1
|
Giannakopoulos II, Georgakis IP, Sodickson DK, Lattanzi R. Computational methods for the estimation of ideal current patterns in realistic human models. Magn Reson Med 2024; 91:760-772. [PMID: 37800398 PMCID: PMC11467686 DOI: 10.1002/mrm.29864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE To introduce a method for the estimation of the ideal current patterns (ICP) that yield optimal signal-to-noise ratio (SNR) for realistic heterogeneous tissue models in MRI. THEORY AND METHODS The ICP were calculated for different surfaces that resembled typical radiofrequency (RF) coil formers. We constructed numerical electromagnetic (EM) bases to accurately represent EM fields generated by RF current sources located on the current-bearing surfaces. Using these fields as excitations, we solved the volume integral equation and computed the EM fields in the sample. The fields were appropriately weighted to calculate the optimal SNR and the corresponding ICP. We demonstrated how to qualitatively use ICP to guide the design of a coil array to maximize SNR inside a head model. RESULTS In agreement with previous analytic work, ICP formed large distributed loops for voxels in the middle of the sample and alternated between a single loop and a figure-eight shape for a voxel 3-cm deep in the sample's cortex. For the latter voxel, a surface quadrature loop array inspired by the shape of the ICP reached87 . 5 % $$ 87.5\% $$ of the optimal SNR at 3T, whereas a single loop placed above the voxel reached only55 . 7 % $$ 55.7\% $$ of the optimal SNR. At 7T, the performance of the two designs decreased to79 . 7 % $$ 79.7\% $$ and49 . 8 % $$ 49.8\% $$ , respectively, suggesting that loops could be suboptimal at ultra-high field MRI. CONCLUSION ICP can be calculated for human tissue models, potentially guiding the design of application-specific RF coil arrays.
Collapse
Affiliation(s)
- Ilias I. Giannakopoulos
- The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, United States
| | | | - Daniel K. Sodickson
- The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, United States
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, United States
| | - Riccardo Lattanzi
- The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, United States
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, United States
| |
Collapse
|
2
|
Choi CH, Felder J, Lerche C, Shah NJ. MRI Coil Development Strategies for Hybrid MR-PET Systems: A Review. IEEE Rev Biomed Eng 2024; 17:342-350. [PMID: 37015609 DOI: 10.1109/rbme.2022.3227337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simultaneously operating MR-PET systems have the potential to provide synergetic multi-parametric information, and, as such, interest surrounding their use and development is increasing. However, despite the potential advantages offered by fully combined MR-PET systems, implementing this hybrid integration is technically laborious, and any factors degrading the quality of either modality must be circumvented to ensure optimal performance. In order to attain the best possible quality from both systems, most full MR-PET integrations tend to place the shielded PET system inside the MRI system, close to the target volume of the subject. The radiofrequency (RF) coil used in MRI systems is a key factor in determining the quality of the MR images, and, in simultaneous acquisition, it is generally positioned inside the PET system and PET imaging region, potentially resulting in attenuation and artefacts in the PET images. Therefore, when designing hybrid MR-PET systems, it is imperative that consideration be given to the RF coils inside the PET system. In this review, we present current state-of-the-art RF coil designs used for hybrid MR-PET experiments and discuss various design strategies for constructing PET transparent RF coils.
Collapse
|
3
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
4
|
Rios NL, Gilbert KM, Papp D, Cereza G, Foias A, Rangaprakash D, May MW, Guerin B, Wald LL, Keil B, Stockmann JP, Barry RL, Cohen-Adad J. An 8-channel Tx dipole and 20-channel Rx loop coil array for MRI of the cervical spinal cord at 7 Tesla. NMR IN BIOMEDICINE 2023; 36:e5002. [PMID: 37439129 PMCID: PMC10733907 DOI: 10.1002/nbm.5002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/10/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency (RF) coil solutions for ultrahigh field imaging; however, very few commercial and research 7-T RF coils currently exist for the spinal cord, and in particular, those with parallel transmission (pTx) capabilities. This work presents the design, testing, and validation of a pTx/Rx coil for the human neck and cervical/upper thoracic spinal cord. The pTx portion is composed of eight dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made up of twenty semiadaptable overlapping loops to produce high signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while also being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B1 + uniformity, power efficiency, and/or specific absorption rate efficiency. B1 + homogeneity, SNR, and g-factor were evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.
