1
|
Loignon-Houle F, Kratochwil N, Toussaint M, Lowis C, Ariño-Estrada G, Gonzalez AJ, Auffray E, Lecomte R. Improving timing resolution of BGO for TOF-PET: a comparative analysis with and without deep learning. EJNMMI Phys 2025; 12:2. [PMID: 39821728 PMCID: PMC11739447 DOI: 10.1186/s40658-024-00711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The renewed interest in BGO scintillators for TOF-PET is driven by the improved Cherenkov photon detection with new blue-sensitive SiPMs. However, the slower scintillation light from BGO causes significant time walk with leading edge discrimination (LED), which degrades the coincidence time resolution (CTR). To address this, a time walk correction (TWC) can be done by using the rise time measured with a second threshold. Deep learning, particularly convolutional neural networks (CNNs), can also enhance CTR by training with digitized waveforms. It remains to be explored how timing estimation methods utilizing one (LED), two (TWC), or multiple (CNN) waveform data points compare in CTR performance of BGO scintillators. RESULTS In this work, we compare classical experimental timing estimation methods (LED, TWC) with a CNN-based method using the signals from BGO crystals read out by NUV-HD-MT SiPMs and high-frequency electronics. For2 × 2 × 3 mm 3 crystals, implementing TWC results in a CTR of 129 ± 2 ps FWHM, while employing the CNN yields 115 ± 2 ps FWHM, marking improvements of 18 % and 26 %, respectively, relative to the standard LED estimator. For2 × 2 × 20 mm 3 crystals, both methods yield similar CTR (around 240 ps FWHM), offering a ∼ 15 % gain over LED. The CNN, however, exhibits better tail suppression in the coincidence time distribution. CONCLUSIONS The higher complexity of waveform digitization needed for CNNs could potentially be mitigated by adopting a simpler two-threshold approach, which appears to currently capture most of the essential information for improving CTR in longer BGO crystals. Other innovative deep learning models and training strategies may nonetheless contribute further in a near future to harnessing increasingly discernible timing features in TOF-PET detector signals.
Collapse
Affiliation(s)
- Francis Loignon-Houle
- Instituto de Instrumentación para Imagen Molecular, Centro Mixto CSIC-Universitat Politècnica de València, Camino de Vera, Valencia, 46002, Spain.
| | - Nicolaus Kratochwil
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, California, 95616, USA
- CERN, Department EP-CMX, Esplanade des Particules 1, Meyrin, 1217, Switzerland
| | - Maxime Toussaint
- Sherbrooke Molecular Imaging Center and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 12th Avenue N, Sherbrooke, J1H 5N4, Québec, Canada
| | - Carsten Lowis
- CERN, Department EP-CMX, Esplanade des Particules 1, Meyrin, 1217, Switzerland
- RWTH Aachen University, 55 Templergraben, Aachen, 52062, Germany
| | - Gerard Ariño-Estrada
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, California, 95616, USA
- Institut de Fìsica d'Altes Energies, Barcelona Institute of Science and Technology, Edifici Cn, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Antonio J Gonzalez
- Instituto de Instrumentación para Imagen Molecular, Centro Mixto CSIC-Universitat Politècnica de València, Camino de Vera, Valencia, 46002, Spain
| | - Etiennette Auffray
- CERN, Department EP-CMX, Esplanade des Particules 1, Meyrin, 1217, Switzerland
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Center and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 12th Avenue N, Sherbrooke, J1H 5N4, Québec, Canada
- Imaging Research and Technology (IR&T) Inc., 2201 Tanguay St., Magog, Québec, J1X 7K3, Canada
| |
Collapse
|
2
|
Moskal P, Baran J, Bass S, Choiński J, Chug N, Curceanu C, Czerwiński E, Dadgar M, Das M, Dulski K, Eliyan KV, Fronczewska K, Gajos A, Kacprzak K, Kajetanowicz M, Kaplanoglu T, Kapłon Ł, Klimaszewski K, Kobylecka M, Korcyl G, Kozik T, Krzemień W, Kubat K, Kumar D, Kunikowska J, Mączewska J, Migdał W, Moskal G, Mryka W, Niedźwiecki S, Parzych S, Del Rio EP, Raczyński L, Sharma S, Shivani S, Shopa RY, Silarski M, Skurzok M, Tayefi F, Ardebili KT, Tanty P, Wiślicki W, Królicki L, Stępień EŁ. Positronium image of the human brain in vivo. SCIENCE ADVANCES 2024; 10:eadp2840. [PMID: 39270027 PMCID: PMC11397496 DOI: 10.1126/sciadv.adp2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Positronium is abundantly produced within the molecular voids of a patient's body during positron emission tomography (PET). Its properties dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen. Current PET systems record only two annihilation photons and cannot provide information about the positronium lifetime. This study presents the in vivo images of positronium lifetime in a human, for a patient with a glioblastoma brain tumor, by using the dedicated Jagiellonian PET system enabling simultaneous detection of annihilation photons and prompt gamma emitted by a radionuclide. The prompt gamma provides information on the time of positronium formation. The photons from positronium annihilation are used to reconstruct the place and time of its decay. In the presented case study, the determined positron and positronium lifetimes in glioblastoma cells are shorter than those in salivary glands and those in healthy brain tissues, indicating that positronium imaging could be used to diagnose disease in vivo.
