1
|
Xu Y, Wang J, Hu W. Prior-image-based low-dose CT reconstruction for adaptive radiation therapy. Phys Med Biol 2024; 69:215004. [PMID: 39284350 DOI: 10.1088/1361-6560/ad7b9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Objective. The study aims to reduce the imaging radiation dose in Adaptive Radiotherapy (ART) while maintaining high-quality CT images, critical for effective treatment planning and monitoring.Approach. We developed the Prior-aware Learned Primal-Dual Network (pLPD-UNet), which uses prior CT images to enhance reconstructions from low-dose scans. The network was separately trained on thorax and abdomen datasets to accommodate the unique imaging requirements of each anatomical region.Main results. The pLPD-UNet demonstrated improved reconstruction accuracy and robustness in handling sparse data compared to traditional methods. It effectively maintained image quality essential for precise organ delineation and dose calculation, while achieving a significant reduction in radiation exposure.Significance. This method offers a significant advancement in the practice of ART by integrating prior imaging data, potentially setting a new standard for balancing radiation safety with the need for high-resolution imaging in cancer treatment planning.
Collapse
Affiliation(s)
- Yao Xu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, People's Republic of China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, People's Republic of China
| | - Jiazhou Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, People's Republic of China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, People's Republic of China
| | - Weigang Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, People's Republic of China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, People's Republic of China
| |
Collapse
|
2
|
Montoya JC, Zhang C, Li Y, Li K, Chen GH. Reconstruction of three-dimensional tomographic patient models for radiation dose modulation in CT from two scout views using deep learning. Med Phys 2022; 49:901-916. [PMID: 34908175 PMCID: PMC9080958 DOI: 10.1002/mp.15414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND A tomographic patient model is essential for radiation dose modulation in x-ray computed tomography (CT). Currently, two-view scout images (also known as topograms) are used to estimate patient models with relatively uniform attenuation coefficients. These patient models do not account for the detailed anatomical variations of human subjects, and thus, may limit the accuracy of intraview or organ-specific dose modulations in emerging CT technologies. PURPOSE The purpose of this work was to show that 3D tomographic patient models can be generated from two-view scout images using deep learning strategies, and the reconstructed 3D patient models indeed enable accurate prescriptions of fluence-field modulated or organ-specific dose delivery in the subsequent CT scans. METHODS CT images and the corresponding two-view scout images were retrospectively collected from 4214 individual CT exams. The collected data were curated for the training of a deep neural network architecture termed ScoutCT-NET to generate 3D tomographic attenuation models from two-view scout images. The trained network was validated using a cohort of 55 136 images from 212 individual patients. To evaluate the accuracy of the reconstructed 3D patient models, radiation delivery plans were generated using ScoutCT-NET 3D patient models and compared with plans prescribed based on true CT images (gold standard) for both fluence-field-modulated CT and organ-specific CT. Radiation dose distributions were estimated using Monte Carlo simulations and were quantitatively evaluated using the Gamma analysis method. Modulated dose profiles were compared against state-of-the-art tube current modulation schemes. Impacts of ScoutCT-NET patient model-based dose modulation schemes on universal-purpose CT acquisitions and organ-specific acquisitions were also compared in terms of overall image appearance, noise magnitude, and noise uniformity. RESULTS The results demonstrate that (1) The end-to-end trained ScoutCT-NET can be used to generate 3D patient attenuation models and demonstrate empirical generalizability. (2) The 3D patient models can be used to accurately estimate the spatial distribution of radiation dose delivered by standard helical CTs prior to the actual CT acquisition; compared to the gold-standard dose distribution, 95.0% of the voxels in the ScoutCT-NET based dose maps have acceptable gamma values for 5 mm distance-to-agreement and 10% dose difference. (3) The 3D patient models also enabled accurate prescription of fluence-field modulated CT to generate a more uniform noise distribution across the patient body compared to tube current-modulated CT. (4) ScoutCT-NET 3D patient models enabled accurate prescription of organ-specific CT to boost image quality for a given body region-of-interest under a given radiation dose constraint. CONCLUSION 3D tomographic attenuation models generated by ScoutCT-NET from two-view scout images can be used to prescribe fluence-field-modulated or organ-specific CT scans with high accuracy for the overall objective of radiation dose reduction or image quality improvement for a given imaging task.