Collapse
Affiliation(s)
- Nibardo Lopez Rios
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - D. Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Markus W. May
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps University of Marburg, Marburg, Germany
| | - Jason P. Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Mila – Quebec AI Institute, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Woo MK, DelaBarre L, Waks M, Lagore R, Kim J, Jungst S, Eryaman Y, Ugurbil K, Adriany G. A 32-Channel Sleeve Antenna Receiver Array for Human Head MRI Applications at 10.5 T. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2643-2652. [PMID: 37030782 DOI: 10.1109/tmi.2023.3261922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
For human brain magnetic resonance imaging (MRI), high channel count ( ≥ 32 ) radiofrequency receiver coil arrays are utilized to achieve maximum signal-to-noise ratio (SNR) and to accelerate parallel imaging techniques. With ultra-high field (UHF) MRI at 7 tesla (T) and higher, dipole antenna arrays have been shown to generate high SNR in the deep regions of the brain, however the array elements exhibit increased electromagnetic coupling with one another, making array construction more difficult with the increasing number of elements. Compared to a classical dipole antenna array, a sleeve antenna array incorporates the coaxial ground into the feed-point, resulting in a modified asymmetric antenna structure with improved intra-element decoupling. Here, we extended our previous 16-channel sleeve transceiver work and developed a 32-channel azimuthally arranged sleeve antenna receive-only array for 10.5 T human brain imaging. We experimentally compared the achievable SNR of the sleeve antenna array at 10.5 T to a more traditional 32-channel loop array bult onto a human head-shaped former. The results obtained with a head shaped phantom clearly demonstrated that peripheral intrinsic SNR can be significantly improved compared to a loop array with the same number of elements- except for the superior part of the phantom where sleeve antenna elements are not located.
Collapse
|
6
|
Alkandari D, Bosshard JC, Huang CH, Wright SM. Multiple slot modules for high field magnetic resonance imaging array coils. Magn Reson Med 2023; 89:2485-2498. [PMID: 36763854 DOI: 10.1002/mrm.29610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023]
Abstract
PURPOSE Mitigating coupling effects between coil elements represents a continuing challenge. Here, we present a 16-bowtie slot volume coil arranged in eight independent dual-slot modules without the use of any decoupling circuits. METHODS Two electrically short "bowtie" slot antennas were used to form a "module." A bowtie configuration was chosen because electromagnetic modeling results show that bowtie slots exhibit improved B 1 + P in $$ \frac{B_1^{+}}{\sqrt{P_{in}}} $$ efficiency when compared to thin rectangular slots. An eight-module volume coil was evaluated through electromagnetic modeling, bench tests, and MRI experiments at 4.7 T. RESULTS Bench tests indicate that worst-case coupling between modules did not exceed -14.5 dB. MR images demonstrate well-localized patterns about single excited modules confirming the low coupling between modules. Homogeneous MR images were acquired from a synthesized quadrature birdcage transmit mode. MRI experiments show that the RF power requirements for the proposed coil are 9.2 times more than a birdcage coil. Whereas from simulations performed to assess the proposed coil losses, the total power dissipated in the phantom was 1.1 times more for the birdcage. Simulation results at 7 T reveal an equivalent B1 + homogeneity when compared with an eight-dipole coil. CONCLUSION Although exhibiting higher RF power requirements, as a transmit coil when the power availability is not a restriction, the inherently low coupling between electrically short slots should enable the use of many slot elements around the imaging volume. The slot module described in this paper should be useful in the design of multi-channel transmit coils.
Collapse
Affiliation(s)
- Dheyaa Alkandari
- Department of Electrical Engineering, Kuwait University, Kuwait City, Kuwait
| | - John C Bosshard
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Chung-Huan Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Steven M Wright
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Rios NL, Gilbert KM, Papp D, Cereza G, Foias A, Rangaprakash D, May MW, Guerin B, Wald LL, Keil B, Stockmann JP, Barry RL, Cohen-Adad J. 8-channel Tx dipole and 20-channel Rx loop coil array for MRI of the cervical spinal cord at 7 Tesla. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527664. [PMID: 36798276 PMCID: PMC9934596 DOI: 10.1101/2023.02.08.527664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency coil solutions for ultra-high field imaging; however, very few commercial and research 7 Tesla radiofrequency coils currently exist for the spinal cord, and in particular those with parallel transmit capabilities. This work presents the design, testing and validation of a pTx/Rx coil for the human neck and cervical/upper-thoracic spinal cord. The pTx portion is composed of 8 dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made of 20 semi-adaptable overlapping loops to produce high Signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B 1 + uniformity, power efficiency and/or specific absorption rate (SAR) efficiency. B 1 + homogeneity, SNR and g-factor was evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper-thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.