Collapse
Affiliation(s)
- Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Jakub Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Steven Bass
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- Kitzbühel Centre for Physics, Kitzbühel, Austria
| | | | - Neha Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Catalina Curceanu
- INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Italy
| | - Eryk Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Meysam Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Manish Das
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Kavya V Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Katarzyna Fronczewska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Marcin Kajetanowicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Tevfik Kaplanoglu
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Małgorzata Kobylecka
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Wojciech Krzemień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- High Energy Department, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Karol Kubat
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Deepak Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Jolanta Kunikowska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Joanna Mączewska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Wojciech Migdał
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Gabriel Moskal
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- Department of Chemical Technology, Faculty of Chemistry of the Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Wiktor Mryka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Szymon Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Elena P Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Shivani Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Michał Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Faranak Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Keyvan T Ardebili
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Pooja Tanty
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Ewa Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| |
Collapse
|
3
|
Baran J, Borys D, Brzeziński K, Gajewski J, Silarski M, Chug N, Coussat A, Czerwiński E, Dadgar M, Dulski K, Eliyan KV, Gajos A, Kacprzak K, Kapłon Ł, Klimaszewski K, Konieczka P, Kopeć R, Korcyl G, Kozik T, Krzemień W, Kumar D, Lomax AJ, McNamara K, Niedźwiecki S, Olko P, Panek D, Parzych S, Perez Del Rio E, Raczyński L, Simbarashe M, Sharma S, Shivani, Shopa RY, Skóra T, Skurzok M, Stasica P, Stępień EŁ, Tayefi K, Tayefi F, Weber DC, Winterhalter C, Wiślicki W, Moskal P, Ruciński A. Feasibility of the J-PET to monitor the range of therapeutic proton beams. Phys Med 2024; 118:103301. [PMID: 38290179 DOI: 10.1016/j.ejmp.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
PURPOSE The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J-PET) scanner for intra-treatment proton beam range monitoring. METHODS The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J-PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread-Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J-PET scanner prototype dedicated to the proton beam range assessment. RESULTS The investigations indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple-layer dual-head geometry. The results indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for the clinical application, CONCLUSIONS:: We performed simulation studies demonstrating that the feasibility of the J-PET detector for PET-based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre-clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double-layer cylindrical and triple-layer dual-head J-PET geometry configurations seem promising for future clinical application.
Collapse
Affiliation(s)
- Jakub Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland.
| | - Damian Borys
- Silesian University of Technology, Department of Systems Biology and Engineering, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Gliwice, Poland; Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Karol Brzeziński
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland; Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Michał Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aurélien Coussat
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Eryk Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Meysam Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kavya V Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Renata Kopeć
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Deepak Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Antony J Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Keegan McNamara
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Dominik Panek
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Elena Perez Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Moyo Simbarashe
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Tomasz Skóra
- National Oncology Institute, National Research Institute, Krakow Branch, Krakow, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Paulina Stasica
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Ewa Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Keyvan Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Damien C Weber
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Radiation Oncology, University Hospital of Zürich, Zürich Switzerland; Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Carla Winterhalter
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Antoni Ruciński
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| |
Collapse
|
4
|
Moskal P, Czerwiński E, Raj J, Bass SD, Beyene EY, Chug N, Coussat A, Curceanu C, Dadgar M, Das M, Dulski K, Gajos A, Gorgol M, Hiesmayr BC, Jasińska B, Kacprzak K, Kaplanoglu T, Kapłon Ł, Klimaszewski K, Konieczka P, Korcyl G, Kozik T, Krzemień W, Kumar D, Moyo S, Mryka W, Niedźwiecki S, Parzych S, Del Río EP, Raczyński L, Sharma S, Choudhary S, Shopa RY, Silarski M, Skurzok M, Stępień EŁ, Tanty P, Ardebili FT, Ardebili KT, Eliyan KV, Wiślicki W. Discrete symmetries tested at 10 -4 precision using linear polarization of photons from positronium annihilations. Nat Commun 2024; 15:78. [PMID: 38167270 PMCID: PMC10761870 DOI: 10.1038/s41467-023-44340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Discrete symmetries play an important role in particle physics with violation of CP connected to the matter-antimatter imbalance in the Universe. We report the most precise test of P, T and CP invariance in decays of ortho-positronium, performed with methodology involving polarization of photons from these decays. Positronium, the simplest bound state of an electron and positron, is of recent interest with discrepancies reported between measured hyperfine energy structure and theory at the level of 10-4 signaling a need for better understanding of the positronium system at this level. We test discrete symmetries using photon polarizations determined via Compton scattering in the dedicated J-PET tomograph on an event-by-event basis and without the need to control the spin of the positronium with an external magnetic field, in contrast to previous experiments. Our result is consistent with QED expectations at the level of 0.0007 and one standard deviation.
Collapse
Affiliation(s)
- Paweł Moskal
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Eryk Czerwiński
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland.
- Centre for Theranostics, Jagiellonian University, Kraków, Poland.
| | - Juhi Raj
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Steven D Bass
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
- Kitzbühel Centre for Physics, Kitzbühel, Austria
| | - Ermias Y Beyene
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aurélien Coussat
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | | | - Meysam Dadgar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Manish Das
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aleksander Gajos
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Marek Gorgol
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Bożena Jasińska
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Krzysztof Kacprzak
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Tevfik Kaplanoglu
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Łukasz Kapłon
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Grzegorz Korcyl
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
- Institute of Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - Tomasz Kozik
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Deepak Kumar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Simbarashe Moyo
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wiktor Mryka
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Niedźwiecki
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Parzych
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Elena Pérez Del Río
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Sushil Sharma
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Shivani Choudhary
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Michał Silarski
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Magdalena Skurzok
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Ewa Ł Stępień
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Pooja Tanty
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefi Ardebili
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Keyvan Tayefi Ardebili
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kavya Valsan Eliyan
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| |
Collapse
|
5
|
Konieczka P, Raczyński L, Wiślicki W, Fedoruk O, Klimaszewski K, Kopka P, Krzemień W, Shopa RY, Baran J, Coussat A, Chug N, Curceanu C, Czerwiński E, Dadgar M, Dulski K, Gajos A, Hiesmayr BC, Kacprzak K, Kapłon Ł, Korcyl G, Kozik T, Kumar D, Niedźwiecki S, Parzych S, Río EPD, Sharma S, Shivani S, Skurzok M, Stępień EŁ, Tayefi F, Moskal P. Transformation of PET raw data into images for event classification using convolutional neural networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14938-14958. [PMID: 37679166 DOI: 10.3934/mbe.2023669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
In positron emission tomography (PET) studies, convolutional neural networks (CNNs) may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in tabular format. This paper develops the transformation of tabular data into n-dimensional matrices, as a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear transformation at the feature engineering stage and then uses principal component analysis to create the images. We apply the proposed methodology to the classification of simulated PET coincidence events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of neural network architectures, including multilayer perceptron and convolutional networks, were conducted. The developed method increased the initial number of features from 6 to 209 and gave the best precision results (79.8) for all tested neural network architectures; it also showed the smallest decrease when changing the test data to another phantom.
