1
|
Hu SS, Duan B, Xu L, Huang D, Liu X, Gou S, Zhao X, Hou J, Tan S, He LY, Ye Y, Xie X, Shen H, Liu WH. Enhancing physician support in pancreatic cancer diagnosis: New M-F-RCNN artificial intelligence model using endoscopic ultrasound. Endosc Int Open 2024; 12:E1277-E1284. [PMID: 39524196 PMCID: PMC11543282 DOI: 10.1055/a-2422-9214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background and study aims Endoscopic ultrasound (EUS) is vital for early pancreatic cancer diagnosis. Advances in artificial intelligence (AI), especially deep learning, have improved medical image analysis. We developed and validated the Modified Faster R-CNN (M-F-RCNN), an AI algorithm using EUS images to assist in diagnosing pancreatic cancer. Methods We collected EUS images from 155 patients across three endoscopy centers from July 2022 to July 2023. M-F-RCNN development involved enhancing feature information through data preprocessing and utilizing an improved Faster R-CNN model to identify cancerous regions. Its diagnostic capabilities were validated against an external set of 1,000 EUS images. In addition, five EUS doctors participated in a study comparing the M-F-RCNN model's performance with that of human experts, assessing diagnostic skill improvements with AI assistance. Results Internally, the M-F-RCNN model surpassed traditional algorithms with an average precision of 97.35%, accuracy of 96.49%, and recall rate of 5.44%. In external validation, its sensitivity, specificity, and accuracy were 91.7%, 91.5%, and 91.6%, respectively, outperforming non-expert physicians. The model also significantly enhanced the diagnostic skills of doctors. Conclusions: The M-F-RCNN model shows exceptional performance in diagnosing pancreatic cancer via EUS images, greatly improving diagnostic accuracy and efficiency, thus enhancing physician proficiency and reducing diagnostic errors.
Collapse
Affiliation(s)
- Shan-shan Hu
- Department of Gastroenterology and Hepatology, Sichuan Provincial Peopleʼs Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bowen Duan
- Endoscopy, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Li Xu
- Department of Gastroenterology and Hepatology, Sichuan Provincial Peopleʼs Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Danping Huang
- Engineering and Science, Sichuan University of Science and Engineering Artificial Intelligence Key Laboratory of Sichuan Province, Yibin, China
| | - Xiaogang Liu
- Department of Gastroenterology and Hepatology, Sichuan Provincial Peopleʼs Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shihao Gou
- Engineering and Science, Sichuan University of Science and Engineering Artificial Intelligence Key Laboratory of Sichuan Province, Yibin, China
| | - Xiaochen Zhao
- Hepatobiliary Pancreatic Surgery, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, China
| | - Jie Hou
- Digestive Endoscopy Center of the Dongyuan, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, China
| | - Shirong Tan
- Digestive Endoscopy Center of the Dongyuan, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, China
| | - lan ying He
- Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying Ye
- Department of Gastroenterology, Chengdu University of Traditional Chinese Medicine Affiliated Fifth People's hospital, Chengdu, China
| | - Xiaoli Xie
- Gastroenterology, The First People's Hospital of Longquanyi District Chengdu, Chengdu, China
| | - Hong Shen
- Department of Gastroenterology and Hepatology, Sichuan Provincial Peopleʼs Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wei-hui Liu
- Department of Gastroenterology and Hepatology, Sichuan Provincial Peopleʼs Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang S, Huang B, Chan SC, Tsang VT, Wong TT. Tri-modality in vivo imaging for tumor detection with combined ultrasound, photoacoustic, and photoacoustic elastography. PHOTOACOUSTICS 2024; 38:100630. [PMID: 39040971 PMCID: PMC11261081 DOI: 10.1016/j.pacs.2024.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024]
Abstract
A comprehensive understanding of a tumor is required for accurate diagnosis and effective treatment. However, currently, there is no single imaging modality that can provide sufficient information. Photoacoustic (PA) imaging is a hybrid imaging technique with high spatial resolution and detection sensitivity, which can be combined with ultrasound (US) imaging to provide both optical and acoustic contrast. Elastography can noninvasively map the elasticity distribution of biological tissue, which reflects pathological conditions. In this study, we incorporated PA elastography into a commercial US/PA imaging system to develop a tri-modality imaging system, which has been tested for tumor detection using four mice with different physiological conditions. The results show that this tri-modality imaging system can provide complementary information on acoustic, optical, and mechanical properties. The enabled visualization and dimension estimation of tumors can lead to a more comprehensive tissue characterization for diagnosis and treatment.