Collapse
Affiliation(s)
- Nibardo Lopez Rios
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - D. Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Markus W. May
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps University of Marburg, Marburg, Germany
| | - Jason P. Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Mila – Quebec AI Institute, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
9
|
Hernandez D, Nam T, Jeong Y, Kim D, Kim KN. Study on the Effect of Non-Symmetrical Current Distribution Controlled by Capacitor Placement in Radio-Frequency Coils for 7T MRI. BIOSENSORS 2022; 12:867. [PMID: 36291004 PMCID: PMC9599509 DOI: 10.3390/bios12100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we present a study on the effects of varying the position of a single tuning capacitor in a circular loop coil as a mechanism to control and produce non-symmetric current distribution, such that could be used for magnetic resonance imaging (MRI) operating at ultra-high frequency (UHF). This study aims to demonstrate that the position of the tuning capacitor of a circular loop could improve the coupling between adjacent coils, used to optimize transmission field uniformity or intensity, improve signal-to-noise ratio (SNR) or specific absorption rate (SAR). A typical loop coil used in MRI consists of symmetrically distributed capacitors along the coil; this design is able to produce uniform current distributions inside the coil. However, in UHF conditions, the magnetic flux density (|B1+|) field produced by this setup may exhibit field distortion, requiring a method of controlling the field distribution and improving the field intensity of the circular loop coil. The control mechanism investigated in this study is based on the position of the tuning capacitor in the circular coil, the capacitor position was varied from 15° to 345°, in steps of 15°. We performed electromagnetic (EM) simulations, fabricated the coils, and performed MRI experiments at 7T, with each of the coils with capacitor position from 15° to 345° to determine the effects on field intensity, coupling between adjacent coils, SAR, and applications for field uniformity optimization. For the case of free space, a coil with capacitor position at 15° showed higher field intensity compared to the reference coil; while an improved decoupling was achieved when a coil had the capacitor placed at 180° and the other coil at 90°; in a similar matter, we discuss the results for SAR, field uniformity and an application with an array coil for the spinal cord.
Collapse
Affiliation(s)
- Daniel Hernandez
- Neuroscience Research Institute, Gachon University, Incheon 21988, Korea
| | - Taewoo Nam
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Yonghwa Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Donghyuk Kim
- Neuroscience Research Institute, Gachon University, Incheon 21988, Korea
| | - Kyoung-Nam Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
10
|
Choi CH, Hong SM, Felder J, Tellmann L, Scheins J, Kops ER, Lerche C, Shah NJ. A Novel J-Shape Antenna Array for Simultaneous MR-PET or MR-SPECT Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1104-1113. [PMID: 34860648 DOI: 10.1109/tmi.2021.3132576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Simultaneous MR-PET/-SPECT is an emerging technology that capitalises on the invaluable advantages of both modalities, allowing access to numerous sensitive tracers and superior soft-tissue contrast alongside versatile functional imaging capabilities. However, to optimise these capabilities, concurrent acquisitions require the MRI antenna located inside the PET/SPECT field-of-view to be operated without compromising any aspects of system performance or image quality compared to the stand-alone instrumentation. Here, we report a novel gamma-radiation-transparent antenna concept. The end-fed J-shape antenna is particularly adept for hybrid ultra-high field MR-PET/-SPECT applications as it enables all highly attenuating materials to be placed outside the imaging field-of-view. Furthermore, this unique configuration also provides advantages in stand-alone MR applications by reducing the amount of coupling between the cables and the antenna elements, and by lowering the potential specific absorption rate burden. The use of this new design was experimentally verified according to the important features for both ultra-high field MRI and the 511 keV transmission scan. The reconstructed attenuation maps evidently showed much lower attenuation ( ∼ 15 %) for the proposed array when compared to the conventional dipole antenna array since there were no high-density components. In MR, it was observed that the signal-to-noise ratio from the whole volume obtained using the proposed array was comparable to that acquired by the conventional array which was also in agreement with the simulation results. The unique feature, J-shape array, would enable simultaneous MR-PET/-SPECT experiments to be conducted without unduly compromising any aspects of system performance and image quality compared to the stand-alone instrumentation.
