1
|
Ma G, Zhao X, Zhu Y, Luo T. Fourier-enhanced high-order total variation (FeHOT) iterative network for interior tomography. Phys Med Biol 2025; 70:095001. [PMID: 40179937 DOI: 10.1088/1361-6560/adc8f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/03/2025] [Indexed: 04/05/2025]
Abstract
Objective. Determining a satisfactory solution for different computed tomography (CT) fields has been a long-standing challenge in the interior tomography, Traditional methods like FBP suffer from low contrast, while deep learning approaches often lack data consistency. The goal is to leverage high-order total variation (HOT) regularization and Fourier-based frequency domain enhancement to achieve high-precision reconstruction from truncated projection data while overcoming limitations such as slow convergence, over-smoothing, and loss of high-frequency details in existing methods.Approach. The proposed Fourier-enhanced HOT (FeHOT) network employs a coarse-to-fine strategy. First, a HOT-based unrolled iterative network accelerates coarse reconstruction using a learned primal-dual algorithm for data consistency and implicit high-order gradient constraints. Second, a Fourier-enhanced U-Net module selectively attenuates low-frequency components in skip connections while amplifying high-frequency features from filtered back-projection (FBP) results, preserving edge and texture details. Frequency-dependent scaling factors are introduced to balance spectral components during refinement.Main Results. Experiments on the AAPM and clinical medical datasets demonstrate FeHOT's superiority over competing methods (FBP, HOT, AG-Net, PD-Net). For the medical dataset, FeHOT achieved PSNR = 41.17 (noise-free) and 39.24 (noisy), outperforming PD-Net (33.42/31.08) and AG-Net (33.41/31.31). Meanwhile, For the AAPM dataset, where imaged objects exhibit piecewise constant properties, first-order total variation achieved satisfactory results. In contrast, for clinical medical datasets with non-piecewise-constant characteristics (e.g. complex anatomical structures), FeHOT's second-order regularization better aligned with the high-quality requirements of interior tomography. Ablation studies confirmed the necessity of Fourier enhancement, showing significant improvements in edge preservation (e.g. SSIM increased from 0.9877 to 0.9976 for noise-free cases). The method achieved high-quality reconstruction within five iterations, reducing computational costs.Significance. FeHOT represents a paradigm shift in interior tomography by: 1) Bridging classical HOT theory with deep learning through an iterative unrolling framework. 2) Introducing frequency-domain operations to overcome the limitations of polynomial/piecewise-constant assumptions in CT images. 3) Enabling high-quality reconstruction in just five iterations, balancing computational efficiency with accuracy. This method offers a promising solution for low-dose, precise imaging in clinical and industrial applications.
Collapse
Affiliation(s)
- Genwei Ma
- The Academy for Multidisciplinary Studies, Captial Normal University, Beijing, People's Republic of China
| | - Xing Zhao
- School of Mathematical Sciences, Captial Normal University, Beijing, People's Republic of China
| | - Yining Zhu
- School of Mathematical Sciences, Captial Normal University, Beijing, People's Republic of China
| | - Ting Luo
- The Academy of Information Network Security, People's Public Security University of China, Beijing, People's Republic of China
| |
Collapse
|
2
|
Zhang R, Szczykutowicz TP, Toia GV. Artificial Intelligence in Computed Tomography Image Reconstruction: A Review of Recent Advances. J Comput Assist Tomogr 2025:00004728-990000000-00429. [PMID: 40008975 DOI: 10.1097/rct.0000000000001734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
The development of novel image reconstruction algorithms has been pivotal in enhancing image quality and reducing radiation dose in computed tomography (CT) imaging. Traditional techniques like filtered back projection perform well under ideal conditions but fail to generate high-quality images under low-dose, sparse-view, and limited-angle conditions. Iterative reconstruction methods improve upon filtered back projection by incorporating system models and assumptions about the patient, yet they can suffer from patchy image textures. The emergence of artificial intelligence (AI), particularly deep learning, has further advanced CT reconstruction. AI techniques have demonstrated great potential in reducing radiation dose while preserving image quality and noise texture. Moreover, AI has exhibited unprecedented performance in addressing challenging CT reconstruction problems, including low-dose CT, sparse-view CT, limited-angle CT, and interior tomography. This review focuses on the latest advances in AI-based CT reconstruction under these challenging conditions.