Collapse
Affiliation(s)
- Shuaihu Wang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Bingxin Huang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Simon C.K. Chan
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Victor T.C. Tsang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Terence T.W. Wong
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Research Center for Medical Imaging and Analysis, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
3
|
Yoon H, Kim J, Lee K, Song TK. Design and Implementation of Analog-Digital Hybrid Beamformers for Low-Complexity Ultrasound Systems: A Feasibility Study. Bioengineering (Basel) 2023; 11:8. [PMID: 38275576 PMCID: PMC10813642 DOI: 10.3390/bioengineering11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Low-complexity ultrasound systems are increasingly desired for both wearable, point-of-care ultrasound and high-end massive-channel ultrasound for 3-D matrix imaging. However, the imaging capabilities, including spatial resolution and contrast, could suffer as low complexity systems are pursued, which remains as an unresolved tradeoff. To mitigate this limitation, this study revisits the general structures of analog and digital beamformers and introduces a hybrid approach, referred to as analog-digital hybrid beamforming, to implement efficient ultrasound systems. The suggested hybrid beamforming takes two stages sequentially, where the first analog stage partially beamforms M-channel RF signals to N sum-out data (i.e., M-to-N beamforming), and the second digital stage beamforms N partial sums to single final beamformed data (i.e., N-to-1 beamforming). Our approach was systematically designed and implemented with only four major integrated circuits, which was capable of driving full 64-channel transmission and reception. The developed system was demonstrated with a customized 64-channel 1-D phased array using a commercial tissue mimicking phantom. From the phantom imaging results, signal-to-noise ratio, contrast-to-noise ratio, and full beam width at half maximum values were quantitatively evaluated. The demonstrated results indicate that the analog-digital hybrid beamforming can be applied to any type of array for sophisticated 3-D imaging and tiny wearable ultrasound applications.
Collapse
Affiliation(s)
- Heechul Yoon
- School of Electronics and Electrical Engineering, Dankook University, Yongin-si 16890, Republic of Korea;
| | - Junseung Kim
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Kunkyu Lee
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Tai-Kyong Song
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
4
|
Wu Y, Zhang W, Shao X, Yang Y, Zhang T, Lei M, Wang Z, Gao B, Hu S. Research on the Multi-Element Synthetic Aperture Focusing Technique in Breast Ultrasound Imaging, Based on the Ring Array. MICROMACHINES 2022; 13:1753. [PMID: 36296106 PMCID: PMC9609697 DOI: 10.3390/mi13101753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
As a widely clinical detection method, ultrasonography (US) has been applied to the diagnosis of breast cancer. In this paper, the multi-element synthetic aperture focusing (M-SAF) is applied to the ring array of breast ultrasonography (US) imaging, which addresses the problem of low imaging quality due to the single active element for each emission and the reception in the synthetic aperture focusing. In order to determine the optimal sub-aperture size, the formula is derived for calculating the internal sound pressure of the ring array with a 200 mm diameter, and the sound pressure distribution is analyzed. The ring array with 1024 elements (1024 ring array) is established in COMSOL Multiphysics 5.6, and the optimal sub-aperture size is 16 elements, according to the sound field beam simulation and the directivity research. Based on the existing experimental conditions, the ring array with 256 elements (256 ring array) is simulated and verified by experiments. The simulation has a spatial resolution evaluation in the k-Wave toolbox, and the experiment uses nylon rope and breast model imaging. The results show that if the sub-aperture size has four elements, the imaging quality is the highest. Specifically, the spatial resolution is the best, and the sound pressure amplitude and signal-to-noise ratio (SNR) are maintained at a high level in the reconstructed image. The optimal sub-aperture theory is verified by the two kinds of ring arrays, which also provide a theoretical basis for the application of the multi-element synthetic aperture focusing technology (M-SAF) in ring arrays.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Wendong Zhang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Xingling Shao
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Yuhua Yang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Tian Zhang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Miao Lei
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Zhihao Wang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Bizhen Gao
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Shumin Hu
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| |
Collapse
|
5
|
Zheng E, Zhang H, Hu W, Doyley MM, Xia J. Volumetric tri-modal imaging with combined photoacoustic, ultrasound, and shear wave elastography. JOURNAL OF APPLIED PHYSICS 2022; 132:034902. [PMID: 35855685 PMCID: PMC9288268 DOI: 10.1063/5.0093619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Photoacoustic imaging is a hybrid imaging approach that combines the advantages of optical and ultrasonic imaging in one modality. However, for comprehensive tissue characterization, optical contrast alone is not always sufficient. In this study, we combined photoacoustic imaging with high-resolution ultrasound and shear wave elastography. The multi-modal system can calculate optical absorption, acoustic reflection, and stiffness volumetrically. We constructed a multi-modal phantom with contrast for each imaging modality to test the system's performance. Experimental results indicate that the system successfully visualizes the embedded structures. We envision that the system will lead to more comprehensive tissue characterization for cancer screening and diagnosis.
