMRI. Tumor radiomics features were extracted from conventional MRI, while two kinds of global connectomics features were extracted from dMRI. A machine learning-based individualized H3K27M mutation prediction model combining radiomics and connectomics features was generated with a nested cross validation strategy. Relief algorithm and SVM method were used in each outer LOOCV loop to select the most robust and discriminative features. Additionally, two predictive signatures were established using the LASSO method, and simplified logistic models were built using multivariable logistic regression analysis. An independent cohort of 27 patients was used to validate the best model. RESULTS 35 tumor-related radiomics features, 51 topological properties of brain structural connectivity networks, and 11 microstructural measures along white matter tracts were selected to construct a machine learning-based H3K27M mutation prediction model, which achieved an AUC of 0.9136 in the independent validation set. Radiomics- and connectomics-based signatures were generated and simplified combined logistic model was built, upon which derived nomograph achieved an AUC of 0.8827 in the validation cohort. CONCLUSION dMRI is valuable in predicting H3K27M mutation in BSGs, and connectomics analysis is a promising approach. Combining multiple MRI sequences and clinical features, the established models have good performance.
Collapse
Affiliation(s)
- Ne Yang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, China(3)
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China(4)
| | - Guocan Gu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China(4)
| | - Xianyu Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, China(3)
| | - Xinran Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, China(3)
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China(4)
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China(4)
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China(4)
| | - Longfei Ma
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, China(3)
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China(4); China National Clinical Research Center for Neurological Diseases, China(4); Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, China(4)
| | - Hongen Liao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, China(3).
| |
Collapse
|
7
|
Ai L, Bai W, Li M. TDABNet: Three-directional attention block network for the determination of IDH status in low- and high-grade gliomas from MRI. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Huang H, Wang FF, Luo S, Chen G, Tang G. Diagnostic performance of radiomics using machine learning algorithms to predict MGMT promoter methylation status in glioma patients: a meta-analysis. DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY (ANKARA, TURKEY) 2021; 27:716-724. [PMID: 34792025 DOI: 10.5152/dir.2021.21153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE We aimed to assess the diagnostic performance of radiomics using machine learning algorithms to predict the methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter in glioma patients. METHODS A comprehensive literature search of PubMed, EMBASE, and Web of Science until 27 July 2021 was performed to identify eligible studies. Stata SE 15.0 and Meta-Disc 1.4 were used for data analysis. RESULTS A total of fifteen studies with 1663 patients were included: five studies with training and validation cohorts and ten with only training cohorts. The pooled sensitivity and specificity of machine learning for predicting MGMT promoter methylation in gliomas were 85% (95% CI 79%-90%) and 84% (95% CI 78%-88%) in the training cohort (n=15) and 84% (95% CI 70%-92%) and 78% (95% CI 63%-88%) in the validation cohort (n=5). The AUC was 0.91 (95% CI 0.88-0.93) in the training cohort and 0.88 (95% CI 0.85-0.91) in the validation cohort. The meta-regression demonstrated that magnetic resonance imaging sequences were related to heterogeneity. The sensitivity analysis showed that heterogeneity was reduced by excluding one study with the lowest diagnostic performance. CONCLUSION This meta-analysis demonstrated that machine learning is a promising, reliable and repeatable candidate method for predicting MGMT promoter methylation status in glioma and showed a higher performance than non-machine learning methods.
Collapse
Affiliation(s)
- Huan Huang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Fei-Fei Wang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Shigang Luo
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Guangxiang Chen
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Guangcai Tang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
9
|
Fan Y, Liu J, Wu S. Exploring instance correlations with local discriminant model for multi-label feature selection. APPL INTELL 2021. [DOI: 10.1007/s10489-021-02799-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Zhang L, Liu J. Research Progress of ECG Monitoring Equipment and Algorithms Based on Polymer Materials. MICROMACHINES 2021; 12:1282. [PMID: 34832693 PMCID: PMC8624836 DOI: 10.3390/mi12111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022]
Abstract
Heart diseases such as myocardial ischemia (MI) are the main causes of human death. The prediction of MI and arrhythmia is an effective method for the early detection, diagnosis, and treatment of heart disease. For the rapid detection of arrhythmia and myocardial ischemia, the electrocardiogram (ECG) is widely used in clinical diagnosis, and its detection equipment and algorithm are constantly optimized. This paper introduces the current progress of portable ECG monitoring equipment, including the use of polymer material sensors and the use of deep learning algorithms. First, it introduces the latest portable ECG monitoring equipment and the polymer material sensor it uses and then focuses on reviewing the progress of detection algorithms. We mainly introduce the basic structure of existing deep learning methods and enumerate the internationally recognized ECG datasets. This paper outlines the deep learning algorithms used for ECG diagnosis, compares the prediction results of different classifiers, and summarizes two existing problems of ECG detection technology: imbalance of categories and high computational overhead. Finally, we put forward the development direction of using generative adversarial networks (GAN) to improve the quality of the ECG database and lightweight ECG diagnosis algorithm to adapt to portable ECG monitoring equipment.