Collapse
|
11
|
Destruel A, Jin J, Weber E, Li M, Engstrom C, Liu F, Crozier S. Integrated Multi-Modal Antenna With Coupled Radiating Structures (I-MARS) for 7T pTx Body MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:39-51. [PMID: 34370662 DOI: 10.1109/tmi.2021.3103654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the main challenges in ultra-high field whole body MRI relates to the uniformity and efficiency of the radiofrequency field. Although recent advances in the design of RF coils have demonstrated that dipole antennas have a current distribution ideally suited to 7T MRI, they are limited by low isolation and poor robustness to loading changes. Multi-layered and self-decoupled loop coils have demonstrated improved RF performance in these areas at lower field MRI but have not been adapted to dipole designs. In this work, we introduce a novel type of RF antenna consisting of integrated multi-modal antenna with coupled radiating structures (I-MARS), which use layered conductors and dielectric substrates to allow dipole and transmission line modes to co-exist on the same compact dipole-shaped structure. The proposed antenna was optimally designed for 7T MRI and compared with existing dipole antennas using numerical simulations, which showed that I-MARS had similar B1 over specific absorption rate efficiency and superior isolation and stability. Subsequently, a prototype pTx coil array was built and tested in vivo on healthy volunteers at 7T. The articulated, modular construction of the I-MARS coil array allowed it to be readily conformed across multiple body regions (hip, knee, shoulder, lumbar spine and prostate), without requiring modification of the tuning and matching of the antennas. Using RF shimming, uniform and efficient excitation was successfully achieved in the acquisition of high-resolution MR images.
Collapse
|
12
|
A 16-Channel Dipole Antenna Array for Human Head Magnetic Resonance Imaging at 10.5 Tesla. SENSORS 2021; 21:s21217250. [PMID: 34770558 PMCID: PMC8587099 DOI: 10.3390/s21217250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/26/2023]
Abstract
For ultra-high field and frequency (UHF) magnetic resonance imaging (MRI), the associated short wavelengths in biological tissues leads to penetration and homogeneity issues at 10.5 tesla (T) and require antenna transmit arrays for efficiently generated 447 MHz B1+ fields (defined as the transmit radiofrequency (RF) magnetic field generated by RF coils). Previously, we evaluated a 16-channel combined loop + dipole antenna (LD) 10.5 T head array. While the LD array configuration did not achieve the desired B1+ efficiency, it showed an improvement of the specific absorption rate (SAR) efficiency compared to the separate 8-channel loop and separate 8-channel dipole antenna arrays at 10.5 T. Here we compare a 16-channel dipole antenna array with a 16-channel LD array of the same dimensions to evaluate B1+ efficiency, 10 g SAR, and SAR efficiency. The 16-channel dipole antenna array achieved a 24% increase in B1+ efficiency in the electromagnetic simulation and MR experiment compared to the LD array, as measured in the central region of a phantom. Based on the simulation results with a human model, we estimate that a 16-channel dipole antenna array for human brain imaging can increase B1+ efficiency by 15% with similar SAR efficiency compared to a 16-channel LD head array.
Collapse
|
13
|
Avdievich NI, Solomakha G, Ruhm L, Henning A, Scheffler K. 9.4 T double-tuned 13 C/ 1 H human head array using a combination of surface loops and dipole antennas. NMR IN BIOMEDICINE 2021; 34:e4577. [PMID: 34169590 DOI: 10.1002/nbm.4577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
MRI at ultra-high field (UHF, ≥7 T) provides a natural strategy for improving the quality of X-nucleus magnetic resonance spectroscopy and imaging due to the intrinsic benefit of increased signal-to-noise ratio. Considering that RF coils require both local transmission and reception at UHF, the designs of double-tuned coils, which often consist of several layers of transmit and receive resonant elements, become quite complex. A few years ago, a new type of RF coil, ie a dipole antenna, was developed and used for human body and head imaging at UHF. Due to the mechanical and electrical simplicity of dipole antennas, combining an X-nucleus surface loop array with 1 H dipoles can substantially simplify the design of a double-tuned UHF human head array coil. Recently, we developed a novel bent folded-end dipole transceiver array for human head imaging at 9.4 T. The new eight-element dipole array demonstrated full brain coverage, and transmit efficiency comparable to that of the substantially more complex 16-element surface loop array. In this work, we developed, constructed and evaluated a double-tuned 13 C/1 H human head 9.4 T array consisting of eight 13 C transceiver surface loops and eight 1 H transceiver bent folded-end dipole antennas all placed in a single layer. We showed that interaction between loops and dipoles can be minimized by placing four 1 H traps into each 13 C loop. The presented double-tuned RF array coil substantially simplifies the design as compared with the common double-tuned surface loop arrays. At the same time, the coil demonstrated an improved 1 H longitudinal coverage and good transmit efficiency.