Collapse
Affiliation(s)
- Ran Zhang
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI
| | | | | |
Collapse
|
3
|
Zhu J, Zhang X, Su T, Cui H, Tan Y, Huang H, Guo J, Zheng H, Liang D, Wu G, Ge Y. MMD-Net: Image domain multi-material decomposition network for dual-energy CT imaging. Med Phys 2025; 52:771-786. [PMID: 39556663 DOI: 10.1002/mp.17500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Multi-material decomposition is an interesting topic in dual-energy CT (DECT) imaging; however, the accuracy and performance may be limited using the conventional algorithms. PURPOSE In this work, a novel multi-material decomposition network (MMD-Net) is proposed to improve the multi-material decomposition performance of DECT imaging. METHODS To achieve dual-energy multi-material decomposition, a deep neural network, named as MMD-Net, is proposed in this work. In MMD-Net, two specific convolutional neural network modules, Net-I and Net-II, are developed. Specifically, Net-I is used to distinguish the material triangles, while Net-II predicts the effective attenuation coefficients corresponding to the vertices of the material triangles. Subsequently, the material-specific density maps are calculated analytically through matrix inversion. The new method is validated using in-house benchtop DECT imaging experiments with a solution phantom and a pig leg specimen, as well as commercial medical DECT imaging experiments with a human patient. The decomposition accuracy, edge spreading function, and noise power spectrum are quantitatively evaluated. RESULTS Compared to the conventional multiple material decomposition (MMD) algorithm, the proposed MMD-Net method is more effective at suppressing image noise. Additionally, MMD-Net outperforms the iterative MMD approach in maintaining decomposition accuracy, image sharpness, and high-frequency content. Consequently, MMD-Net is capable of generating high-quality material decomposition images. CONCLUSION A high performance multi-material decomposition network is developed for dual-energy CT imaging.
Collapse
Affiliation(s)
- Jiongtao Zhu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Xin Zhang
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Ting Su
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Han Cui
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yuhang Tan
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hao Huang
- Department of Radiology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Jinchuan Guo
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dong Liang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Guangyao Wu
- Department of Radiology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Yongshuai Ge
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Mileto A, Yu L, Revels JW, Kamel S, Shehata MA, Ibarra-Rovira JJ, Wong VK, Roman-Colon AM, Lee JM, Elsayes KM, Jensen CT. State-of-the-Art Deep Learning CT Reconstruction Algorithms in Abdominal Imaging. Radiographics 2024; 44:e240095. [PMID: 39612283 PMCID: PMC11618294 DOI: 10.1148/rg.240095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 12/01/2024]
Abstract
The implementation of deep neural networks has spurred the creation of deep learning reconstruction (DLR) CT algorithms. DLR CT techniques encompass a spectrum of deep learning-based methodologies that operate during the different steps of the image creation, prior to or after the traditional image formation process (eg, filtered backprojection [FBP] or iterative reconstruction [IR]), or alternatively by fully replacing FBP or IR techniques. DLR algorithms effectively facilitate the reduction of image noise associated with low photon counts from reduced radiation dose protocols. DLR methods have emerged as an effective solution to ameliorate limitations observed with prior CT image reconstruction algorithms, including FBP and IR algorithms, which are not able to preserve image texture and diagnostic performance at low radiation dose levels. An additional advantage of DLR algorithms is their high reconstruction speed, hence targeting the ideal triad of features for a CT image reconstruction (ie, the ability to consistently provide diagnostic-quality images and achieve radiation dose imaging levels as low as reasonably possible, with high reconstruction speed). An accumulated body of evidence supports the clinical use of DLR algorithms in abdominal imaging across multiple CT imaging tasks. The authors explore the technical aspects of DLR CT algorithms and examine various approaches to image synthesis in DLR creation. The clinical applications of DLR algorithms are highlighted across various abdominal CT imaging domains, with emphasis on the supporting evidence for diverse clinical tasks. An overview of the current limitations of and outlook for DLR algorithms for CT is provided. ©RSNA, 2024.
Collapse
Affiliation(s)
- Achille Mileto
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Lifeng Yu
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Jonathan W. Revels
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Serageldin Kamel
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Mostafa A. Shehata
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Juan J. Ibarra-Rovira
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Vincenzo K. Wong
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Alicia M. Roman-Colon
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Jeong Min Lee
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Khaled M. Elsayes
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| | - Corey T. Jensen
- From the Department of Radiology, University of Washington School of
Medicine, Seattle, Wash (A.M.); Department of Radiology, Mayo Clinic, Rochester,
Minn (L.Y.); Department of Radiology, New York University Grossman School of
Medicine, NYU Langone Health, New York, NY (J.W.R.); Departments of Radiation
Oncology (S.K.) and Abdominal Imaging (M.A.S., J.J.I.R., V.K.W., K.M.E.,
C.T.J.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St,
Unit 1473, Houston, TX 77030-4009; Department of Radiology, Texas
Children's Hospital, Houston, Tex (A.M.R.C.); and Department of
Radiology, Seoul National University College of Medicine, Seoul, South Korea
(J.M.L.)