Collapse
Affiliation(s)
- Juan C Montoya
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Chengzhu Zhang
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yinsheng Li
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ke Li
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Guang-Hong Chen
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Zeng D, Wang L, Geng M, Li S, Deng Y, Xie Q, Li D, Zhang H, Li Y, Xu Z, Meng D, Ma J. Noise-Generating-Mechanism-Driven Unsupervised Learning for Low-Dose CT Sinogram Recovery. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3083361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
He J, Chen S, Zhang H, Tao X, Lin W, Zhang S, Zeng D, Ma J. Downsampled Imaging Geometric Modeling for Accurate CT Reconstruction via Deep Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2976-2985. [PMID: 33881992 DOI: 10.1109/tmi.2021.3074783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
X-ray computed tomography (CT) is widely used clinically to diagnose a variety of diseases by reconstructing the tomographic images of a living subject using penetrating X-rays. For accurate CT image reconstruction, a precise imaging geometric model for the radiation attenuation process is usually required to solve the inversion problem of CT scanning, which encodes the subject into a set of intermediate representations in different angular positions. Here, we show that accurate CT image reconstruction can be subsequently achieved by downsampled imaging geometric modeling via deep-learning techniques. Specifically, we first propose a downsampled imaging geometric modeling approach for the data acquisition process and then incorporate it into a hierarchical neural network, which simultaneously combines both geometric modeling knowledge of the CT imaging system and prior knowledge gained from a data-driven training process for accurate CT image reconstruction. The proposed neural network is denoted as DSigNet, i.e., downsampled-imaging-geometry-based network for CT image reconstruction. We demonstrate the feasibility of the proposed DSigNet for accurate CT image reconstruction with clinical patient data. In addition to improving the CT image quality, the proposed DSigNet might help reduce the computational complexity and accelerate the reconstruction speed for modern CT imaging systems.
Collapse
|
5
|
Cai M, Byrne M, Archibald-Heeren B, Metcalfe P, Rosenfeld A, Wang Y. Reducing axial truncation artifacts in iterative cone-beam CT for radiation therapy using a priori preconditioned information. Med Phys 2021; 48:7089-7098. [PMID: 34554587 DOI: 10.1002/mp.15248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Cone-beam computed tomography (CBCT) is increasingly utilized in radiation therapy for image guidance and adaptive applications. While iterative reconstruction algorithms have been shown to outperform traditional filtered back-projection methods in improving image quality and reducing imaging dose, they cannot handle data truncation in the axial view, which frequently occurs in the full-fan partial-trajectory acquisition mode. This proof-of-concept study presents a novel approach on truncation artifact reduction by utilizing a priori preconditioned information as the initial input for the iterative algorithm. METHODS Projections containing axial truncation were used for image reconstruction in extended axial field-of-view (AFOV) using the conjugate gradient least-squares (CGLS) algorithm. A priori information in the form of a planning fan-beam CT (FBCT) was repositioned in the expected CBCT imaging geometry, then further processed to dampen high-density features and convolved with a cubic Gaussian kernel to ensure differentiability for the gradient descent method. Anatomical and positional differences between the estimated and the actual imaging object were introduced to verify the efficacy of the proposed method. RESULTS Extending the reconstruction AFOV alone could partially reduce truncation artifact. Using a priori information directly resulted in ghosting artifact when there were anatomical and positional differences between the estimated and the actual imaging object. Using a priori preconditioned information was shown to effectively reduce truncation artifact and recover peripheral information. CONCLUSIONS Using a priori preconditioned information can effectively alleviate truncation artifact and assist recovery of peripheral information in iterative CBCT reconstruction.