Collapse
Affiliation(s)
- Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Georgiy Solomakha
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
van Leeuwen CC, Steensma BR, Klomp DWJ, van den Berg CAT, Raaijmakers AJE. The Coax Dipole: A fully flexible coaxial cable dipole antenna with flattened current distribution for body imaging at 7 Tesla. Magn Reson Med 2021; 87:528-540. [PMID: 34411327 PMCID: PMC9292881 DOI: 10.1002/mrm.28983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 08/04/2021] [Indexed: 01/26/2023]
Abstract
Purpose The coax dipole antenna, a flexible antenna for body imaging at 7T is presented. Similar to the high impedance coil, this coaxial cable antenna is fed on the central conductor and through gaps in the shield, the current passes to the outside of the antenna to generate B1 field. This could achieve more favorable current distributions and better adaptation to the body curvature. Methods Finite difference time domain (FDTD) simulations are performed to optimize the positions of the gaps in the shield for a flat current profile. Lumped inductors are added to each end to reduce losses. The performance of a single antenna is compared to a fractionated dipole using B1 maps and MR thermometry. Finally, an array of eight coax dipoles is evaluated in simulations and used for in‐vivo scanning. Results An optimal configuration is found with gaps located at 10 cm from the center and inductor values of 28 nH. In comparison to the fractionated dipole antenna, in single antenna phantom measurements the coax dipole achieves similar B1 amplitude with 18% lower peak temperature. In simulations, the eight‐channel array of coax dipoles improved B1 homogeneity by 18%, along with small improvements in transmit efficiency and specific absorption rate (SAR). MRI measurements on three volunteers show more consistent performance for the coax dipoles. Conclusion The coax dipole is a novel antenna design with a flattened current distribution resulting in beneficial properties. Also, the flexible design of the coax dipoles allows better adaptation to the body curvature and can potentially be used for a wide range of imaging targets.
Collapse
Affiliation(s)
- Carel C van Leeuwen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Alexander J E Raaijmakers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Biomedical Engineering Department, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
15
|
Avdievich NI, Solomakha G, Ruhm L, Nikulin AV, Magill AW, Scheffler K. Folded-end dipole transceiver array for human whole-brain imaging at 7 T. NMR IN BIOMEDICINE 2021; 34:e4541. [PMID: 33978270 DOI: 10.1002/nbm.4541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The advancement of clinical applications of ultrahigh field (UHF) MRI depends heavily on advances in technology, including the development of new radiofrequency (RF) coil designs. Currently, the number of commercially available 7 T head RF coils is rather limited, implying a need to develop novel RF head coil designs that offer superior transmit and receive performance. RF coils to be used for clinical applications must be robust and reliable. In particular, for transmit arrays, if a transmit channel fails the local specific absorption rate may increase, significantly increasing local tissue heating. Recently, dipole antennas have been proposed and used to design UHF head transmit and receive arrays. The dipole provides a unique simplicity while offering comparable transmit efficiency and signal-to-noise ratio with the conventional loop design. Recently, we developed a novel array design in our laboratory using a folded-end dipole antenna. In this work, we developed, constructed and evaluated an eight-element transceiver bent folded-end dipole array for human head imaging at 7 T. Driven in the quadrature circularly polarized mode, the array demonstrated more than 20% higher transmit efficiency and significantly better whole-brain coverage than that provided by a widely used commercial array. In addition, we evaluated passive dipole antennas for decoupling the proposed array. We demonstrated that in contrast to the common unfolded dipole array, the passive dipoles moved away from the sample not only minimize coupling between the adjacent folded-end active dipoles but also produce practically no destructive interference with the quadrature mode of the array.