| |
Collapse
|
5
|
Sun C, Salimi Y, Angeliki N, Boudabbous S, Zaidi H. An efficient dual-domain deep learning network for sparse-view CT reconstruction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 256:108376. [PMID: 39173481 DOI: 10.1016/j.cmpb.2024.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND OBJECTIVE We develop an efficient deep-learning based dual-domain reconstruction method for sparse-view CT reconstruction with small training parameters and comparable running time. We aim to investigate the model's capability and its clinical value by performing objective and subjective quality assessments using clinical CT projection data acquired on commercial scanners. METHODS We designed two lightweight networks, namely Sino-Net and Img-Net, to restore the projection and image signal from the DD-Net reconstructed images in the projection and image domains, respectively. The proposed network has small training parameters and comparable running time among dual-domain based reconstruction networks and is easy to train (end-to-end). We prospectively collected clinical thoraco-abdominal CT projection data acquired on a Siemens Biograph 128 Edge CT scanner to train and validate the proposed network. Further, we quantitatively evaluated the CT Hounsfield unit (HU) values on 21 organs and anatomic structures, such as the liver, aorta, and ribcage. We also analyzed the noise properties and compared the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the reconstructed images. Besides, two radiologists conducted the subjective qualitative evaluation including the confidence and conspicuity of anatomic structures, and the overall image quality using a 1-5 likert scoring system. RESULTS Objective and subjective evaluation showed that the proposed algorithm achieves competitive results in eliminating noise and artifacts, restoring fine structure details, and recovering edges and contours of anatomic structures using 384 views (1/6 sparse rate). The proposed method exhibited good computational cost performance on clinical projection data. CONCLUSION This work presents an efficient dual-domain learning network for sparse-view CT reconstruction on raw projection data from a commercial scanner. The study also provides insights for designing an organ-based image quality assessment pipeline for sparse-view reconstruction tasks, potentially benefiting organ-specific dose reduction by sparse-view imaging.
Collapse
Affiliation(s)
- Chang Sun
- Beijing University of Posts and Telecommunications, School of Information and Communication Engineering, 100876 Beijing, China; Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, CH-1211 Geneva, Switzerland
| | - Yazdan Salimi
- Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, CH-1211 Geneva, Switzerland
| | - Neroladaki Angeliki
- Geneva University Hospital, Division of Radiology, CH-1211, Geneva, Switzerland
| | - Sana Boudabbous
- Geneva University Hospital, Division of Radiology, CH-1211, Geneva, Switzerland
| | - Habib Zaidi
- Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, CH-1211 Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark; University Research and Innovation Center, Óbuda University, Budapest, Hungary.
| |
Collapse
|
6
|
Lu Y, Xu Z, Hyung Choi M, Kim J, Jung SW. Cross-Domain Denoising for Low-Dose Multi-Frame Spiral Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3949-3963. [PMID: 38787677 DOI: 10.1109/tmi.2024.3405024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Computed tomography (CT) has been used worldwide as a non-invasive test to assist in diagnosis. However, the ionizing nature of X-ray exposure raises concerns about potential health risks such as cancer. The desire for lower radiation doses has driven researchers to improve reconstruction quality. Although previous studies on low-dose computed tomography (LDCT) denoising have demonstrated the effectiveness of learning-based methods, most were developed on the simulated data. However, the real-world scenario differs significantly from the simulation domain, especially when using the multi-slice spiral scanner geometry. This paper proposes a two-stage method for the commercially available multi-slice spiral CT scanners that better exploits the complete reconstruction pipeline for LDCT denoising across different domains. Our approach makes good use of the high redundancy of multi-slice projections and the volumetric reconstructions while leveraging the over-smoothing issue in conventional cascaded frameworks caused by aggressive denoising. The dedicated design also provides a more explicit interpretation of the data flow. Extensive experiments on various datasets showed that the proposed method could remove up to 70% of noise without compromised spatial resolution, while subjective evaluations by two experienced radiologists further supported its superior performance against state-of-the-art methods in clinical practice. Code is available at https://github.com/YCL92/TMD-LDCT.
Collapse
|
7
|
Bousse A, Kandarpa VSS, Rit S, Perelli A, Li M, Wang G, Zhou J, Wang G. Systematic Review on Learning-based Spectral CT. ARXIV 2024:arXiv:2304.07588v9. [PMID: 37461421 PMCID: PMC10350100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: dual-energy computed tomography (DECT) and photon-counting computed tomography (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications. To address these problems, machine learning techniques have been widely applied to spectral CT. In this review, we present the state-of-the-art data-driven techniques for spectral CT.
Collapse
Affiliation(s)
| | | | - Simon Rit
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69373, Lyon, France
| | - Alessandro Perelli
- School of Science and Engineering, University of Dundee, DD1 4HN Dundee, U.K
| | - Mengzhou Li
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, CA 95817 USA
| | - Jian Zhou
- CTIQ, Canon Medical Research USA, Inc., Vernon Hills, IL 60061 USA
| | - Ge Wang
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|
8
|
Li G, Deng Z, Ge Y, Luo S. HEAL: High-Frequency Enhanced and Attention-Guided Learning Network for Sparse-View CT Reconstruction. Bioengineering (Basel) 2024; 11:646. [PMID: 39061728 PMCID: PMC11273693 DOI: 10.3390/bioengineering11070646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
X-ray computed tomography (CT) imaging technology has become an indispensable diagnostic tool in clinical examination. However, it poses a risk of ionizing radiation, making the reduction of radiation dose one of the current research hotspots in CT imaging. Sparse-view imaging, as one of the main methods for reducing radiation dose, has made significant progress in recent years. In particular, sparse-view reconstruction methods based on deep learning have shown promising results. Nevertheless, efficiently recovering image details under ultra-sparse conditions remains a challenge. To address this challenge, this paper proposes a high-frequency enhanced and attention-guided learning Network (HEAL). HEAL includes three optimization strategies to achieve detail enhancement: Firstly, we introduce a dual-domain progressive enhancement module, which leverages fidelity constraints within each domain and consistency constraints across domains to effectively narrow the solution space. Secondly, we incorporate both channel and spatial attention mechanisms to improve the network's feature-scaling process. Finally, we propose a high-frequency component enhancement regularization term that integrates residual learning with direction-weighted total variation, utilizing directional cues to effectively distinguish between noise and textures. The HEAL network is trained, validated and tested under different ultra-sparse configurations of 60 views and 30 views, demonstrating its advantages in reconstruction accuracy and detail enhancement.