Collapse
Affiliation(s)
- Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Oleksandr Fedoruk
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Przemysław Kopka
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Jakub Baran
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Aurélien Coussat
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Neha Chug
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | | | - Eryk Czerwiński
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Meysam Dadgar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Kamil Dulski
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Aleksander Gajos
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | | | - Krzysztof Kacprzak
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Łukasz Kapłon
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Grzegorz Korcyl
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Tomasz Kozik
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Deepak Kumar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Szymon Niedźwiecki
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Szymon Parzych
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Elena Pérez Del Río
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Sushil Sharma
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Shivani Shivani
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Magdalena Skurzok
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
- INFN, National Laboratory of Frascati, 00044 Frascati, Italy
| | - Ewa Łucja Stępień
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Faranak Tayefi
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Paweł Moskal
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| |
Collapse
|
6
|
Sharma S, Baran J, Chug N, Curceanu C, Czerwiński E, Dadgar M, Dulski K, Eliyan K, Gajos A, Gupta-Sharma N, Hiesmayr BC, Kacprzak K, Kapłon Ł, Klimaszewski K, Konieczka P, Korcyl G, Kozik T, Krzemień W, Kumar D, Niedźwiecki S, Panek D, Parzych S, Del Rio EP, Raczyński L, Choudhary S, Shopa RY, Skurzok M, Stępień EŁ, Tayefi F, Tayefi K, Wiślicki W, Moskal P. Efficiency determination of J-PET: first plastic scintillators-based PET scanner. EJNMMI Phys 2023; 10:28. [PMID: 37029849 PMCID: PMC10082891 DOI: 10.1186/s40658-023-00546-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND The Jagiellonian Positron Emission Tomograph is the 3-layer prototype of the first scanner based on plastic scintillators, consisting of 192 half-metre-long strips with readouts at both ends. Compared to crystal-based detectors, plastic scintillators are several times cheaper and could be considered as a more economical alternative to crystal scintillators in future PETs. JPET is also a first multi-photon PET prototype. For the development of multi-photon detection, with photon characterized by the continuous energy spectrum, it is important to estimate the efficiency of J-PET as a function of energy deposition. The aim of this work is to determine the registration efficiency of the J-PET tomograph as a function of energy deposition by incident photons and the intrinsic efficiency of the J-PET scanner in detecting photons of different incident energies. In this study, 3-hit events are investigated, where 2-hits are caused by 511 keV photons emitted in [Formula: see text] annihilations, while the third hit is caused by one of the scattered photons. The scattered photon is used to accurately measure the scattering angle and thus the energy deposition. Two hits by a primary and a scattered photon are sufficient to calculate the scattering angle of a photon, while the third hit ensures the precise labeling of the 511 keV photons. RESULTS By comparing experimental and simulated energy distribution spectra, the registration efficiency of the J-PET scanner was determined in the energy deposition range of 70-270 keV, where it varies between 20 and 100[Formula: see text]. In addition, the intrinsic efficiency of the J-PET was also determined as a function of the energy of the incident photons. CONCLUSION A method for determining registration efficiency as a function of energy deposition and intrinsic efficiency as a function of incident photon energy of the J-PET scanner was demonstrated. This study is crucial for evaluating the performance of the scanner based on plastic scintillators and its applications as a standard and multi-photon PET systems. The method may be also used in the calibration of Compton-cameras developed for the ion-beam therapy monitoring and simultaneous multi-radionuclide imaging in nuclear medicine.
Collapse
Affiliation(s)
- S Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland.
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland.
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland.
| | - J Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - N Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - C Curceanu
- INFN, Laboratori Nazionali di Frascati, 00044, Frascati, Italy
| | - E Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - M Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - K Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - K Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - A Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - N Gupta-Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
| | - B C Hiesmayr
- Faculty of Physics, University of Vienna, 1090, Vienna, Austria
| | - K Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - Ł Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - K Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - P Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - G Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
| | - T Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
| | - W Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - D Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - Sz Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - D Panek
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - S Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - E Perez Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - L Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - Shivani Choudhary
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - R Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - M Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - E Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - F Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - K Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| | - W Wiślicki
- High Energy Physics Division, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348, Cracow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348, Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-034, Cracow, Poland
| |
Collapse
|
7
|
Parodi K, Yamaya T, Moskal P. Experience and new prospects of PET imaging for ion beam therapy monitoring. Z Med Phys 2023; 33:22-34. [PMID: 36446691 PMCID: PMC10068545 DOI: 10.1016/j.zemedi.2022.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
Pioneering investigations on the usage of positron-emission-tomography (PET) for the monitoring of ion beam therapy with light (protons, helium) and heavier (stable and radioactive neon, carbon and oxygen) ions started shortly after the first realization of planar and tomographic imaging systems, which were able to visualize the annihilation of positrons resulting from irradiation induced or implanted positron emitting nuclei. And while the first clinical experience was challenged by the utilization of instrumentation directly adapted from nuclear medicine applications, new detectors optimized for this unconventional application of PET imaging are currently entering the phase of (pre)clinical testing for more reliable monitoring of treatment delivery during irradiation. Moreover, recent advances in detector technologies and beam production open several new exciting opportunities which will not only improve the performance of PET imaging under the challenging conditions of in-beam applications in ion beam therapy, but will also likely expand its field of application. In particular, the combination of PET and Compton imaging can enable the most efficient utilization of all possible radiative emissions for both stable and radioactive ion beams, while positronium lifetime imaging may enable probing new features of the underlying tumour and normal tissue environment. Thereby, PET imaging will not only provide means for volumetric reconstruction of the delivered treatment and in-vivo verification of the beam range, but can also shed new insights for biological optimization of the treatment or treatment response assessment.
Collapse
Affiliation(s)
- Katia Parodi
- Ludwig-Maximilians-Universität München, Lehrstuhl für Experimental Physik - Medizinische Physik, Garching b. München, Germany.
