1
|
Tian X, Ye J, Zhang T, Zhang L, Liu X, Fu F, Shi X, Xu C. Multi-Path Fusion in SFCF-Net for Enhanced Multi-Frequency Electrical Impedance Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2814-2824. [PMID: 38536679 DOI: 10.1109/tmi.2024.3382338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Multi-frequency electrical impedance tomography (mfEIT) offers a nondestructive imaging technology that reconstructs the distribution of electrical characteristics within a subject based on the impedance spectral differences among biological tissues. However, the technology faces challenges in imaging multi-class lesion targets when the conductivity of background tissues is frequency-dependent. To address these issues, we propose a spatial-frequency cross-fusion network (SFCF-Net) imaging algorithm, built on a multi-path fusion structure. This algorithm uses multi-path structures and hyper-dense connections to capture both spatial and frequency correlations between multi-frequency conductivity images, which achieves differential imaging for lesion targets of multiple categories through cross-fusion of information. According to both simulation and physical experiment results, the proposed SFCF-Net algorithm shows an excellent performance in terms of lesion imaging and category discrimination compared to the weighted frequency-difference, U-Net, and MMV-Net algorithms. The proposed algorithm enhances the ability of mfEIT to simultaneously obtain both structural and spectral information from the tissue being examined and improves the accuracy and reliability of mfEIT, opening new avenues for its application in clinical diagnostics and treatment monitoring.
Collapse
|
2
|
Zhang H, Tao Y, Zhu W. Global Path Planning of Unmanned Surface Vehicle Based on Improved A-Star Algorithm. SENSORS (BASEL, SWITZERLAND) 2023; 23:6647. [PMID: 37514941 PMCID: PMC10385081 DOI: 10.3390/s23146647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
To make unmanned surface vehicles that are better applied to the field of environmental monitoring in inland rivers, reservoirs, or coasts, we propose a global path-planning algorithm based on the improved A-star algorithm. The path search is carried out using the raster method for environment modeling and the 8-neighborhood search method: a bidirectional search strategy and an evaluation function improvement method are used to reduce the total number of traversing nodes; the planned path is smoothed to remove the inflection points and solve the path folding problem. The simulation results reveal that the improved A-star algorithm is more efficient in path planning, with fewer inflection points and traversing nodes, and the smoothed paths are more to meet the actual navigation demands of unmanned surface vehicles than the conventional A-star algorithm.
Collapse
Affiliation(s)
- Huixia Zhang
- School of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yadong Tao
- School of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenliang Zhu
- School of Mechanical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
3
|
Tian X, Liu X, Zhang T, Ye J, Zhang W, Zhang L, Shi X, Fu F, Li Z, Xu C. Effective Electrical Impedance Tomography Based on Enhanced Encoder-Decoder Using Atrous Spatial Pyramid Pooling Module. IEEE J Biomed Health Inform 2023; 27:3282-3291. [PMID: 37027259 DOI: 10.1109/jbhi.2023.3265385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Electrical impedance tomography (EIT) is a noninvasive and radiation-free imaging method. As a "soft-field" imaging technique, in EIT, the target signal in the center of the measured field is frequently swamped by the target signal at the edge, which restricts its further application. To alleviate this problem, this study presents an enhanced encoder-decoder (EED) method with an atrous spatial pyramid pooling (ASPP) module. The proposed method enhances the ability to detect central weak targets by constructing an ASPP module that integrates multiscale information in the encoder. The multilevel semantic features are fused in the decoder to improve the boundary reconstruction accuracy of the center target. The average absolute error of the imaging results by the EED method reduced by 82.0%, 83.6%, and 36.5% in simulation experiments and 83.0%, 83.2%, and 36.1% in physical experiments compared with the errors of the damped least-squares algorithm, Kalman filtering method, and U-Net-based imaging method, respectively. The average structural similarity improved by 37.3%, 42.9%, and 3.6%, and 39.2%, 45.2%, and 3.8% in the simulation and physical experiments, respectively. The proposed method provides a practical and reliable means of extending the application of EIT by solving the problem of weak central target reconstruction under the effect of strong edge targets in EIT.