Collapse
Affiliation(s)
- Guang Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (G.L.); (Z.D.)
| | - Zhenhao Deng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (G.L.); (Z.D.)
| | - Yongshuai Ge
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shouhua Luo
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (G.L.); (Z.D.)
| |
Collapse
|
9
|
汪 辰, 蒙 铭, 李 明, 王 永, 曾 栋, 边 兆, 马 建. [Reconstruction from CT truncated data based on dual-domain transformer coupled feature learning]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:950-959. [PMID: 38862453 PMCID: PMC11166716 DOI: 10.12122/j.issn.1673-4254.2024.05.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To propose a CT truncated data reconstruction model (DDTrans) based on projection and image dualdomain Transformer coupled feature learning for reducing truncation artifacts and image structure distortion caused by insufficient field of view (FOV) in CT scanning. METHODS Transformer was adopted to build projection domain and image domain restoration models, and the long-range dependency modeling capability of the Transformer attention module was used to capture global structural features to restore the projection data information and enhance the reconstructed images. We constructed a differentiable Radon back-projection operator layer between the projection domain and image domain networks to enable end-to-end training of DDTrans. Projection consistency loss was introduced to constrain the image forwardprojection results to further improve the accuracy of image reconstruction. RESULTS The experimental results with Mayo simulation data showed that for both partial truncation and interior scanning data, the proposed DDTrans method showed better performance than the comparison algorithms in removing truncation artifacts at the edges and restoring the external information of the FOV. CONCLUSION The DDTrans method can effectively remove CT truncation artifacts to ensure accurate reconstruction of the data within the FOV and achieve approximate reconstruction of data outside the FOV.
Collapse
|
10
|
Li X, Jing K, Yang Y, Wang Y, Ma J, Zheng H, Xu Z. Noise-Generating and Imaging Mechanism Inspired Implicit Regularization Learning Network for Low Dose CT Reconstrution. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1677-1689. [PMID: 38145543 DOI: 10.1109/tmi.2023.3347258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Low-dose computed tomography (LDCT) helps to reduce radiation risks in CT scanning while maintaining image quality, which involves a consistent pursuit of lower incident rays and higher reconstruction performance. Although deep learning approaches have achieved encouraging success in LDCT reconstruction, most of them treat the task as a general inverse problem in either the image domain or the dual (sinogram and image) domains. Such frameworks have not considered the original noise generation of the projection data and suffer from limited performance improvement for the LDCT task. In this paper, we propose a novel reconstruction model based on noise-generating and imaging mechanism in full-domain, which fully considers the statistical properties of intrinsic noises in LDCT and prior information in sinogram and image domains. To solve the model, we propose an optimization algorithm based on the proximal gradient technique. Specifically, we derive the approximate solutions of the integer programming problem on the projection data theoretically. Instead of hand-crafting the sinogram and image regularizers, we propose to unroll the optimization algorithm to be a deep network. The network implicitly learns the proximal operators of sinogram and image regularizers with two deep neural networks, providing a more interpretable and effective reconstruction procedure. Numerical results demonstrate our proposed method improvements of > 2.9 dB in peak signal to noise ratio, > 1.4% promotion in structural similarity metric, and > 9 HU decrements in root mean square error over current state-of-the-art LDCT methods.
Collapse
|
11
|
Lu B, Fu L, Pan Y, Dong Y. SWISTA-Nets: Subband-adaptive wavelet iterative shrinkage thresholding networks for image reconstruction. Comput Med Imaging Graph 2024; 113:102345. [PMID: 38330636 DOI: 10.1016/j.compmedimag.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Robust and interpretable image reconstruction is central to imageology applications in clinical practice. Prevalent deep networks, with strong learning ability to extract implicit information from data manifold, are still lack of prior knowledge introduced from mathematics or physics, leading to instability, poor structure interpretability and high computation cost. As to this issue, we propose two prior knowledge-driven networks to combine the good interpretability of mathematical methods and the powerful learnability of deep learning methods. Incorporating different kinds of prior knowledge, we propose subband-adaptive wavelet iterative shrinkage thresholding networks (SWISTA-Nets), where almost every network module is in one-to-one correspondence with each step involved in the iterative algorithm. By end-to-end training of proposed SWISTA-Nets, implicit information can be extracted from training data and guide the tuning process of key parameters that possess mathematical definition. The inverse problems associated with two medical imaging modalities, i.e., electromagnetic tomography and X-ray computational tomography are applied to validate the proposed networks. Both visual and quantitative results indicate that the SWISTA-Nets outperform mathematical methods and state-of-the-art prior knowledge-driven networks, especially with fewer training parameters, interpretable network structures and well robustness. We assume that our analysis will support further investigation of prior knowledge-driven networks in the field of ill-posed image reconstruction.