Collapse
Affiliation(s)
| | - Jihong Liu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
| |
Collapse
|
11
|
Kinoshita M, Kanemura Y, Narita Y, Kishima H. Reverse Engineering Glioma Radiomics to Conventional Neuroimaging. Neurol Med Chir (Tokyo) 2021; 61:505-514. [PMID: 34373429 PMCID: PMC8443974 DOI: 10.2176/nmc.ra.2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel radiological research field pursuing comprehensive quantitative image, namely “Radiomics,” gained traction along with the advancement of computational technology and artificial intelligence. This novel concept for analyzing medical images brought extensive interest to the neuro-oncology and neuroradiology research community to build a diagnostic workflow to detect clinically relevant genetic alteration of gliomas noninvasively. Although quite a few promising results were published regarding MRI-based diagnosis of isocitrate dehydrogenase (IDH) mutation in gliomas, it has become clear that an ample amount of effort is still needed to render this technology clinically applicable. At the same time, many significant insights were discovered through this research project, some of which could be “reverse engineered” to improve conventional non-radiomic MR image acquisition. In this review article, the authors aim to discuss the recent advancements and encountering issues of radiomics, how we can apply the knowledge provided by radiomics to standard clinical images, and further expected technological advances in the realm of radiomics and glioma.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Neurosurgery, Asahikawa Medical University.,Department of Neurosurgery, Osaka University Graduate School of Medicine.,Department of Neurosurgery, Osaka International Cancer Institute
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| |
Collapse
|
12
|
Buchlak QD, Esmaili N, Leveque JC, Bennett C, Farrokhi F, Piccardi M. Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review. J Clin Neurosci 2021; 89:177-198. [PMID: 34119265 DOI: 10.1016/j.jocn.2021.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.
Collapse
Affiliation(s)
- Quinlan D Buchlak
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia.
| | - Nazanin Esmaili
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia; Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Christine Bennett
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
| | - Farrokh Farrokhi
- Neuroscience Institute, Virginia Mason Medical Center, Seattle, WA, USA
| | - Massimo Piccardi
- Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
13
|
Jian A, Jang K, Manuguerra M, Liu S, Magnussen J, Di Ieva A. Machine Learning for the Prediction of Molecular Markers in Glioma on Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Neurosurgery 2021; 89:31-44. [PMID: 33826716 DOI: 10.1093/neuros/nyab103] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/24/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Molecular characterization of glioma has implications for prognosis, treatment planning, and prediction of treatment response. Current histopathology is limited by intratumoral heterogeneity and variability in detection methods. Advances in computational techniques have led to interest in mining quantitative imaging features to noninvasively detect genetic mutations. OBJECTIVE To evaluate the diagnostic accuracy of machine learning (ML) models in molecular subtyping gliomas on preoperative magnetic resonance imaging (MRI). METHODS A systematic search was performed following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify studies up to April 1, 2020. Methodological quality of studies was assessed using the Quality Assessment for Diagnostic Accuracy Studies (QUADAS)-2. Diagnostic performance estimates were obtained using a bivariate model and heterogeneity was explored using metaregression. RESULTS Forty-four original articles were included. The pooled sensitivity and specificity for predicting isocitrate dehydrogenase (IDH) mutation in training datasets were 0.88 (95% CI 0.83-0.91) and 0.86 (95% CI 0.79-0.91), respectively, and 0.83 to 0.85 in validation sets. Use of data augmentation and MRI sequence type were weakly associated with heterogeneity. Both O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation and 1p/19q codeletion could be predicted with a pooled sensitivity and specificity between 0.76 and 0.83 in training datasets. CONCLUSION ML application to preoperative MRI demonstrated promising results for predicting IDH mutation, MGMT methylation, and 1p/19q codeletion in glioma. Optimized ML models could lead to a noninvasive, objective tool that captures molecular information important for clinical decision making. Future studies should use multicenter data, external validation and investigate clinical feasibility of ML models.