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Pawel Moskal
- M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland; Center for Theranostics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Hardware Optimizations of the X-ray Pre-Processing for Interventional Computed Tomography Using the FPGA. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In computed tomography imaging, the computationally intensive tasks are the pre-processing of 2D detector data to generate total attenuation or line integral projections and the reconstruction of the 3D volume from the projections. This paper proposes the optimization of the X-ray pre-processing to compute total attenuation projections by avoiding the intermediate step to convert detector data to intensity images. In addition, to fulfill the real-time requirements, we design a configurable hardware architecture for data acquisition systems on FPGAs, with the goal to have a “on-the-fly” pre-processing of 2D projections. Finally, this architecture was configured for exploring and analyzing different arithmetic representations, such as floating-point and fixed-point data formats. This design space exploration has allowed us to find the best representation and data format that minimize execution time and hardware costs, while not affecting image quality. Furthermore, the proposed architecture was integrated in an open-interface computed tomography device, used for evaluating the image quality of the pre-processed 2D projections and the reconstructed 3D volume. By comparing the proposed solution with the state-of-the-art pre-processing algorithm that make use of intensity images, the latency was decreased 4.125×, and the resources utilization of ∼6.5×, with a mean square error in the order of 10−15 for all the selected phantom experiments. Finally, by using the fixed-point representation in the different data precisions, the latency and the resource utilization were further decreased, and a mean square error in the order of 10−1 was reached.
Collapse
|
9
|
Abstract
Abstract
In this review article, we present arguments demonstrating that the advent of high sensitivity total-body PET systems and the invention of the method of positronium imaging, open realistic perspectives for the application of positronium as a biomarker for in-vivo assessment of the degree of hypoxia. Hypoxia is a state or condition, in which the availability of oxygen is not sufficient to support physiological processes in tissue and organs. Positronium is a metastable atom formed from electron and positron which is copiously produced in the intramolecular spaces in the living organisms undergoing positron emission tomography (PET). Properties of positronium, such as e.g., lifetime, depend on the size of intramolecular spaces and the concentration in them of oxygen molecules. Therefore, information on the partial pressure of oxygen (pO2) in the tissue may be derived from the positronium lifetime measurement. The partial pressure of oxygen differs between healthy and cancer tissues in the range from 10 to 50 mmHg. Such differences of pO2 result in the change of ortho-positronium lifetime e.g., in water by about 2–7 ps. Thus, the application of positronium as a biomarker of hypoxia requires the determination of the mean positronium lifetime with the resolution in the order of 2 ps. We argue that such resolution is in principle achievable for organ-wise positronium imaging with the total-body PET systems.
Collapse
Affiliation(s)
- Paweł Moskal
- M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Krakow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Kraków , Poland
- Theranostics Center, Jagiellonian University , Kraków , Poland
| | - Ewa Ł. Stępień
- M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Krakow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Kraków , Poland
- Theranostics Center, Jagiellonian University , Kraków , Poland
| |
Collapse
|
10
|
Abstract
Medical imaging is considered one of the most important advances in the history of medicine and has become an essential part of the diagnosis and treatment of patients. Earlier prediction and treatment have been driving the acquisition of higher image resolutions as well as the fusion of different modalities, raising the need for sophisticated hardware and software systems for medical image registration, storage, analysis, and processing. In this scenario and given the new clinical pipelines and the huge clinical burden of hospitals, these systems are often required to provide both highly accurate and real-time processing of large amounts of imaging data. Additionally, lowering the prices of each part of imaging equipment, as well as its development and implementation, and increasing their lifespan is crucial to minimize the cost and lead to more accessible healthcare. This paper focuses on the evolution and the application of different hardware architectures (namely, CPU, GPU, DSP, FPGA, and ASIC) in medical imaging through various specific examples and discussing different options depending on the specific application. The main purpose is to provide a general introduction to hardware acceleration techniques for medical imaging researchers and developers who need to accelerate their implementations.
Collapse
|
11
|
Silarski M, Dziedzic-Kocurek K, Szczepanek M. Combined BNCT and PET for theranostics. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
This short review summarizes the issue of boron distribution monitoring in boron neutron capture therapy (BNCT), which remains a serious drawback of this powerful oncological treatment. Here we present the monitoring methods that are presently used with particular emphasis on the positron emission tomography (PET) which has the highest potential to be used for the real-time monitoring of boron biodistribution. We discuss the possibility of using present PET scanners to determine the boron uptake in vivo before the BNCT treatment with the use of p-boronphenylalanine (BPA) labeled with 18F isotope. Several examples of preclinical studies and clinical trials performed with the use of [18F]FBPA are shown. We also discuss shortly the perspectives of using other radiotracers and boron carriers which may significantly improve the boron imaging with the use of the state-of-the-art Total-Body PET scanners providing a theranostic approach in the BNCT.
Collapse
Affiliation(s)
- Michał Silarski
- Faculty of Physics , Astronomy and Applied Computer Science, Jagiellonian University , Cracow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Cracow , Poland
| | | | - Monika Szczepanek
- Faculty of Physics , Astronomy and Applied Computer Science, Jagiellonian University , Cracow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Cracow , Poland
| |
Collapse
|
12
|
Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, Gajewski J, Gajos A, Grudzień G, Hiesmayr BC, Kacprzak K, Kapłon Ł, Karimi H, Klimaszewski K, Korcyl G, Kowalski P, Kozik T, Krawczyk N, Krzemień W, Kubicz E, Małczak P, Niedźwiecki S, Pawlik-Niedźwiecka M, Pędziwiatr M, Raczyński L, Raj J, Ruciński A, Sharma S, Shivani, Shopa RY, Silarski M, Skurzok M, Stępień EŁ, Szczepanek M, Tayefi F, Wiślicki W. Positronium imaging with the novel multiphoton PET scanner. SCIENCE ADVANCES 2021; 7:eabh4394. [PMID: 34644101 DOI: 10.1126/sciadv.abh4394] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In vivo assessment of cancer and precise location of altered tissues at initial stages of molecular disorders are important diagnostic challenges. Positronium is copiously formed in the free molecular spaces in the patient’s body during positron emission tomography (PET). The positronium properties vary according to the size of inter- and intramolecular voids and the concentration of molecules in them such as, e.g., molecular oxygen, O2; therefore, positronium imaging may provide information about disease progression during the initial stages of molecular alterations. Current PET systems do not allow acquisition of positronium images. This study presents a new method that enables positronium imaging by simultaneous registration of annihilation photons and deexcitation photons from pharmaceuticals labeled with radionuclides. The first positronium imaging of a phantom built from cardiac myxoma and adipose tissue is demonstrated. It is anticipated that positronium imaging will substantially enhance the specificity of PET diagnostics.