Collapse
Affiliation(s)
- Meng Cai
- Icon Cancer Centre, Wahroonga, Australia.,Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, Australia
| | | | | | - Peter Metcalfe
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Anatoly Rosenfeld
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Yang Wang
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, Australia.,Icon Cancer Centre, Guangzhou, China
| |
Collapse
|
6
|
Li B, Luo N, Zhong A, Li Y, Chen A, Zhou L, Xu Y. A prior image constraint robust principal component analysis reconstruction method for sparse segmental multi-energy computed tomography. Quant Imaging Med Surg 2021; 11:4097-4114. [PMID: 34476191 DOI: 10.21037/qims-20-844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/16/2021] [Indexed: 11/06/2022]
Abstract
Background Multi-energy computed tomography (MECT) is a promising technique in medical imaging, especially for quantitative imaging. However, high technical requirements and system costs barrier its step into clinical practice. Methods We propose a novel sparse segmental MECT (SSMECT) scheme and corresponding reconstruction method, which is a cost-efficient way to realize MECT on a conventional single-source CT. For the data acquisition, the X-ray source is controlled to maintain an energy within a segmental arc, and then switch alternately to another energy level. This scan only needs to switch tube voltage a few times to acquire multi-energy data, but leads to sparse-view and limited-angle issues in image reconstruction. To solve this problem, we propose a prior image constraint robust principal component analysis (PIC-RPCA) reconstruction method, which introduces structural similarity and spectral correlation into the reconstruction. Results A numerical simulation and a real phantom experiment were conducted to demonstrate the efficacy and robustness of the scan scheme and reconstruction method. The results showed that our proposed reconstruction method could have achieved better multi-energy images than other competing methods both quantitatively and qualitatively. Conclusions Our proposed SSMECT scan with PIC-RPCA reconstruction method could lower kVp switching frequency while achieving satisfactory reconstruction accuracy and image quality.
Collapse
Affiliation(s)
- Bin Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ning Luo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Anni Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yongbao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Along Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Linghong Zhou
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yuan Xu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Flores JD, Gang GJ, Zhang H, Lin CT, Fung SK, Stayman JW. Direct reconstruction of anatomical change in low-dose lung nodule surveillance. J Med Imaging (Bellingham) 2021; 8:023503. [PMID: 33846692 DOI: 10.1117/1.jmi.8.2.023503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/18/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: In sequential imaging studies, there exists rich information from past studies that can be used in prior-image-based reconstruction (PIBR) as a form of improved regularization to yield higher-quality images in subsequent studies. PIBR methods, such as reconstruction of difference (RoD), have demonstrated great improvements in the image quality of subsequent anatomy reconstruction even when CT data are acquired at very low-exposure settings. Approach: However, to effectively use information from past studies, two major elements are required: (1) registration, usually deformable, must be applied between the current and prior scans. Such registration is greatly complicated by potential ambiguity between patient motion and anatomical change-which is often the target of the followup study. (2) One must select regularization parameters for reliable and robust reconstruction of features. Results: We address these two major issues and apply a modified RoD framework to the clinical problem of lung nodule surveillance. Specifically, we develop a modified deformable registration approach that enforces a locally smooth/rigid registration around the change region and extend previous analytic expressions relating reconstructed contrast to the regularization parameter and other system dependencies for reliable representation of image features. We demonstrate the efficacy of this approach using a combination of realistic digital phantoms and clinical projection data. Performance is characterized as a function of the size of the locally smooth registration region of interest as well as x-ray exposure. Conclusions: This modified framework is effectively able to separate patient motion and anatomical change to directly highlight anatomical change in lung nodule surveillance.