Collapse
Affiliation(s)
- Anne Jian
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Kevin Jang
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Discipline of Surgery, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Maurizio Manuguerra
- Department of Mathematics and Statistics, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Sidong Liu
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Centre for Health Informatics, Macquarie University, Sydney, Australia
| | - John Magnussen
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Macquarie Medical Imaging, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Macquarie Neurosurgery, Macquarie University, Sydney, Australia
| |
Collapse
|
14
|
Fusion of ULS Group Constrained High- and Low-Order Sparse Functional Connectivity Networks for MCI Classification. Neuroinformatics 2020; 18:1-24. [PMID: 30982183 DOI: 10.1007/s12021-019-09418-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional connectivity networks, derived from resting-state fMRI data, have been found as effective biomarkers for identifying mild cognitive impairment (MCI) from healthy elderly. However, the traditional functional connectivity network is essentially a low-order network with the assumption that the brain activity is static over the entire scanning period, ignoring temporal variations among the correlations derived from brain region pairs. To overcome this limitation, we proposed a new type of sparse functional connectivity network to precisely describe the relationship of temporal correlations among brain regions. Specifically, instead of using the simple pairwise Pearson's correlation coefficient as connectivity, we first estimate the temporal low-order functional connectivity for each region pair based on an ULS Group constrained-UOLS regression algorithm, where a combination of ultra-least squares (ULS) criterion with a Group constrained topology structure detection algorithm is applied to detect the topology of functional connectivity networks, aided by an Ultra-Orthogonal Least Squares (UOLS) algorithm to estimate connectivity strength. Compared to the classical least squares criterion which only measures the discrepancy between the observed signals and the model prediction function, the ULS criterion takes into consideration the discrepancy between the weak derivatives of the observed signals and the model prediction function and thus avoids the overfitting problem. By using a similar approach, we then estimate the high-order functional connectivity from the low-order connectivity to characterize signal flows among the brain regions. We finally fuse the low-order and the high-order networks using two decision trees for MCI classification. Experimental results demonstrate the effectiveness of the proposed method on MCI classification.
Collapse
|
15
|
Tang Z, Xu Y, Jin L, Aibaidula A, Lu J, Jiao Z, Wu J, Zhang H, Shen D. Deep Learning of Imaging Phenotype and Genotype for Predicting Overall Survival Time of Glioblastoma Patients. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2100-2109. [PMID: 31905135 PMCID: PMC7289674 DOI: 10.1109/tmi.2020.2964310] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Glioblastoma (GBM) is the most common and deadly malignant brain tumor. For personalized treatment, an accurate pre-operative prognosis for GBM patients is highly desired. Recently, many machine learning-based methods have been adopted to predict overall survival (OS) time based on the pre-operative mono- or multi-modal imaging phenotype. The genotypic information of GBM has been proven to be strongly indicative of the prognosis; however, this has not been considered in the existing imaging-based OS prediction methods. The main reason is that the tumor genotype is unavailable pre-operatively unless deriving from craniotomy. In this paper, we propose a new deep learning-based OS prediction method for GBM patients, which can derive tumor genotype-related features from pre-operative multimodal magnetic resonance imaging (MRI) brain data and feed them to OS prediction. Specifically, we propose a multi-task convolutional neural network (CNN) to accomplish both tumor genotype and OS prediction tasks jointly. As the network can benefit from learning tumor genotype-related features for genotype prediction, the accuracy of predicting OS time can be prominently improved. In the experiments, multimodal MRI brain dataset of 120 GBM patients, with as many as four different genotypic/molecular biomarkers, are used to evaluate our method. Our method achieves the highest OS prediction accuracy compared to other state-of-the-art methods.
Collapse
|
16
|
Diagnostic accuracy and potential covariates for machine learning to identify IDH mutations in glioma patients: evidence from a meta-analysis. Eur Radiol 2020; 30:4664-4674. [DOI: 10.1007/s00330-020-06717-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022]
|
17
|
A Comparison of the Efficiency of Using a Deep CNN Approach with Other Common Regression Methods for the Prediction of EGFR Expression in Glioblastoma Patients. J Digit Imaging 2019; 33:391-398. [PMID: 31797142 DOI: 10.1007/s10278-019-00290-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To estimate epithermal growth factor receptor (EGFR) expression level in glioblastoma (GBM) patients using radiogenomic analysis of magnetic resonance images (MRI). A comparative study using a deep convolutional neural network (CNN)-based regression, deep neural network, least absolute shrinkage and selection operator (LASSO) regression, elastic net regression, and linear regression with no regularization was carried out to estimate EGFR expression of 166 GBM patients. Except for the deep CNN case, overfitting was prevented by using feature selection, and loss values for each method were compared. The loss values in the training phase for deep CNN, deep neural network, Elastic net, LASSO, and the linear regression with no regularization were 2.90, 8.69, 7.13, 14.63, and 21.76, respectively, while in the test phase, the loss values were 5.94, 10.28, 13.61, 17.32, and 24.19 respectively. These results illustrate that the efficiency of the deep CNN approach is better than that of the other methods, including Lasso regression, which is a regression method known for its advantage in high-dimension cases. A comparison between deep CNN, deep neural network, and three other common regression methods was carried out, and the efficiency of the CNN deep learning approach, in comparison with other regression models, was demonstrated.