Collapse
Affiliation(s)
- Binchun Lu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
| | - Lidan Fu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yixuan Pan
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
| | - Yonggui Dong
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Li Y, Feng J, Xiang J, Li Z, Liang D. AIRPORT: A Data Consistency Constrained Deep Temporal Extrapolation Method To Improve Temporal Resolution In Contrast Enhanced CT Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1605-1618. [PMID: 38133967 DOI: 10.1109/tmi.2023.3344712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Typical tomographic image reconstruction methods require that the imaged object is static and stationary during the time window to acquire a minimally complete data set. The violation of this requirement leads to temporal-averaging errors in the reconstructed images. For a fixed gantry rotation speed, to reduce the errors, it is desired to reconstruct images using data acquired over a narrower angular range, i.e., with a higher temporal resolution. However, image reconstruction with a narrower angular range violates the data sufficiency condition, resulting in severe data-insufficiency-induced errors. The purpose of this work is to decouple the trade-off between these two types of errors in contrast-enhanced computed tomography (CT) imaging. We demonstrated that using the developed data consistency constrained deep temporal extrapolation method (AIRPORT), the entire time-varying imaged object can be accurately reconstructed with 40 frames-per-second temporal resolution, the time window needed to acquire a single projection view data using a typical C-arm cone-beam CT system. AIRPORT is applicable to general non-sparse imaging tasks using a single short-scan data acquisition.
Collapse
|
13
|
Chen H, Li Q, Zhou L, Li F. Deep learning-based algorithms for low-dose CT imaging: A review. Eur J Radiol 2024; 172:111355. [PMID: 38325188 DOI: 10.1016/j.ejrad.2024.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The computed tomography (CT) technique is extensively employed as an imaging modality in clinical settings. The radiation dose of CT, however, is significantly high, thereby raising concerns regarding the potential radiation damage it may cause. The reduction of X-ray exposure dose in CT scanning may result in a significant decline in imaging quality, thereby elevating the risk of missed diagnosis and misdiagnosis. The reduction of CT radiation dose and acquisition of high-quality images to meet clinical diagnostic requirements have always been a critical research focus and challenge in the field of CT. Over the years, scholars have conducted extensive research on enhancing low-dose CT (LDCT) imaging algorithms, among which deep learning-based algorithms have demonstrated superior performance. In this review, we initially introduced the conventional algorithms for CT image reconstruction along with their respective advantages and disadvantages. Subsequently, we provided a detailed description of four aspects concerning the application of deep neural networks in LDCT imaging process: preprocessing in the projection domain, post-processing in the image domain, dual-domain processing imaging, and direct deep learning-based reconstruction (DLR). Furthermore, an analysis was conducted to evaluate the merits and demerits of each method. The commercial and clinical applications of the LDCT-DLR algorithm were also presented in an overview. Finally, we summarized the existing issues pertaining to LDCT-DLR and concluded the paper while outlining prospective trends for algorithmic advancement.
Collapse
Affiliation(s)
- Hongchi Chen
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Qiuxia Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Lazhen Zhou
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Fangzuo Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
14
|
Sun M, Zhu Y, Li H, Ye J, Li N. ACnerf: enhancement of neural radiance field by alignment and correction of pose to reconstruct new views from a single x-ray. Phys Med Biol 2024; 69:045016. [PMID: 38211316 DOI: 10.1088/1361-6560/ad1d6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Objective.Computed tomography (CT) is widely used in medical research and clinical diagnosis. However, acquiring CT data requires patients to be exposed to considerable ionizing radiance, leading to physical harm. Recent studies have considered using neural radiance field (NERF) techniques to infer the full-view CT projections from single-view x-ray projection, thus aiding physician judgment and reducing Radiance hazards. This paper enhances this technique in two directions: (1) accurate generalization capabilities for control models. (2) Consider different ranges of viewpoints.Approach.Building upon generative radiance fields (GRAF), we propose a method called ACnerf to enhance the generalization of the NERF through alignment and pose correction. ACnerf aligns with a reference single x-ray by utilizing a combination of positional encoding with Gaussian random noise (latent code) obtained from GRAF training. This approach avoids compromising the 3D structure caused by altering the generator. During inference, a pose judgment network is employed to correct the pose and optimize the rendered viewpoint. Additionally, when generating a narrow range of views, ACnerf employs frequency-domain regularization to fine-tune the generator and achieve precise projections.Main results.The proposed ACnerf method surpasses the state-of-the-art NERF technique in terms of rendering quality for knee and chest data with varying contrasts. It achieved an average improvement of 2.496 dB in PSNR and 41% in LPIPS for 0°-360° projections. Additionally, for -15° to 15° projections, ACnerf achieved an average improvement of 0.691 dB in PSNR and 25.8% in LPIPS.Significance.With adjustments in alignment, inference, and rendering range, our experiments and evaluations on knee and chest data of different contrasts show that ACnerf effectively reduces artifacts and aberrations in the new view. ACnerf's ability to recover more accurate 3D structures from single x-rays has excellent potential for reducing damage from ionising radiation in clinical diagnostics.