Collapse
Affiliation(s)
- Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Georgiy Solomakha
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anton V Nikulin
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Arthur W Magill
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Woo MK, Delabarre L, Waks M, Lee J, Lagore RL, Jungst S, Grant A, Eryaman Y, Ugurbil K, Adriany G. Comparison of 16-Channel Asymmetric Sleeve Antenna and Dipole Antenna Transceiver Arrays at 10.5 Tesla MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1147-1156. [PMID: 33360987 PMCID: PMC8078892 DOI: 10.1109/tmi.2020.3047354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multi-element transmit arrays with low peak 10 g specific absorption rate (SAR) and high SAR efficiency (defined as ( [Formula: see text]SAR [Formula: see text] are essential for ultra-high field (UHF) magnetic resonance imaging (MRI) applications. Recently, the adaptation of dipole antennas used as MRI coil elements in multi-channel arrays has provided the community with a technological solution capable of producing uniform images and low SAR efficiency at these high field strengths. However, human head-sized arrays consisting of dipole elements have a practical limitation to the number of channels that can be used due to radiofrequency (RF) coupling between the antenna elements, as well as, the coaxial cables necessary to connect them. Here we suggest an asymmetric sleeve antenna as an alternative to the dipole antenna. When used in an array as MRI coil elements, the asymmetric sleeve antenna can generate reduced peak 10 g SAR and improved SAR efficiency. To demonstrate the advantages of an array consisting of our suggested design, we compared various performance metrics produced by 16-channel arrays of asymmetric sleeve antennas and dipole antennas with the same dimensions. Comparison data were produced on a phantom in electromagnetic (EM) simulations and verified with experiments at 10.5 Tesla (T). The results produced by the 16-channel asymmetric sleeve antenna array demonstrated 28 % lower peak 10 g SAR and 18.6 % higher SAR efficiency when compared to the 16-channel dipole antenna array.
Collapse
|
17
|
Gilbert KM, Klassen LM, Mashkovtsev A, Zeman P, Menon RS, Gati JS. Radiofrequency coil for routine ultra-high-field imaging with an unobstructed visual field. NMR IN BIOMEDICINE 2021; 34:e4457. [PMID: 33305466 DOI: 10.1002/nbm.4457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Many neuroscience applications have adopted functional MRI as a tool to investigate the healthy and diseased brain during the completion of a task. While ultra-high-field MRI has allowed for improved contrast and signal-to-noise ratios during functional MRI studies, it remains a challenge to create local radiofrequency coils that can accommodate an unobstructed visual field and be suitable for routine use, while at the same time not compromise performance. Performance (both during transmission and reception) can be improved by using close-fitting coils; however, maintaining sensitivity over the whole brain often requires the introduction of coil elements proximal to the eyes, thereby partially occluding the subject's visual field. This study presents a 7 T head coil, with eight transmit dipoles and 32 receive loops, that is designed to remove visual obstructions from the subject's line of sight, allowing for an unencumbered view of visual stimuli, the reduction of anxiety induced from small enclosures, and the potential for eye-tracking measurements. The coil provides a practical solution for routine imaging, including a split design (anterior and posterior halves) that facilitates subject positioning, including those with impaired mobility, and the placement of devices required for patient comfort and motion reduction. The transmit and receive coils displayed no degradation of performance due to adaptions to the design topology (both mechanical and electrical) required to create an unobstructed visual field. All computer-aided design files, electromagnetic simulation models, transmit field maps and local specific absorption rate matrices are provided to promote reproduction.
Collapse
Affiliation(s)
- Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - L Martyn Klassen
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Alexander Mashkovtsev
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Peter Zeman
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
18
|
Avdievich NI, Solomakha G, Ruhm L, Henning A, Scheffler K. Unshielded bent folded-end dipole 9.4 T human head transceiver array decoupled using modified passive dipoles. Magn Reson Med 2021; 86:581-597. [PMID: 33629436 DOI: 10.1002/mrm.28711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop an unshielded dipole transceiver array for human head imaging at 9.4 Tesla and to improve decoupling of adjacent dipole elements, a novel array design with modified passive dipole antennas was developed, evaluated, and tested. METHODS The new array consisted of 8 bent folded-end dipole elements placed in a single row and surrounding the head. Adjacent elements of RF transceiver arrays are usually decoupled by introducing circuits electrically connected to elements. These methods are difficult to use for dipole arrays because of the distant location of the adjacent antennas. A recently developed decoupling technique using passive dipoles is simple and does not require any electrical connection. However, common parallel passive dipoles can produce destructive interference with the RF field of the array itself. To minimize this interference, we placed the passive dipoles perpendicularly to the active dipoles and positioned them at the ends of the array. We also evaluated the effect of different passive dipoles on the array transmit performance. Finally, we optimized the array transmit performance by varying the length of the dipole folded portion. RESULTS By rotating the passive dipoles 90º and moving them toward the ends of the array, we minimized the destructive interference to an acceptable level without compromising decoupling and the transmit efficiency. CONCLUSION While keeping the benefits of the passive dipole decoupling method, the new modified dipoles produce substantially less destructive interference with the RF field of the array than the common design. The constructed transceiver array demonstrated good decoupling and whole-brain coverage.