Collapse
Affiliation(s)
- Emily Zheng
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Huijuan Zhang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Wentao Hu
- Department of Electrical and Computer Engineering, Rochester Center for Biomedical Ultrasound, University of Rochester, Rochester, New York 14627, USA
| | - Marvin M. Doyley
- Department of Electrical and Computer Engineering, Rochester Center for Biomedical Ultrasound, University of Rochester, Rochester, New York 14627, USA
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
6
|
Fu L, Jin Z, Qi B, Yim W, Wu Z, He T, Jokerst JV. Synchronization of RF Data in Ultrasound Open Platforms (UOPs) for High-Accuracy and High-Resolution Photoacoustic Tomography Using the "Scissors" Programming Method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1994-2000. [PMID: 35377843 PMCID: PMC9149135 DOI: 10.1109/tuffc.2022.3164371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Synchronization is important for photoacoustic (PA) tomography, but some fixed delays between the data acquisition (DAQ) and the light pulse are a common problem degrading imaging quality. Here, we present a simple yet versatile method named "Scissors" to help synchronize ultrasound open platforms (UOPs) for PA imaging. Scissors is a programed function that can cut or add a fixed delay to radio frequency (RF) data and, thus, synchronize it before reconstruction. Scissors applies the programmable metric of UOPs and has several advantages. It is compatible with many setups regardless of the synchronization methods, light sources, transducers, and delays. The synchronization is adjustable in steps reciprocal to the UOPs' sampling rate (20-ns step with a 50-MHz sampling rate). Scissors works in real-time PA imaging, and no extra hardware is needed. We programed Scissors in Vantage UOP (Verasonics, Inc., Kirkland, WA, USA) and then imaged two 30- [Formula: see text] nichrome wires with a 20.2-MHz central frequency transducer. The PA image was severely distorted by an 828-ns delay; over 90% delay was caused by our Q -switch laser. The axial and lateral resolutions are 112 and [Formula: see text], respectively, after using Scissors. We imaged a human finger in vivo, and the imaging quality is tremendously improved after solving the 828-ns delay by using Scissors.
Collapse
|
7
|
Zhang Y, Wang L. Video-Rate Ring-Array Ultrasound and Photoacoustic Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4369-4375. [PMID: 32813650 DOI: 10.1109/tmi.2020.3017815] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ultrasonography and photoacoustic tomography provide complementary contrasts in preclinical studies, disease diagnoses, and imaging-guided interventional procedures. Here, we present a video-rate (20 Hz) dual-modality ultrasound and photoacoustic tomographic platform that has a high resolution, rich contrasts, deep penetration, and wide field of view. A three-quarter ring-array ultrasonic transducer is used for both ultrasound and photoacoustic imaging. Plane-wave transmission/receiving approach is used for ultrasound imaging, which improves the imaging speed by nearly two folds and reduces the RF data size compared with the sequential single-channel scanning approach. GPU-based image reconstruction is developed to advance computational speed. We demonstrate fast dual-modality imaging in phantom, mouse, and human finger joint experiments. The results show respiration motion, heart beating, and detailed features in the mouse internal organs. To our knowledge, this is the first report on fast plane-wave ultrasound imaging and single-shot photoacoustic computed tomography in a ring-array system.