Collapse
Affiliation(s)
- Jessica D Flores
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Grace J Gang
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Hao Zhang
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Cheng T Lin
- Johns Hopkins University, Department of Radiology, Baltimore, Maryland, United States
| | | | - J Webster Stayman
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| |
Collapse
|
8
|
Zhang H, Capaldi D, Zeng D, Ma J, Xing L. Prior-image-based CT reconstruction using attenuation-mismatched priors. Phys Med Biol 2021; 66:064007. [PMID: 33729997 DOI: 10.1088/1361-6560/abe760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prior-image-based reconstruction (PIBR) methods are powerful tools for reducing radiation doses and improving the image quality of low-dose computed tomography (CT). Apart from anatomical changes, prior and current images can also have different attenuations because they originated from different scanners or from the same scanner but with different x-ray beam qualities (e.g., kVp settings, beam filters) during data acquisition. In such scenarios, with attenuation-mismatched priors, PIBR is challenging. In this work, we investigate a specific PIBR method, called statistical image reconstruction, using normal-dose image-induced nonlocal means regularization (SIR-ndiNLM), to address PIBR with such attenuation-mismatched priors and achieve quantitative low-dose CT imaging. We propose two corrective schemes for the original SIR-ndiNLM method, (1) a global histogram-matching approach and (2) a local attenuation correction approach, to account for the attenuation differences between the prior and current images in PIBR. We validate the efficacy of the proposed schemes using images acquired from dual-energy CT scanners to simulate attenuation mismatches. Meanwhile, we utilize different CT slices to simulate anatomical mismatches or changes between the prior and the current low-dose image. We observe that the original SIR-ndiNLM introduces artifacts to the reconstruction when an attenuation-mismatched prior is used. Furthermore, we find that a larger attenuation mismatch between the prior and current images results in more severe artifacts in the SIR-ndiNLM reconstruction. Our two proposed corrective schemes enable SIR-ndiNLM to effectively handle the attenuation mismatch and anatomical changes between the two images and successfully eliminate the artifacts. We demonstrate that the proposed techniques permit SIR-ndiNLM to leverage the attenuation-mismatched prior and achieve quantitative low-dose CT reconstruction from both low-flux and sparse-view data acquisitions. This work permits robust and reliable PIBR for CT data acquired using different beam settings.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiation Oncology, Stanford University School of Medicine, California, United States of America. Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | | | | | | | | |
Collapse
|
9
|
Gong H, Tao S, Rajendran K, Zhou W, McCollough CH, Leng S. Deep-learning-based direct inversion for material decomposition. Med Phys 2020; 47:6294-6309. [PMID: 33020942 DOI: 10.1002/mp.14523] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 09/16/2020] [Accepted: 10/24/2020] [Indexed: 01/25/2023] Open
Abstract
PURPOSE To develop a convolutional neural network (CNN) that can directly estimate material density distribution from multi-energy computed tomography (CT) images without performing conventional material decomposition. METHODS The proposed CNN (denoted as Incept-net) followed the general framework of encoder-decoder network, with an assumption that local image information was sufficient for modeling the nonlinear physical process of multi-energy CT. Incept-net was implemented with a customized loss function, including an in-house-designed image-gradient-correlation (IGC) regularizer to improve edge preservation. The network consisted of two types of customized multibranch modules exploiting multiscale feature representation to improve the robustness over local image noise and artifacts. Inserts with various densities of different materials [hydroxyapatite (HA), iodine, a blood-iodine mixture, and fat] were scanned using a research photon-counting detector (PCD) CT with two energy thresholds and multiple radiation dose levels. The network was trained using phantom image patches only, and tested with different-configurations of full field-of-view phantom and in vivo porcine images. Furthermore, the nominal mass densities of insert materials were used as the labels in CNN training, which potentially provided an implicit mass conservation constraint. The Incept-net performance was evaluated in terms of image noise, detail preservation, and quantitative accuracy. Its performance was also compared to common material decomposition algorithms including least-square-based material decomposition (LS-MD), total-variation regularized material decomposition (TV-MD), and U-net-based method. RESULTS Incept-net improved accuracy of the predicted mass density of basis materials compared with the U-net, TV-MD, and LS-MD: the mean absolute error (MAE) of iodine was 0.66, 1.0, 1.33, and 1.57 mgI/cc for Incept-net, U-net, TV-MD, and LS-MD, respectively, across all iodine-present inserts (2.0-24.0 mgI/cc). With the LS-MD as the baseline, Incept-net and U-net achieved comparable noise reduction (both around 95%), both higher than TV-MD (85%). The proposed IGC regularizer effectively helped both Incept-net and U-net to reduce image artifact. Incept-net closely conserved the total mass densities (i.e., mass conservation constraint) in porcine images, which heuristically validated the quantitative accuracy of its outputs in anatomical background. In general, Incept-net performance was less dependent on radiation dose levels than the two conventional methods; with approximately 40% less parameters, the Incept-net achieved relatively improved performance than the comparator U-net, indicating that performance gain by Incept-net was not achieved by simply increasing network learning capacity. CONCLUSION Incept-net demonstrated superior qualitative image appearance, quantitative accuracy, and lower noise than the conventional methods and less sensitive to dose change. Incept-net generalized and performed well with unseen image structures and different material mass densities. This study provided preliminary evidence that the proposed CNN may be used to improve the material decomposition quality in multi-energy CT.