Collapse
|
4
|
Zhang T, Tian X, Liu X, Ye J, Fu F, Shi X, Liu R, Xu C. Advances of deep learning in electrical impedance tomography image reconstruction. Front Bioeng Biotechnol 2022; 10:1019531. [PMID: 36588934 PMCID: PMC9794741 DOI: 10.3389/fbioe.2022.1019531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Electrical impedance tomography (EIT) has been widely used in biomedical research because of its advantages of real-time imaging and nature of being non-invasive and radiation-free. Additionally, it can reconstruct the distribution or changes in electrical properties in the sensing area. Recently, with the significant advancements in the use of deep learning in intelligent medical imaging, EIT image reconstruction based on deep learning has received considerable attention. This study introduces the basic principles of EIT and summarizes the application progress of deep learning in EIT image reconstruction with regards to three aspects: a single network reconstruction, deep learning combined with traditional algorithm reconstruction, and multiple network hybrid reconstruction. In future, optimizing the datasets may be the main challenge in applying deep learning for EIT image reconstruction. Adopting a better network structure, focusing on the joint reconstruction of EIT and traditional algorithms, and using multimodal deep learning-based EIT may be the solution to existing problems. In general, deep learning offers a fresh approach for improving the performance of EIT image reconstruction and could be the foundation for building an intelligent integrated EIT diagnostic system in the future.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China,Drug and Instrument Supervision and Inspection Station, Xining Joint Logistics Support Center, Lanzhou, China
| | - Xiang Tian
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - XueChao Liu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - JianAn Ye
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - Feng Fu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - XueTao Shi
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - RuiGang Liu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - CanHua Xu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China,*Correspondence: CanHua Xu,
| |
Collapse
|
5
|
Fan AW, Cheng BY. Sorted L 1 regularization method for damage detection based on electrical impedance tomography. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:124701. [PMID: 34972396 DOI: 10.1063/5.0072462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Carbon fiber reinforced polymers (CFRPs) are composite materials in which carbon provides strength and stiffness, whereas polymers provide cohesiveness and toughness. The electrical impedance of CFRP laminates is changed due to different kinds of damages. Electrical impedance tomography (EIT) has significant advantages such as non-intrusion, portability, low cost, and quick response and has widely been used as a nondestructive testing method. Therefore, EIT has great potential in structural health monitoring of CFRPs. Regularization can solve the ill-posed inverse problem of EIT. However, conventional regularization algorithms have their own limitations, such as over-smoothness of reconstructed edges and unstable solution caused by measurement noise. In addition, the anisotropic property of CFRPs also affects the image quality based on traditional methods. In this paper, the sorted L1-norm regularization is proposed. It promotes grouping highly correlated variables while encouraging sparsity by using more effective penalty terms. The sharp edges between different materials can be obtained, and the obtained solution is more stable. The image quality of different objects, especially the image quality of multi-targets, can be significantly improved with this new method. In addition, the sorted L1 norm can generate adaptive regularization parameters without empirical selection. The new regularization problem is solved by the alternating direction method of multipliers. Both experimental and simulation results demonstrate that the sorted L1 norm improves the quality of reconstructed images under various noise levels. The proposed method is comprehensively evaluated with three image quality criteria by numerical simulation quantitatively.
Collapse
Affiliation(s)
- A Wenru Fan
- College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 3003000, People's Republic of China
| | - B Yu Cheng
- College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 3003000, People's Republic of China
| |
Collapse
|
6
|
Liu D, Gu D, Smyl D, Khambampati AK, Deng J, Du J. Shape-Driven EIT Reconstruction Using Fourier Representations. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:481-490. [PMID: 33044928 DOI: 10.1109/tmi.2020.3030024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Shape-driven approaches have been proposed as an effective strategy for the electrical impedance tomography (EIT) reconstruction problem in recent years. In order to augment the shape-driven approaches, we propose a new method that transforms the shape to be reconstructed as basic primitives directly modeled by using Fourier representations. To allow automatic topological changes between the basic primitives and surrounding objects simultaneously, Boolean operations are employed. The Boolean operations with direct representation of primitives can be utilized for dimensionality and ill-posedness reduction, enabling feasible shape and topology optimization with shape-driven approaches. As a proof of principle, we leverage the proposed method for two dimensional shape reconstruction in EIT with various conductivity distributions. We demonstrate that our method is able to improve EIT reconstructions by enabling accurate shape and topology optimization.