Collapse
Affiliation(s)
- Mengcheng Sun
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, People's Republic of China
| | - Yu Zhu
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, People's Republic of China
| | - Hangyu Li
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, People's Republic of China
| | - Jiongyao Ye
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, People's Republic of China
| | - Nan Li
- Dapartment of Orthopedics, 96603 Military Hospital of PLA, Huaihua 418000, People's Republic of China
| |
Collapse
|
15
|
Bousse A, Kandarpa VSS, Rit S, Perelli A, Li M, Wang G, Zhou J, Wang G. Systematic Review on Learning-based Spectral CT. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2024; 8:113-137. [PMID: 38476981 PMCID: PMC10927029 DOI: 10.1109/trpms.2023.3314131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: dual-energy computed tomography (DECT) and photon-counting computed tomography (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications. To address these problems, machine learning techniques have been widely applied to spectral CT. In this review, we present the state-of-the-art data-driven techniques for spectral CT.
Collapse
Affiliation(s)
- Alexandre Bousse
- LaTIM, Inserm UMR 1101, Université de Bretagne Occidentale, 29238 Brest, France
| | | | - Simon Rit
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69373, Lyon, France
| | - Alessandro Perelli
- Department of Biomedical Engineering, School of Science and Engineering, University of Dundee, DD1 4HN, UK
| | - Mengzhou Li
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, USA
| | - Jian Zhou
- CTIQ, Canon Medical Research USA, Inc., Vernon Hills, 60061, USA
| | - Ge Wang
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
16
|
Zhang C, Chen GH. Deep-Interior: A new pathway to interior tomographic image reconstruction via a weighted backprojection and deep learning. Med Phys 2024; 51:946-963. [PMID: 38063251 PMCID: PMC10993302 DOI: 10.1002/mp.16880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND In recent years, deep learning strategies have been combined with either the filtered backprojection or iterative methods or the direct projection-to-image by deep learning only to reconstruct images. Some of these methods can be applied to address the interior reconstruction problems for centered regions of interest (ROIs) with fixed sizes. Developing a method to enable interior tomography with arbitrarily located ROIs with nearly arbitrary ROI sizes inside a scanning field of view (FOV) remains an open question. PURPOSE To develop a new pathway to enable interior tomographic reconstruction for arbitrarily located ROIs with arbitrary sizes using a single trained deep neural network model. METHODS The method consists of two steps. First, an analytical weighted backprojection reconstruction algorithm was developed to perform domain transform from divergent fan-beam projection data to an intermediate image feature space,B ( x ⃗ ) $B(\vec{x})$ , for an arbitrary size ROI at an arbitrary location inside the FOV. Second, a supervised learning technique was developed to train a deep neural network architecture to perform deconvolution to obtain the true imagef ( x ⃗ ) $f(\vec{x})$ from the new feature spaceB ( x ⃗ ) $B(\vec{x})$ . This two-step method is referred to as Deep-Interior for convenience. Both numerical simulations and experimental studies were performed to validate the proposed Deep-Interior method. RESULTS The results showed that ROIs as small as a diameter of 5 cm could be accurately reconstructed (similarity index 0.985 ± 0.018 on internal testing data and 0.940 ± 0.025 on external testing data) at arbitrary locations within an imaging object covering a wide variety of anatomical structures of different body parts. Besides, ROIs of arbitrary size can be reconstructed by stitching small ROIs without additional training. CONCLUSION The developed Deep-Interior framework can enable interior tomographic reconstruction from divergent fan-beam projections for short-scan and super-short-scan acquisitions for small ROIs (with a diameter larger than 5 cm) at an arbitrary location inside the scanning FOV with high quantitative reconstruction accuracy.