Collapse
Affiliation(s)
- Hao Gong
- Department of Radiology, Mayo Clinic, Rochester, MN, 55901, USA
| | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, Rochester, MN, 55901, USA
| | | | - Wei Zhou
- Department of Radiology, Mayo Clinic, Rochester, MN, 55901, USA
| | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, 55901, USA
| |
Collapse
|
10
|
Abstract
The Radon transform is widely used in physical and life sciences, and one of its major applications is in medical X-ray computed tomography (CT), which is significantly important in disease screening and diagnosis. In this paper, we propose a novel reconstruction framework for Radon inversion with deep learning (DL) techniques. For simplicity, the proposed framework is denoted as iRadonMAP, i.e., inverse Radon transform approximation. Specifically, we construct an interpretable neural network that contains three dedicated components. The first component is a fully connected filtering (FCF) layer along the rotation angle direction in the sinogram domain, and the second one is a sinusoidal back-projection (SBP) layer, which back-projects the filtered sinogram data into the spatial domain. Next, a common network structure is added to further improve the overall performance. iRadonMAP is first pretrained on a large number of generic images from the ImageNet database and then fine-tuned with clinical patient data. The experimental results demonstrate the feasibility of the proposed iRadonMAP framework for Radon inversion.
Collapse
|
11
|
Chen Y, Yin FF, Zhang Y, Zhang Y, Ren L. Low dose cone-beam computed tomography reconstruction via hybrid prior contour based total variation regularization (hybrid-PCTV). Quant Imaging Med Surg 2019; 9:1214-1228. [PMID: 31448208 DOI: 10.21037/qims.2019.06.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Previously, we developed a prior contour based total variation (PCTV) method to use edge information derived from prior images for edge enhancement in low-dose cone-beam computed tomography (CBCT) reconstruction. However, the accuracy of edge enhancement in PCTV is affected by the deformable registration errors and anatomical changes from prior to on-board images. In this study, we develop a hybrid-PCTV method to address this limitation to enhance the robustness and accuracy of the PCTV method. Methods Planning-CT is used as prior images and deformably registered with on-board CBCT reconstructed by the edge preserving TV (EPTV) method. Edges derived from planning CT are deformed based on the registered deformation vector fields to generate on-board edges for edge enhancement in PCTV reconstruction. Reference CBCT is reconstructed from the simulated projections of the deformed planning-CT. Image similarity map is then calculated between reference and on-board CBCT using structural similarity index (SSIM) method to estimate local registration accuracy. The hybrid-PCTV method enhances the edge information based on a weighted edge map that combines edges from both PCTV and EPTV methods. Higher weighting is given to PCTV edges at regions with high registration accuracy and to EPTV edges at regions with low registration accuracy. The hybrid-PCTV method was evaluated using both digital extended-cardiac-torso (XCAT) phantom and lung patient data. In XCAT study, breathing amplitude change, tumor shrinkage and new tumor were simulated from CT to CBCT. In the patient study, both simulated and real projections of lung patients were used for reconstruction. Results were compared with both EPTV and PCTV methods. Results EPTV led to blurring bony structures due to missing edge information, and PCTV led to blurring tumor edges due to inaccurate edge information caused by errors in the deformable registration. In contrast, hybrid-PCTV enhanced edges of both bone and tumor. In XCAT study using 30 half-fan CBCT projections, compared with ground truth, relative errors (REs) were 1.3%, 1.1% and 0.9% and edge cross-correlation were 0.66, 0.68 and 0.71 for EPTV, PCTV and hybrid-PCTV, respectively. Moreover, in the lung patient data, hybrid-PCTV avoided the wrong edge enhancement in the PCTV method while maintaining enhancements of the correct edges. Conclusions Hybrid-PCTV further improved the robustness and accuracy of PCTV by accounting for uncertainties in deformable registration and anatomical changes between prior and onboard images. The accurate edge enhancement in hybrid-PCTV will be valuable for target localization in radiation therapy.