Collapse
|
18
|
Gao Y, Liu Y, Wang Y, Shi Z, Yu J. A Universal Intensity Standardization Method Based on a Many-to-One Weak-Paired Cycle Generative Adversarial Network for Magnetic Resonance Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2059-2069. [PMID: 30676951 DOI: 10.1109/tmi.2019.2894692] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In magnetic resonance imaging (MRI), different imaging settings lead to various intensity distributions for a specific imaging object, which brings huge diversity to data-driven medical applications. To standardize the intensity distribution of magnetic resonance (MR) images from multiple centers and multiple machines using one model, a cycle generative adversarial network (CycleGAN)-based framework is proposed. It utilizes a unified forward generative adversarial network (GAN) path and multiple independent backward GAN paths to transform images in different groups into a single reference one. To preserve image details and prevent resolution loss, two jump connections are applied in the CycleGAN generators. A weak-pair strategy is designed to fully utilize the prior knowledge of the organ structure and promote the performance of the GANs. The experiments were conducted on a T2-FLAIR image database with 8192 slices from 489 patients. The database was obtained from four hospitals and five MRI scanners and was divided into nine groups with different imaging parameters. Compared with the representative algorithms, the peak signal-to-noise ratio, the histogram correlation, and the structural similarity were increased by 3.7%, 5.1%, and 0.1% on average, respectively; the gradient magnitude similarity deviation, the mean square error, and the average disparity were reduced by 19.0%, 15.7%, and 9.9% on average, respectively. Experiments also showed the robustness of the proposed model with a different training set configuration and effectiveness of the proposed framework over the original CycleGAN. Therefore, the MR images with different imaging settings could be efficiently standardized by the proposed method, which would benefit various data-driven applications.
Collapse
|
19
|
Jia X, Ren T, Chen L, Wang J, Zhu J, Long X. Weakly supervised label distribution learning based on transductive matrix completion with sample correlations. Pattern Recognit Lett 2019. [DOI: 10.1016/j.patrec.2019.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Xu P, Cui T, Chen L. ANLoC: An Anomaly-Aware Node Localization Algorithm for WSNs in Complex Environments. SENSORS 2019; 19:s19081912. [PMID: 31018490 PMCID: PMC6515317 DOI: 10.3390/s19081912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 01/20/2023]
Abstract
Accurate and sufficient node location information is crucial for Wireless Sensor Networks (WSNs) applications. However, the existing range-based localization methods often suffer from incomplete and detorted range measurements. To address this issue, some methods based on low-rank matrix recovery have been proposed, which usually assume noises follow single Gaussian distribution or/and single Laplacian distribution, and thus cannot handle the case with wider noise distributions beyond Gaussian and Laplacian ones. In this paper, a novel Anomaly-aware Node Localization (ANLoC) method is proposed to simultaneously impute missing range measurements and detect node anomaly in complex environments. Specifically, by utilizing inherent low-rank property of Euclidean Distance Matrix (EDM), we formulate range measurements imputation problem as a Robust ℓ 2 , 1 -norm Regularized Matrix Decomposition (RRMD) model, where complex noise is fitted by Mixture of Gaussian (MoG) distribution, and node anomaly is sifted by ℓ 2 , 1 -norm regularization. Meanwhile, an efficient optimization algorithm is designed to solve proposed RRMD model based on Expectation Maximization (EM) method. Furthermore, with the imputed EDM, all unknown nodes can be easily positioned by using Multi-Dimensional Scaling (MDS) method. Finally, some experiments are designed to evaluate performance of the proposed method, and experimental results demonstrate that our method outperforms three state-of-the-art node localization methods.
Collapse
Affiliation(s)
- Pengfei Xu
- School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Tianhao Cui
- School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lei Chen
- School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
- Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing University of Posts &Telecommunications, Nanjing 210023, China.
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|