Collapse
Affiliation(s)
- Paweł Moskal
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | | | - Eryk Czerwiński
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Meysam Dadgar
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Jan Gajewski
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Grzegorz Grudzień
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Kraków, Poland
| | | | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Hanieh Karimi
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Paweł Kowalski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Nikodem Krawczyk
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Ewelina Kubicz
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Piotr Małczak
- 2nd Department of General Surgery, Jagiellonian University Medical College, Kraków, Poland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Monika Pawlik-Niedźwiecka
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Michał Pędziwiatr
- 2nd Department of General Surgery, Jagiellonian University Medical College, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Juhi Raj
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Antoni Ruciński
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Shivani
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Michał Silarski
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ewa Ł Stępień
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Monika Szczepanek
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefi
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| |
Collapse
|
13
|
Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C, Czerwiński E, Dadgar M, Dulski K, Gorgol M, Goworek J, Hiesmayr BC, Jasińska B, Kacprzak K, Kapłon Ł, Karimi H, Kisielewska D, Klimaszewski K, Korcyl G, Kowalski P, Krawczyk N, Krzemień W, Kozik T, Kubicz E, Niedźwiecki S, Parzych S, Pawlik-Niedźwiecka M, Raczyński L, Raj J, Sharma S, Choudhary S, Shopa RY, Sienkiewicz A, Silarski M, Skurzok M, Stępień EŁ, Tayefi F, Wiślicki W. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun 2021; 12:5658. [PMID: 34580294 PMCID: PMC8476595 DOI: 10.1038/s41467-021-25905-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Charged lepton system symmetry under combined charge, parity, and time-reversal transformation (CPT) remains scarcely tested. Despite stringent quantum-electrodynamic limits, discrepancies in predictions for the electron–positron bound state (positronium atom) motivate further investigation, including fundamental symmetry tests. While CPT noninvariance effects could be manifested in non-vanishing angular correlations between final-state photons and spin of annihilating positronium, measurements were previously limited by knowledge of the latter. Here, we demonstrate tomographic reconstruction techniques applied to three-photon annihilations of ortho-positronium atoms to estimate their spin polarisation without magnetic field or polarised positronium source. We use a plastic-scintillator-based positron-emission-tomography scanner to record ortho-positronium (o-Ps) annihilations with single-event estimation of o-Ps spin and determine the complete spectrum of an angular correlation operator sensitive to CPT-violating effects. We find no violation at the precision level of 10−4, with an over threefold improvement on the previous measurement. CPT violation could manifest itself in annihilating positronium events, but searching for this effect would require to know the spin of the annihilating system. Here, the authors do this using a positron-emission tomography scanner, finding no violation with a statistical precision of 10−4.
Collapse
Affiliation(s)
- P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland. .,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
| | - A Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland. .,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
| | - M Mohammed
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland
| | - J Chhokar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - N Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - C Curceanu
- INFN, Laboratori Nazionali di Frascati CP 13, Via E. Fermi 40, 00044, Frascati, Italy
| | - E Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - M Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - M Gorgol
- Department of Nuclear Methods, Institute of Physics, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - J Goworek
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031, Lublin, Poland
| | - B C Hiesmayr
- Faculty of Physics, University of Vienna Boltzmanngasse 5, 1090, Vienna, Austria
| | - B Jasińska
- Department of Nuclear Methods, Institute of Physics, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - K Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland
| | - Ł Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - H Karimi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - D Kisielewska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland
| | - K Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - G Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - P Kowalski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - N Krawczyk
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - W Krzemień
- High Energy Department, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - T Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland
| | - E Kubicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - M Pawlik-Niedźwiecka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - L Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - J Raj
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Choudhary
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - R Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - A Sienkiewicz
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031, Lublin, Poland
| | - M Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - M Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,INFN, Laboratori Nazionali di Frascati CP 13, Via E. Fermi 40, 00044, Frascati, Italy
| | - E Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - F Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - W Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| |
Collapse
|
14
|
Shopa RY, Klimaszewski K, Kopka P, Kowalski P, Krzemień W, Raczyński L, Wiślicki W, Chug N, Curceanu C, Czerwiński E, Dadgar M, Dulski K, Gajos A, Hiesmayr BC, Kacprzak K, Kapłon Ł, Kisielewska D, Korcyl G, Krawczyk N, Kubicz E, Niedźwiecki S, Raj J, Sharma S, Shivani, Stȩpień EŁ, Tayefi F, Moskal P. Optimisation of the event-based TOF filtered back-projection for online imaging in total-body J-PET. Med Image Anal 2021; 73:102199. [PMID: 34365143 DOI: 10.1016/j.media.2021.102199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
We perform a parametric study of the newly developed time-of-flight (TOF) image reconstruction algorithm, proposed for the real-time imaging in total-body Jagiellonian PET (J-PET) scanners. The asymmetric 3D filtering kernel is applied at each most likely position of electron-positron annihilation, estimated from the emissions of back-to-back γ-photons. The optimisation of its parameters is studied using Monte Carlo simulations of a 1-mm spherical source, NEMA IEC and XCAT phantoms inside the ideal J-PET scanner. The combination of high-pass filters which included the TOF filtered back-projection (FBP), resulted in spatial resolution, 1.5 times higher in the axial direction than for the conventional 3D FBP. For realistic 10-minute scans of NEMA IEC and XCAT, which require a trade-off between the noise and spatial resolution, the need for Gaussian TOF kernel components, coupled with median post-filtering, is demonstrated. The best sets of 3D filter parameters were obtained by the Nelder-Mead minimisation of the mean squared error between the resulting and reference images. The approach allows training the reconstruction algorithm for custom scans, using the IEC phantom, when the temporal resolution is below 50 ps. The image quality parameters, estimated for the best outcomes, were systematically better than for the non-TOF FBP.