Collapse
Affiliation(s)
- Yingxuan Chen
- Medical Physics Graduate Program, Duke University, Durham, NC, USA
| | - Fang-Fang Yin
- Medical Physics Graduate Program, Duke University, Durham, NC, USA.,Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.,Medical Physics Graduate Program, Duke Kunshan University, Kunshan 215316, China
| | - Yawei Zhang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - You Zhang
- Medical Physics Graduate Program, Duke University, Durham, NC, USA
| | - Lei Ren
- Medical Physics Graduate Program, Duke University, Durham, NC, USA.,Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
12
|
Wang W, Gang GJ, Siewerdsen JH, Stayman JW. Predicting image properties in penalized-likelihood reconstructions of flat-panel CBCT. Med Phys 2019; 46:65-80. [PMID: 30372536 PMCID: PMC6904934 DOI: 10.1002/mp.13249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Model-based iterative reconstruction (MBIR) algorithms such as penalized-likelihood (PL) methods exhibit data-dependent and shift-variant properties. Image quality predictors have been derived to prospectively estimate local noise and spatial resolution, facilitating both system hardware design and tuning of reconstruction methods. However, current MBIR image quality predictors rely on idealized system models, ignoring physical blurring effects and noise correlations found in real systems. In this work, we develop and validate a new set of predictors using a physical system model specific to flat-panel cone-beam CT (FP-CBCT). METHODS Physical models appropriate for integration with MBIR analysis are developed and parameterized to represent nonidealities in FP projection data including focal spot blur, scintillator blur, detector aperture effect, and noise correlations. Flat-panel-specific predictors for local spatial resolution and local noise properties in PL reconstructions are developed based on these realistic physical models. Estimation accuracy of conventional (idealized) and FP-specific predictors is investigated and validated against experimental CBCT measurements using specialized phantoms. RESULTS Validation studies show that flat-panel-specific predictors can accurately estimate the local spatial resolution and noise properties, while conventional predictors show significant deviations in the magnitude and scale of the spatial resolution and local noise. The proposed predictors show accurate estimations over a range of imaging conditions including varying x-ray technique and regularization strength. The conventional spatial resolution prediction is sharper than ground truth. Using conventional spatial resolution predictor, the full width at half maximum (FWHM) of local point spread function (PSF) is underestimated by 0.2 mm. This mismatch is mostly eliminated in FP-specific prediction. The general shape and amplitude of local noise power spectrum (NPS) FP-specific predictions are consistent with measurement, while the conventional predictions underestimated the noise level by 70%. CONCLUSION The proposed image quality predictors permit accurate estimation of local spatial resolution and noise properties for PL reconstruction, accounting for dependencies on the system geometry, x-ray technique, and patient-specific anatomy in real FP-CBCT. Such tools enable prospective analysis of image quality for a range of goals including novel system and acquisition design, adaptive and task-driven imaging, and tuning of MBIR for robust and reliable behavior.
Collapse
Affiliation(s)
- Wenying Wang
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21205USA
| | - Grace J. Gang
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21205USA
| | | | - J. Webster Stayman
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21205USA
| |
Collapse
|