Collapse
Affiliation(s)
- Chengzhu Zhang
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Guang-Hong Chen
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
17
|
Zhang X, Su T, Zhang Y, Cui H, Tan Y, Zhu J, Xia D, Zheng H, Liang D, Ge Y. Transferring U-Net between low-dose CT denoising tasks: a validation study with varied spatial resolutions. Quant Imaging Med Surg 2024; 14:640-652. [PMID: 38223035 PMCID: PMC10784075 DOI: 10.21037/qims-23-768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
Background Recently, deep learning techniques have been widely used in low-dose computed tomography (LDCT) imaging applications for quickly generating high quality computed tomography (CT) images at lower radiation dose levels. The purpose of this study is to validate the reproducibility of the denoising performance of a given network that has been trained in advance across varied LDCT image datasets that are acquired from different imaging systems with different spatial resolutions. Methods Specifically, LDCT images with comparable noise levels but having different spatial resolutions were prepared to train the U-Net. The number of CT images used for the network training, validation and test was 2,400, 300 and 300, respectively. Afterwards, self- and cross-validations among six selected spatial resolutions (62.5, 125, 250, 375, 500, 625 µm) were studied and compared side by side. The residual variance, peak signal to noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity (SSIM) were measured and compared. In addition, network retraining on a small number of image set was performed to fine tune the performance of transfer learning among LDCT tasks with varied spatial resolutions. Results Results demonstrated that the U-Net trained upon LDCT images having a certain spatial resolution can effectively reduce the noise of the other LDCT images having different spatial resolutions. Regardless, results showed that image artifacts would be generated during the above cross validations. For instance, noticeable residual artifacts were presented at the margin and central areas of the object as the resolution inconsistency increased. The retraining results showed that the artifacts caused by the resolution mismatch can be greatly reduced by utilizing about only 20% of the original training data size. This quantitative improvement led to a reduction in the NRMSE from 0.1898 to 0.1263 and an increase in the SSIM from 0.7558 to 0.8036. Conclusions In conclusion, artifacts would be generated when transferring the U-Net to a LDCT denoising task with different spatial resolution. To maintain the denoising performance, it is recommended to retrain the U-Net with a small amount of datasets having the same target spatial resolution.
Collapse
Affiliation(s)
- Xin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting Su
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yunxin Zhang
- Department of Vascular Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Han Cui
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuhang Tan
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiongtao Zhu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Dongmei Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education of China, College of Power Engineering, Chongqing University, Chongqing, China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yongshuai Ge
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
18
|
Ren J, Zhang W, Wang Y, Liang N, Wang L, Cai A, Wang S, Zheng Z, Li L, Yan B. A dual-energy CT reconstruction method based on anchor network from dual quarter scans. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:229-252. [PMID: 38306088 DOI: 10.3233/xst-230245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Compared with conventional single-energy computed tomography (CT), dual-energy CT (DECT) provides better material differentiation but most DECT imaging systems require dual full-angle projection data at different X-ray spectra. Relaxing the requirement of data acquisition is an attractive research to promote the applications of DECT in wide range areas and reduce the radiation dose as low as reasonably achievable. In this work, we design a novel DECT imaging scheme with dual quarter scans and propose an efficient method to reconstruct the desired DECT images from the dual limited-angle projection data. We first study the characteristics of limited-angle artifacts under dual quarter scans scheme, and find that the negative and positive artifacts of DECT images are complementarily distributed in image domain because the corresponding X-rays of high- and low-energy scans are symmetric. Inspired by this finding, a fusion CT image is generated by integrating the limited-angle DECT images of dual quarter scans. This strategy enhances the true image information and suppresses the limited-angle artifacts, thereby restoring the image edges and inner structures. Utilizing the capability of neural network in the modeling of nonlinear problem, a novel Anchor network with single-entry double-out architecture is designed in this work to yield the desired DECT images from the generated fusion CT image. Experimental results on the simulated and real data verify the effectiveness of the proposed method. This work enables DECT on imaging configurations with half-scan and largely reduces scanning angles and radiation doses.
Collapse
Affiliation(s)
- Junru Ren
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Wenkun Zhang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - YiZhong Wang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Ningning Liang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Linyuan Wang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Ailong Cai
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Shaoyu Wang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Zhizhong Zheng
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Lei Li
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| | - Bin Yan
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, P.R. China
| |
Collapse
|
19
|
Charles M, Clackdoyle R, Rit S. Image reconstruction from truncated fan-beam projections along a circular trajectory using the virtual fan-beam method. Phys Med Biol 2023; 68:245004. [PMID: 37802066 DOI: 10.1088/1361-6560/ad00fd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
Objective.In this paper, we investigate how the virtual fan-beam (VFB) method can be used to perform mathematically correct 2D reconstruction in a region-of-interest (ROI), using truncated fan-beam projections acquired on a circular scan, for truncation that only occurs on one side of the object.Approach.We start by choosing a virtual fan-beam trajectory and specifying how to obtain the corresponding virtual projections. Then, three VFB formulas are obtained by applying known super-short-scan (SSS) formulas to this virtual trajectory. Two of them perform the backprojection in a virtual parallel geometry and the third in the virtual fan-beam geometry. Next, we develop two VFB formulas that perform the backprojection step in the fan-beam acquisition geometry.Main results.We present five VFB reconstruction formulas for this truncation setting. To our knowledge, the two VFB formulas performing the backprojection in the fan-beam acquisition geometry are new. Moreover, the five VFB formulas presented here obtain accurate reconstruction in a larger ROI than what has been previously reported in the literature in the same setting. A complete mathematical derivation of these five VFB formulas is given, and their implementation is described step by step. Numerical simulations, using the Forbild head and thorax phantoms, demonstrate the efficacy of these formulas. A spatial resolution analysis and a variance study indicate minor differences between these five VFB formulas.Significance.This work shows that many different VFB formulas can be applied to perform mathematically correct 2D reconstruction in a ROI, in case of truncated fan-beam projections acquired on a circular scan. Moreover, the two new VFB formulas, with backprojection in the acquisition geometry, may open the path for an extension of the VFB method to 3D reconstruction from transversely truncated cone-beam projection acquired on a circular scan.