Collapse
|
7
|
Santos TBR, Nakanishi RM, Kaipio JP, Mueller JL, Lima RG. Introduction of Sample Based Prior into the D-Bar Method Through a Schur Complement Property. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4085-4093. [PMID: 32746149 PMCID: PMC7755290 DOI: 10.1109/tmi.2020.3012428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrical impedance tomography (EIT) is a non-invasive medical imaging technique in which images of the conductivity in a region of interest in the body are computed from measurements of voltages on electrodes arising from low-frequency, low-amplitude applied currents. Mathematically, the inverse conductivity problem is nonlinear and ill-posed, and the reconstructions have characteristically low spatial resolution. One approach to improve the spatial resolution of EIT images is to include anatomically and physiologically-based prior information in the reconstruction algorithm. Statistical inversion theory provides a means of including prior information from a representative sample population. In this paper, a method is proposed to introduce statistical prior information into the D-bar method based on Schur complement properties. The method presents an improvement of the image obtained by the D-bar method by maximizing the conditional probability density function of an image that is consistent with a prior information and the model, given a D-bar image computed from the voltage measurements. Experimental phantoms show an improved spatial resolution by the use of the proposed method for the D-bar image reconstructions.
Collapse
|
8
|
Liu D, Smyl D, Gu D, Du J. Shape-Driven Difference Electrical Impedance Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3801-3812. [PMID: 32746122 DOI: 10.1109/tmi.2020.3004806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work proposes a novel shape-driven reconstruction approach for difference electrical impedance tomography (EIT). In the proposed approach, the reconstruction problem is formulated as a shape reconstruction problem and solved via an explicit and geometrical methodology, where the geometry of the embedded inclusions is represented by a shape and topology description function (STDF). To incorporate more geometry and prior information directly into the reconstruction and to provide better flexibility in the solution process, the concept of a moving morphable component (MMC) is applied here implying that MMC is treated as the basic building block of the embedded inclusions. Simulations, phantom studies, and in vivo pig data are used to test the proposed approach for the most popular biomedical application of EIT - lung imaging - and the performance is compared with the conventional linear approach. In addition, the modality's robustness is studied in cases where (i) modeling errors are caused by inhomogeneity in the background conductivity, and (ii) uncertainties in the contact impedances and reference state are present. The results of this work indicate that the proposed approach is tolerant to modeling errors and is fairly robust to typical EIT uncertainties, producing greatly improved image quality compared to the conventional linear approach.
Collapse
|
9
|
Murphy EK, Wu X, Everitt AC, Halter RJ. Phantom Studies of Fused-Data TREIT Using Only Biopsy-Probe Electrodes. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3367-3378. [PMID: 32386146 PMCID: PMC7654729 DOI: 10.1109/tmi.2020.2992453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transrectal electrical impedance tomography (TREIT) is a novel imaging modality being developed for prostate biopsy guidance and cancer characterization. We describe a novel fused-data TREIT (fd-TREIT) system and approach developed to improve imaging robustness and evaluate it on challenging clinically-representative phantoms. The new approach incorporates 8 electrodes (in 2 rows) on a biopsy probe (BP) and 12 electrodes on the face of a transrectal ultrasound (TRUS) probe and includes a biopsy gun, instrument tracking, 3D-printed needle guide, and EIT hardware and software. The approach was evaluated via simulation, a series of prostate-shaped gel phantoms, and an ex vivo bovine tissue sample using only absolute reconstructions. The simulations surprisingly found that using only biopsy-probe electrode measurements, i.e. omitting TRUS-probe electrode measurements, significantly improves robustness to noise thus leading to simpler modeling and significant decreases in computational times (~13x speed-up/reconstructions in ~27 minutes). The gel phantom experiments resulted in reconstructions with area under the curve (AUC) values extracted from receiver operator characteristic curves of >0.85 for 4 out of the 5 tests, and when incorporating inclusion boundaries resulted in absolute reconstructions yielding 1.9% and 12.2% average percent errors for 3 consistent tests and all 5 tests, respectively. Ex vivo bovine tests revealed qualitatively that the fd-TREIT approach can largely discriminate a complex adipose and muscle interface in a realistic setting using data from 9 biopsy probe states (biopsy core locations). The algorithms developed here on challenging phantoms suggest strong promise for this technology to aid in imaging during routine 12-core biopsies.