Collapse
|
8
|
Zhao L, Vanderlaan D, Yoon H, Liu J, Li C, Emelianov SY. Ultrafast ultrasound imaging of surface acoustic waves induced by laser excitation compared with acoustic radiation force. OPTICS LETTERS 2020; 45:1810-1813. [PMID: 32236005 PMCID: PMC8957894 DOI: 10.1364/ol.383932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/25/2020] [Indexed: 06/11/2023]
Abstract
Two generation mechanisms-optical perturbation and acoustic radiation force (ARF)-were investigated where high frame rate ultrasound imaging was used to track the propagation of induced SAWs. We compared ARF-induced SAWs with laser-induced SAWs generated by laser beam irradiation of the uniformly absorbing tissue-like viscoelastic phantom, where light was preferentially absorbed at the surface. We also compared the frequency content of SAWs generated by ARF versus pulsed laser light, using the same duration of excitation. Differences in the SAW bandwidth were expected because, in general, laser light can be focused into a smaller area. Finally, we compared wave generation and propagation when the wave's origin was below the surface. We also investigated the relationship between shear wave amplitude and optical fluence. The investigation reported here can potentially extend the applications of laser-induced SAW generation and imaging in life sciences and other applications.
Collapse
Affiliation(s)
- Lingyi Zhao
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, USA
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Don Vanderlaan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Heechul Yoon
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Jingfei Liu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Changhui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Stanislav Y. Emelianov
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Corresponding author:
| |
Collapse
|
9
|
Yu J, Yoon H, Khalifa YM, Emelianov SY. Design of a Volumetric Imaging Sequence Using a Vantage-256 Ultrasound Research Platform Multiplexed With a 1024-Element Fully Sampled Matrix Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:248-257. [PMID: 31545718 PMCID: PMC7008949 DOI: 10.1109/tuffc.2019.2942557] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Ultrasound imaging using a matrix array allows real-time multi-planar volumetric imaging. To enhance image quality, the matrix array should provide fast volumetric ultrasound imaging with spatially consistent focusing in the lateral and elevational directions. However, because of the significantly increased data size, dealing with massive and continuous data acquisition is a significant challenge. We have designed an imaging acquisition sequence that handles volumetric data efficiently using a single 256-channel Verasonics ultrasound research platform multiplexed with a 1024-element matrix array. The developed sequence has been applied for building an ultrasonic pupilometer. Our results demonstrate the capability of the developed approach for structural visualization of an ex vivo porcine eye and the temporal response of the modeled eye pupil with moving iris at the volume rate of 30 Hz. Our study provides a fundamental ground for researchers to establish their own volumetric ultrasound imaging platform and could stimulate the development of new volumetric ultrasound approaches and applications.
Collapse
|
10
|
Zhu YI, Yoon H, Zhao AX, Emelianov SY. Leveraging the Imaging Transmit Pulse to Manipulate Phase-Change Nanodroplets for Contrast-Enhanced Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:692-700. [PMID: 30703017 PMCID: PMC6545583 DOI: 10.1109/tuffc.2019.2895248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phase-change perfluorohexane nanodroplets (PFHnDs) are a new class of recondensable submicrometer-sized contrast agents that have potential for contrast-enhanced and super-resolution ultrasound imaging with an ability to reach extravascular targets. The PFHnDs can be optically triggered to undergo vaporization, resulting in spatially stationary, temporally transient microbubbles. The vaporized PFHnDs are hyperechoic in ultrasound imaging for several to hundreds of milliseconds before recondensing to their native, hypoechoic, liquid nanodroplet state. The decay of echogenicity, i.e., the dynamic behavior of the ultrasound signal from optically triggered PFHnDs in ultrasound imaging, can be captured using high-frame-rate ultrasound imaging. We explore the possibility to manipulate the echogenicity dynamics of optically triggered PFHnDs in ultrasound imaging by changing the phase of the ultrasound imaging pulse. Specifically, the ultrasound imaging system was programmed to transmit two imaging pulses with inverse polarities. We show that the imaging pulse phase can affect the amplitude and the temporal behavior of PFHnD echogenicity in ultrasound imaging. The results of this study demonstrate that the ultrasound echogenicity is significantly increased (about 78% improvement) and the hyperechoic timespan of optically triggered PFHnDs is significantly longer (about four times) if the nanodroplets are imaged by an ultrasound pulse starting with rarefactional pressure versus a pulse starting with compressional pressure. Our finding has direct and significant implications for contrast-enhanced ultrasound imaging of droplets in applications such as super-resolution imaging and molecular imaging where detection of individual or low-concentration PFHnDs is required.
Collapse
|