Collapse
Affiliation(s)
- Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Georgiy Solomakha
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Avdievich NI, Solomakha G, Ruhm L, Scheffler K, Henning A. Decoupling of folded-end dipole antenna elements of a 9.4 T human head array using an RF shield. NMR IN BIOMEDICINE 2020; 33:e4351. [PMID: 32618047 DOI: 10.1002/nbm.4351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Dipole antennas have recently been introduced to the field of MRI and successfully used, mostly as elements of ultra-high field (UHF, ≥ 7 T) human body arrays. Usage of dipole antennas for UHF human head transmit (Tx) arrays is still under development. Due to the substantially smaller size of the sample, dipoles must be made significantly shorter than in the body array. Additionally, head Tx arrays are commonly placed on the surface of rigid helmets made sufficiently large to accommodate tight-fit receive arrays. As a result, dipoles are not well loaded and are often poorly decoupled, which compromises Tx efficiency. Commonly, adjacent array elements are decoupled by circuits electrically connected to them. Placement of such circuits between distantly located dipoles is difficult. Alternatively, decoupling is provided by placing passive antennas between adjacent dipole elements. This method only works when these additional components are sufficiently small (compared with the size of active dipoles). Otherwise, RF fields produced by passive elements interfere destructively with the RF field of the array itself, and previously reported designs have used passive dipoles of about the size of array dipoles. In this work, we developed a novel method of decoupling for adjacent dipole antennas, and used this technique while constructing a 9.4 T human head eight-element transceiver array. Decoupling is provided without any additional circuits by simply folding the dipoles and using an RF shield located close to the folded portion of the dipoles. The array reported in this work demonstrates good decoupling and whole-brain coverage.
Collapse
Affiliation(s)
- Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Georgiy Solomakha
- Department of Physics and Engineering, ITMO University, Saint Petersburg, Russia
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
20
|
Felder J, Choi CH, Ko Y, Shah NJ. Optimization of high-channel count, switch matrices for multinuclear, high-field MRI. PLoS One 2020; 15:e0237494. [PMID: 32804972 PMCID: PMC7430713 DOI: 10.1371/journal.pone.0237494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Modern magnetic resonance imaging systems are equipped with a large number of receive connectors in order to optimally support a large field-of-view and/or high acceleration in parallel imaging using high-channel count, phased array coils. Given that the MR system is equipped with a limited number of digitizing receivers and in order to support operation of multinuclear coil arrays, these connectors need to be flexibly routed to the receiver outside the RF shielded examination room. However, for a number of practical, economic and safety reasons, it is better to only route a subset of the connectors. This is usually accomplished with the use of switch matrices. These exist in a variety of topologies and differ in routing flexibility and technological implementation. A highly flexible implementation is a crossbar topology that allows to any one input to be routed to any one output and can use single PIN diodes as active elements. However, in this configuration, long open-ended transmission lines can potentially remain connected to the signal path leading to high transmission losses. Thus, especially for high-field systems compensation mechanisms are required to remove the effects of open-ended transmission line stubs. The selection of a limited number of lumped element reactance values to compensate for the for the effect of transmission line stubs in large-scale switch matrices capable of supporting multi-nuclear operation is non-trivial and is a combinatorial problem of high order. Here, we demonstrate the use of metaheuristic approaches to optimize the circuit design of these matrices that additionally carry out the optimization of distances between the parallel transmission lines. For a matrix with 128 inputs and 64 outputs a realization is proposed that displays a worst-case insertion loss of 3.8 dB.