Collapse
Affiliation(s)
- R Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland.
| | - K Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - P Kopka
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - P Kowalski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - W Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - L Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - W Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - N Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - C Curceanu
- INFN, Laboratori Nazionali di Frascati, Frascati 00044, Italy
| | - E Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - M Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - K Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - A Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - B C Hiesmayr
- Faculty of Physics, University of Vienna, Vienna 1090, Austria
| | - K Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - Ł Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - D Kisielewska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - G Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - N Krawczyk
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - E Kubicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - Sz Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - J Raj
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - S Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - E Ł Stȩpień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - F Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| |
Collapse
|
15
|
Raczyński L, Wiślicki W, Klimaszewski K, Krzemień W, Kopka P, Kowalski P, Shopa R, Bała M, Chhokar J, Curceanu C, Czerwiński E, Dulski K, Gajewski J, Gajos A, Gorgol M, Del Grande R, Hiesmayr B, Jasińska B, Kacprzak K, Kapłon L, Kisielewska D, Korcyl G, Kozik T, Krawczyk N, Kubicz E, Mohammed M, Niedźwiecki S, Pałka M, Pawlik-Niedźwiecka M, Raj J, Rakoczy K, Ruciński A, Sharma S, Shivani S, Silarski M, Skurzok M, Stepień E, Zgardzińska B, Moskal P. 3D TOF-PET image reconstruction using total variation regularization. Phys Med 2020; 80:230-242. [DOI: 10.1016/j.ejmp.2020.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022] Open
|
16
|
Hedayatipour A, Mcfarlane N. Wearables for the Next Pandemic. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:184457-184474. [PMID: 34786293 PMCID: PMC8545280 DOI: 10.1109/access.2020.3029130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/01/2020] [Indexed: 05/18/2023]
Abstract
This paper reviews the current state of the art in wearable sensors, including current challenges, that can alleviate the loads on hospitals and medical centers. During the COVID-19 Pandemic in 2020, healthcare systems were overwhelmed by people with mild to severe symptoms needing care. A careful study of pandemics and their symptoms in the past 100 years reveals common traits that should be monitored for managing the health and economic costs. Cheap, low power, and portable multi-modal-sensors that detect the common symptoms can be stockpiled and ready for the next pandemic. These sensors include temperature sensors for fever monitoring, pulse oximetry sensors for blood oxygen levels, impedance sensors for thoracic impedance, and other state sensors that can be integrated into a single system and connected to a smartphone or data center. Both research and commercial medically approved devices are reviewed with an emphasis on the electronics required to realize the sensing. The performance characteristics, such as accuracy, power, resolution, and size of each sensor modality are critically examined. A discussion of the characteristics, research challenges, and features of an ideal integrated wearable system is also presented.
Collapse
Affiliation(s)
- Ava Hedayatipour
- Department of Electrical EngineeringCalifornia State UniversityLong BeachCA90840USA
- Department of Electrical Engineering and Computer ScienceThe University of TennesseeKnoxvilleTN37996USA
| | - Nicole Mcfarlane
- Department of Electrical Engineering and Computer ScienceThe University of TennesseeKnoxvilleTN37996USA
| |
Collapse
|
17
|
Moskal P, Stępień EŁ. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators. PET Clin 2020; 15:439-452. [DOI: 10.1016/j.cpet.2020.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Sharma N, Silarski M, Chhokar J, Czerwinski E, Curceanu C, Dulski K, Farbaniec K, Gajos A, Del Grande R, Gorgol M, Hiesmayr BC, Jasinska B, Kacprzak K, Kaplon L, Kisielewska D, Klimaszewski K, Korcyl G, Kowalski P, Krawczyk N, Krzemien W, Kozik T, Kubicz E, Mohammed M, Niedzwiecki S, Palka M, Pawlik-Niedzwiecka M, Raczynski L, Raj J, Sharma S, Shivani S, Shopa RY, Skurzok M, Wislicki W, Zgardzinska B, Moskal P. Hit-Time and Hit-Position Reconstruction in Strips of Plastic Scintillators Using Multithreshold Readouts. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.2990621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Sensitivity of Discrete Symmetry Tests in the Positronium System with the J-PET Detector. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Study of certain angular correlations in the three-photon annihilations of the triplet state of positronium, the electron–positron bound state, may be used as a probe of potential CP and CPT-violating effects in the leptonic sector. We present the perspectives of CP and CPT tests using this process recorded with a novel detection system for photons in the positron annihilation energy range, the Jagiellonian Positron Emission Tomography (J-PET). We demonstrate the capability of this system to register three-photon annihilations with an unprecedented range of kinematical configurations and to measure the CPT-odd correlation between positronium spin and annihilation plane orientation with a precision improved by at least an order of magnitude with respect to present results. We also discuss the means to control and reduce detector asymmetries in order to allow J-PET to set the first measurement of the correlation between positronium spin and momentum of the most energetic annihilation photon which has never been studied to date.
Collapse
|
20
|
Zgardzińska B, Chołubek G, Jarosz B, Wysogląd K, Gorgol M, Goździuk M, Chołubek M, Jasińska B. Studies on healthy and neoplastic tissues using positron annihilation lifetime spectroscopy and focused histopathological imaging. Sci Rep 2020; 10:11890. [PMID: 32681103 PMCID: PMC7367828 DOI: 10.1038/s41598-020-68727-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/29/2020] [Indexed: 11/29/2022] Open
Abstract
Samples of healthy and neoplastic myometrial tissues were investigated using Positron Annihilation Lifetime Spectroscopy (PALS). Meaningful differences between normal and diseased tissues were observed for each patient. The differences were also clearly visible for various kinds of lesions in each patient. The set of lifetimes and intensities obtained from PALS was correlated with the histopathological examinations of the same fragments of tissues. Strong coincidence between PALS parameters and histopathological findings was observed only in the case of a very precise correlation of the investigated area in both techniques. Measurements and discussion presented here were carried out to develop a method for measuring the sub-nanometric structure of human tissues. This kind of investigation, using positron probe, creates an opportunity of a new application in Positron Emission Tomography (PET).