Collapse
|
10
|
Liu D, Gu D, Smyl D, Deng J, Du J. Shape Reconstruction Using Boolean Operations in Electrical Impedance Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2954-2964. [PMID: 32217471 DOI: 10.1109/tmi.2020.2983055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we propose a new shape reconstruction framework rooted in the concept of Boolean operations for electrical impedance tomography (EIT). Within the framework, the evolution of inclusion shapes and topologies are simultaneously estimated through an explicit boundary description. For this, we use B-spline curves as basic shape primitives for shape reconstruction and topology optimization. The effectiveness of the proposed approach is demonstrated using simulated and experimentally-obtained data (testing EIT lung imaging). In the study, improved preservation of sharp features is observed when employing the proposed approach relative to the recently developed moving morphable components-based approach. In addition, robustness studies of the proposed approach considering background inhomogeneity and differing numbers of B-spline curve control points are performed. It is found that the proposed approach is tolerant to modeling errors caused by background inhomogeneity and is also quite robust to the selection of control points.
Collapse
|
11
|
Liu D, Gu D, Smyl D, Deng J, Du J. B-Spline Level Set Method for Shape Reconstruction in Electrical Impedance Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1917-1929. [PMID: 31880544 DOI: 10.1109/tmi.2019.2961938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A B-spline level set (BLS) based method is proposed for shape reconstruction in electrical impedance tomography (EIT). We assume that the conductivity distribution to be reconstructed is piecewise constant, transforming the image reconstruction problem into a shape reconstruction problem. The shape/interface of inclusions is implicitly represented by a level set function (LSF), which is modeled as a continuous parametric function expressed using B-spline functions. Starting from modeling the conductivity distribution with the B-spline based LSF, we show that the shape modeling allows us to compute the solution by restricting the minimization problem to the space spanned by the B-splines. As a consequence, the solution to the minimization problem is obtained in terms of the B-spline coefficients. We illustrate the behavior of this method using simulated as well as water tank data. In addition, robustness studies considering varying initial guesses, differing numbers of control points, and modeling errors caused by inhomogeneity are performed. Both simulation and experimental results show that the BLS-based approach offers clear improvements in preserving the sharp features of the inclusions in comparison to the recently published parametric level set method.
Collapse
|
12
|
Liu D, Du J. A Moving Morphable Components Based Shape Reconstruction Framework for Electrical Impedance Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2937-2948. [PMID: 31135356 DOI: 10.1109/tmi.2019.2918566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper presents a new computational framework in electrical impedance tomography (EIT) for shape reconstruction based on the concept of moving morphable components (MMC). In the proposed framework, the shape reconstruction problem is solved in an explicit and geometrical way. Compared with the traditional pixel or shape-based solution framework, the proposed framework can incorporate more geometry and prior information into shape and topology optimization directly and therefore render the solution process more flexibility. It also has the afford potential to substantially reduce the computational burden associated with shape and topology optimization. The effectiveness of the proposed approach is tested with noisy synthetic data and experimental data, which demonstrates the most popular biomedical application of EIT: lung imaging. In addition, robustness studies of the proposed approach considering modeling errors caused by non-homogeneous background, varying initial guesses, differing numbers of candidate shape components, and differing exponent in the shape and topology description function are performed. The simulation and experimental results show that the proposed approach is tolerant to modeling errors and is fairly robust to these parameter choices, offering significant improvements in image quality in comparison to the conventional absolute reconstructions using smoothness prior regularization and total variation regularization.
Collapse
|