Collapse
Affiliation(s)
- Jörg Felder
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
| | - Yunkyoung Ko
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine -11, Forschungszentrum Jülich, Jülich, Germany
- JARA—BRAIN—Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
21
|
Avdievich NI, Solomakha G, Ruhm L, Bause J, Scheffler K, Henning A. Bent folded‐end dipole head array for ultrahigh‐field MRI turns “dielectric resonance” from an enemy to a friend. Magn Reson Med 2020; 84:3453-3467. [DOI: 10.1002/mrm.28336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Nikolai I. Avdievich
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
| | - Georgiy Solomakha
- Department of Physics and Engineering ITMO University St. Petersburg Russia
| | - Loreen Ruhm
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
| | - Jonas Bause
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
- Graduate School of Neural and Behavioral Sciences Tübingen Germany
| | - Klaus Scheffler
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
- Department for Biomedical Magnetic Resonance University of Tübingen Tübingen Germany
| | - Anke Henning
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
- Advanced Imaging Research Center University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
22
|
Steensma B, van de Moortele PF, Ertürk A, Grant A, Adriany G, Luijten P, Klomp D, van den Berg N, Metzger G, Raaijmakers A. Introduction of the snake antenna array: Geometry optimization of a sinusoidal dipole antenna for 10.5T body imaging with lower peak SAR. Magn Reson Med 2020; 84:2885-2896. [PMID: 32367560 PMCID: PMC7496175 DOI: 10.1002/mrm.28297] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
Purpose To improve imaging performance for body MRI with a local transmit array at 10.5T, the geometry of a dipole antenna was optimized to achieve lower peak specific absorption rate (SAR) levels and a more uniform transmit profile. Methods Electromagnetic simulations on a phantom were used to evaluate the SAR and
B1+‐performance of different dipole antenna geometries. The best performing antenna (the snake antenna) was simulated on human models in a 12‐channel array configuration for safety assessment and for comparison to a previous antenna design. This 12‐channel array was constructed after which electromagnetic simulations were validated by
B1+‐maps and temperature measurements. After obtaining approval by the Food and Drug Administration to scan with the snake antenna array, in vivo imaging was performed on 2 volunteers. Results Simulation results on a phantom indicate a lower SAR and a higher transmit efficiency for the snake antenna compared to the fractionated dipole array. Similar results are found on a human body model: when comparing the trade‐off between uniformity and peak SAR, the snake antenna performs better for all imaging targets. Simulations and measurements are in good agreement. Preliminary imaging result were acquired in 2 volunteers with the 12‐channel snake antenna array. Conclusion By optimizing the geometry of a dipole antenna, peak SAR levels were lowered while achieving a more uniform transmit field as demonstrated in simulations on a phantom and a human body model. The array was constructed, validated, and successfully used to image 2 individuals at 10.5T.
Collapse
Affiliation(s)
- Bart Steensma
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA.,Restorative Therapies Group, Medtronic, Minneapolis, USA
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Peter Luijten
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dennis Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nico van den Berg
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gregory Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Alexander Raaijmakers
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA.,Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
23
|
Lakshmanan K, Cloos M, Brown R, Lattanzi R, Sodickson DK, Wiggins GC. The "Loopole" Antenna: A Hybrid Coil Combining Loop and Electric Dipole Properties for Ultra-High-Field MRI. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2020; 2020:8886543. [PMID: 34140840 PMCID: PMC8207246 DOI: 10.1155/2020/8886543] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
PURPOSE To revisit the "loopole," an unusual coil topology whose unbalanced current distribution captures both loop and electric dipole properties, which can be advantageous in ultra-high-field MRI. METHODS Loopole coils were built by deliberately breaking the capacitor symmetry of traditional loop coils. The corresponding current distribution, transmit efficiency, and signal-to-noise ratio (SNR) were evaluated in simulation and experiments in comparison to those of loops and electric dipoles at 7 T (297 MHz). RESULTS The loopole coil exhibited a hybrid current pattern, comprising features of both loops and electric dipole current patterns. Depending on the orientation relative to B0, the loopole demonstrated significant performance boost in either the transmit efficiency or SNR at the center of a dielectric sample when compared to a traditional loop. Modest improvements were observed when compared to an electric dipole. CONCLUSION The loopole can achieve high performance by supporting both divergence-free and curl-free current patterns, which are both significant contributors to the ultimate intrinsic performance at ultra-high field. While electric dipoles exhibit similar hybrid properties, loopoles maintain the engineering advantages of loops, such as geometric decoupling and reduced resonance frequency dependence on sample loading.
Collapse
Affiliation(s)
- Karthik Lakshmanan
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Martijn Cloos
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Riccardo Lattanzi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel K. Sodickson
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Tech4Health, NYU Langone Health, New York, NY, USA
| | - Graham C. Wiggins
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|