Collapse
Affiliation(s)
- B Zgardzińska
- Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Skłodowskiej 1, 20-031, Lublin, Poland.
| | - G Chołubek
- Diagnostic Techniques Unit, Faculty of Health Sciences, Medical University of Lublin, Al. Racławickie 1, 20-059, Lublin, Poland
| | - B Jarosz
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Al. Racławickie 1, 20-954, Lublin, Poland
| | - K Wysogląd
- Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - M Gorgol
- Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - M Goździuk
- Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - M Chołubek
- Medical Faculty, Medical University of Lublin, Al. Racławickie 1, 20-059, Lublin, Poland
| | - B Jasińska
- Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| |
Collapse
|
21
|
Estimating relationship between the time over threshold and energy loss by photons in plastic scintillators used in the J-PET scanner. EJNMMI Phys 2020; 7:39. [PMID: 32504254 PMCID: PMC7275104 DOI: 10.1186/s40658-020-00306-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/17/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The time-over-threshold (TOT) technique is being used widely due to itsimplications in developing the multi-channel readouts, mainly when fast signal processing is required. Using the TOT technique, as a measure of energy loss instead of charge integration methods, significantly reduces the signal readout costs by combining the time and energy information. Therefore, this approach can potentially be utilized in J-PET tomograph which is built from plastic scintillators characterized by fast light signals. The drawback in adopting this technique lies in the non-linear correlation between input energy loss and TOT of the signal. The main motivation behind this work is to develop the relationship between TOT and energy loss and validate it by the J-PET tomograph setup. METHODS The experiment was performed using a 22Na beta emitter source placed in the center of the J-PET tomograph. This isotope produces photons of two different energies: 511 keV photons from the positron annihilation (direct annihilation or through the formation of a para-positronium atom or pick-off process of ortho-positronium atoms) and a 1275 keV prompt photon. This allows the study of the correlation between TOT values and energy loss for energy ranges up to 1000 keV. Since the photon interacts predominantly via Compton scattering inside the plastic scintillator, there is no direct information of the energy deposition. However, using the J-PET geometry, one can measure the scattering angle of the interacting photon. Since the 22Na source emits photons of two different energies, it is necessary to know unambiguously the energy of incident photons and their corresponding scattering angles in order to estimate energy deposition. In summary, this work presents a dedicated algorithm developed to tag photons of different energies and studying their scattering angles to calculate the energy deposition by the interacting photons. RESULTS A new method was elaborated to measure the energy loss by photons interacting with plastic scintillators used in the J-PET tomograph. We find the relationship between the energy loss and TOT is non-linear and can be described by the functions TOT = A0 + A1 * ln(E dep + A2) + A3 * (ln(E dep + A2))2 and TOT = A0 - A1 * A2[Formula: see text]. In addition, we also introduced a theoretical model to calculate the TOT as a function of energy loss in plastic scintillators. CONCLUSIONS A relationship between TOT and energy loss by photons interacting inside the plastic scintillators used in J-PET scanner is established for a deposited energy range of 100-1000 keV.
Collapse
|
22
|
Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys 2020; 7:35. [PMID: 32451783 PMCID: PMC7248164 DOI: 10.1186/s40658-020-00290-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
The idea of a very sensitive positron emission tomography (PET) system covering a large portion of the body of a patient already dates back to the early 1990s. In the period 2000-2010, only some prototypes with long axial field of view (FOV) have been built, which never resulted in systems used for clinical research. One of the reasons was the limitations in the available detector technology, which did not yet have sufficient energy resolution, timing resolution or countrate capabilities for fully exploiting the benefits of a long axial FOV design. PET was also not yet as widespread as it is today: the growth in oncology, which has become the major application of PET, appeared only after the introduction of PET-CT (early 2000).The detector technology used in most clinical PET systems today has a combination of good energy and timing resolution with higher countrate capabilities and has now been used since more than a decade to build time-of-flight (TOF) PET systems with fully 3D acquisitions. Based on this technology, one can construct total body PET systems and the remaining challenges (data handling, fast image reconstruction, detector cooling) are mostly related to engineering. The direct benefits of long axial FOV systems are mostly related to the higher sensitivity. For single organ imaging, the gain is close to the point source sensitivity which increases linearly with the axial length until it is limited by solid angle and attenuation of the body. The gains for single organ (compared to a fully 3D PET 20-cm axial FOV) are limited to a factor 3-4. But for long objects (like body scans), it increases quadratically with scanner length and factors of 10-40 × higher sensitivity are predicted for the long axial FOV scanner. This application of PET has seen a major increase (mostly in oncology) during the last 2 decades and is now the main type of study in a PET centre. As the technology is available and the full body concept also seems to match with existing applications, the old concept of a total body PET scanner is seeing a clear revival. Several research groups are working on this concept and after showing the potential via extensive simulations; construction of these systems has started about 2 years ago. In the first phase, two PET systems with long axial FOV suitable for large animal imaging were constructed to explore the potential in more experimental settings. Recently, the first completed total body PET systems for human use, a 70-cm-long system, called PennPET Explorer, and a 2-m-long system, called uExplorer, have become reality and first clinical studies have been shown. These results illustrate the large potential of this concept with regard to low-dose imaging, faster scanning, whole-body dynamic imaging and follow-up of tracers over longer periods. This large range of possible technical improvements seems to have the potential to change the current clinical routine and to expand the number of clinical applications of molecular imaging. The J-PET prototype is a prototype system with a long axial FOV built from axially arranged plastic scintillator strips.This paper gives an overview of the recent technical developments with regard to PET scanners with a long axial FOV covering at least the majority of the body (so called total body PET systems). After explaining the benefits and challenges of total body PET systems, the different total body PET system designs proposed for large animal and clinical imaging are described in detail. The axial length is one of the major factors determining the total cost of the system, but there are also other options in detector technology, design and processing for reducing the cost these systems. The limitations and advantages of different designs for research and clinical use are discussed taking into account potential applications and the increased cost of these systems.
Collapse
Affiliation(s)
- Stefaan Vandenberghe
- Department of Electronics and Information Systems, MEDISIP, Ghent University-IBiTech, De Pintelaan 185 block B, Ghent, B-9000 Belgium
| | - Pawel Moskal
- Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Joel S. Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
23
|
Mian Qaisar S. A custom 70-channel mixed signal ASIC for the brain-PET detectors signal readout and selection. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab251e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, Gorgol M, Hiesmayr B, Jasińska B, Kacprzak K, Kapłon Ł, Korcyl G, Kowalski P, Krzemień W, Kozik T, Kubicz E, Mohammed M, Niedźwiecki S, Pałka M, Pawlik-Niedźwiecka M, Raczyński L, Raj J, Sharma S, Shivani, Shopa RY, Silarski M, Skurzok M, Stępień E, Wiślicki W, Zgardzińska B. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol 2019; 64:055017. [PMID: 30641509 DOI: 10.1088/1361-6560/aafe20] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A detection system of the conventional PET tomograph is set-up to record data from [Formula: see text] annihilation into two photons with energy of 511 keV, and it gives information on the density distribution of a radiopharmaceutical in the body of the object. In this paper we explore the possibility of performing the three gamma photons imaging based on ortho-positronium annihilation, as well as the possibility of positronium mean lifetime imaging with the J-PET tomograph constructed from plastic scintillators. For this purposes simulations of the ortho-positronium formation and its annihilation into three photons were performed taking into account distributions of photons' momenta as predicted by the theory of quantum electrodynamics and the response of the J-PET tomograph. In order to test the proposed ortho-positronium lifetime image reconstruction method, we concentrate on the decay of the ortho-positronium into three photons and applications of radiopharmaceuticals labeled with isotopes emitting a prompt gamma. The proposed method of imaging is based on the determination of hit-times and hit-positions of registered photons which enables the reconstruction of the time and position of the annihilation point as well as the lifetime of the ortho-positronium on an event-by-event basis. We have simulated the production of the positronium in point-like sources and in a cylindrical phantom composed of a set of different materials in which the ortho-positronium lifetime varied from 2.0 ns to 3.0 ns, as expected for ortho-positronium created in the human body. The presented reconstruction method for total-body J-PET like detector allows to achieve a mean lifetime resolution of ∼40 ps. Recent positron annihilation lifetime spectroscopy measurements of cancerous and healthy uterine tissues show that this sensitivity may allow to study the morphological changes in cell structures.
Collapse
Affiliation(s)
- P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sharma S. Time Over Threshold as a measure of energy response of plastic scintillators used in the J-PET detector. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201919905014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Jagiellonian Positron Emission Tomograph (J-PET) is a multipurpose detector being developed to provide an economical alternative of commercially available PETs as well as to perform the tests on the discrete symmetries and entanglement. It is composed of 192 plastic scintillators axially arranged in three cylindrical layers. In the framework of J-PET detector, Time-Over-Threshold (TOT) approach is adopted for the signal readouts in order to utilize the excellent time resolution of the plastic scintillators. In this paper, we present a method elaborated for establishing a relation between TOT and energy loss.
Collapse
|
26
|
Moskal P, Krawczyk N, Hiesmayr BC, Bała M, Curceanu C, Czerwiński E, Dulski K, Gajos A, Gorgol M, Del Grande R, Jasińska B, Kacprzak K, Kapłon L, Kisielewska D, Klimaszewski K, Korcyl G, Kowalski P, Kozik T, Krzemień W, Kubicz E, Mohammed M, Niedźwiecki S, Pałka M, Pawlik-Niedźwiecka M, Raczyński L, Raj J, Rudy Z, Sharma S, Silarski M, Shivani, Shopa RY, Skurzok M, Wiślicki W, Zgardzińska B. Feasibility studies of the polarization of photons beyond the optical wavelength regime with the J-PET detector. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS 2018; 78:970. [PMID: 30636927 PMCID: PMC6315056 DOI: 10.1140/epjc/s10052-018-6461-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/14/2018] [Indexed: 05/25/2023]
Abstract
J-PET is a detector optimized for registration of photons from the electron-positron annihilation via plastic scintillators where photons interact predominantly via Compton scattering. Registration of both primary and scattered photons enables to determinate the linear polarization of the primary photon on the event by event basis with a certain probability. Here we present quantitative results on the feasibility of such polarization measurements of photons from the decay of positronium with the J-PET and explore the physical limitations for the resolution of the polarization determination of 511 keV photons via Compton scattering. For scattering angles of about 82∘ (where the best contrast for polarization measurement is theoretically predicted) we find that the single event resolution for the determination of the polarization is about 40∘ (predominantly due to properties of the Compton effect). However, for samples larger than ten thousand events the J-PET is capable of determining relative average polarization of these photons with the precision of about few degrees. The obtained results open new perspectives for studies of various physics phenomena such as quantum entanglement and tests of discrete symmetries in decays of positronium and extend the energy range of polarization measurements by five orders of magnitude beyond the optical wavelength regime.
Collapse
Affiliation(s)
- P. Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - N. Krawczyk
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - B. C. Hiesmayr
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - M. Bała
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - C. Curceanu
- Laboratori Nazionali di Frascati CP 13, INFN, Via E. Fermi 40, 00044 Frascati, Italy
| | - E. Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - K. Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - A. Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - M. Gorgol
- Department of Nuclear Methods, Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland
| | - R. Del Grande
- Laboratori Nazionali di Frascati CP 13, INFN, Via E. Fermi 40, 00044 Frascati, Italy
| | - B. Jasińska
- Department of Nuclear Methods, Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland
| | - K. Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - L. Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - D. Kisielewska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - K. Klimaszewski
- Świerk Computing Centre, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - G. Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - P. Kowalski
- Świerk Computing Centre, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - T. Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - W. Krzemień
- High Energy Department, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - E. Kubicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - M. Mohammed
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
- Department of Physics, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq
| | - Sz. Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - M. Pałka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - M. Pawlik-Niedźwiecka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - L. Raczyński
- Świerk Computing Centre, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - J. Raj
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Z. Rudy
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - S. Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - M. Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - R. Y. Shopa
- Świerk Computing Centre, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - M. Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - W. Wiślicki
- Świerk Computing Centre, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - B. Zgardzińska
- Department of Nuclear Methods, Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland
| |
Collapse
|
27
|
Kowalski P, Wiślicki W, Shopa RY, Raczyński L, Klimaszewski K, Curcenau C, Czerwiński E, Dulski K, Gajos A, Gorgol M, Gupta-Sharma N, Hiesmayr B, Jasińska B, Kapłon Ł, Kisielewska-Kamińska D, Korcyl G, Kozik T, Krzemień W, Kubicz E, Mohammed M, Niedźwiecki S, Pałka M, Pawlik-Niedźwiecka M, Raj J, Rakoczy K, Rudy Z, Sharma S, Shivani S, Silarski M, Skurzok M, Zgardzińska B, Zieliński M, Moskal P. Estimating the NEMA characteristics of the J-PET tomograph using the GATE package. ACTA ACUST UNITED AC 2018; 63:165008. [DOI: 10.1088/1361-6560/aad29b] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|