Collapse
Affiliation(s)
- Mathurin Charles
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, F-38000 Grenoble, France
| | - Rolf Clackdoyle
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, F-38000 Grenoble, France
| | - Simon Rit
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69373, LYON, France
| |
Collapse
|
20
|
Xi Y, Zhou P, Yu H, Zhang T, Zhang L, Qiao Z, Liu F. Adaptive-weighted high order TV algorithm for sparse-view CT reconstruction. Med Phys 2023; 50:5568-5584. [PMID: 36934310 DOI: 10.1002/mp.16371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND With the development of low-dose computed tomography (CT), incomplete data reconstruction has been widely concerned. The total variation (TV) minimization algorithm can accurately reconstruct images from sparse or noisy data. PURPOSE However, the traditional TV algorithm ignores the direction of structures in images, leading to the loss of edge information and block artifacts when the object is not piecewise constant. Since the anisotropic information can facilitate preserving the edge and detail information in images, we aim to improve the TV algorithm in terms of reconstruction accuracy via this approach. METHODS In this paper, we propose an adaptive-weighted high order total variation (awHOTV) algorithm. We construct the second order TV-norm using the second order gradient, adapt the anisotropic edge property between neighboring image pixels, adjust the local image-intensity gradient to keep edge information, and design the corresponding Chambolle-Pock (CP) solving algorithm. Implementing the proposed algorithm, comprehensive studies are conducted in the ideal projection data experiment where the Structural similarity (SSIM), Root Mean Square Error (RMSE), Contrast to noise ratio (CNR), and modulation transform function (MTF) curves are utilized to evaluate the quality of reconstructed images in statism, structure, spatial resolution, and contrast, respectively. In the noisy data experiment, we further use the noise power spectrum (NPS) curve to evaluate the reconstructed images and compare it with other three algorithms. RESULTS We use the 2D slice in the XCAT phantom, 2D slice in TCIA Challenge data and FORBILD phantom as simulation phantoms and use real bird data for real verification. The results show that, compared with the traditional TV and FBP algorithms, the awHOTV has better performance in terms of RMSE, SSIM, and Pearson correlation coefficient (PCC) under the projected data with different sparsity. In addition, the awHOTV algorithm is robust against the noise of different intensities. CONCLUSIONS The proposed awHOTV method can reconstruct the images with high accuracy under sparse or noisy data. The awHOTV solves the strip artifacts caused by sparse data in the FBP method. Compared with the TV method, the awHOTV can effectively suppress block artifacts and has good detail protection ability.
Collapse
Affiliation(s)
- Yarui Xi
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
- The Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing, China
| | - Pengwu Zhou
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
- The Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing, China
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, China
| | - Haijun Yu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
- The Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing, China
| | - Tao Zhang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
- The Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing, China
| | - Lingli Zhang
- Chongqing Key Laboratory of Complex Data Analysis & Artificial Intelligence, Chongqing University of Arts and Sciences, Chongqing, China
- Chongqing Key Laboratory of Group & Graph Theories and Applications, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhiwei Qiao
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, China
| | - Fenglin Liu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
| |
Collapse
|
21
|
Zhou Z, Inoue A, McCollough CH, Yu L. Self-trained deep convolutional neural network for noise reduction in CT. J Med Imaging (Bellingham) 2023; 10:044008. [PMID: 37636895 PMCID: PMC10449263 DOI: 10.1117/1.jmi.10.4.044008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose Supervised deep convolutional neural network (CNN)-based methods have been actively used in clinical CT to reduce image noise. The networks of these methods are typically trained using paired high- and low-quality data from a massive number of patients and/or phantom images. This training process is tedious, and the network trained under a given condition may not be generalizable to patient images acquired and reconstructed under different conditions. We propose a self-trained deep CNN (ST_CNN) method for noise reduction in CT that does not rely on pre-existing training datasets. Approach The ST_CNN training was accomplished using extensive data augmentation in the projection domain, and the inference was applied to the data itself. Specifically, multiple independent noise insertions were applied to the original patient projection data to generate multiple realizations of low-quality projection data. Then, rotation augmentation was adopted for both the original and low-quality projection data by applying the rotation angle directly on the projection data so that images were rotated at arbitrary angles without introducing additional bias. A large number of paired low- and high-quality images from the same patient were reconstructed and paired for training the ST_CNN model. Results No significant difference was found between the ST_CNN and conventional CNN models in terms of the peak signal-to-noise ratio and structural similarity index measure. The ST_CNN model outperformed the conventional CNN model in terms of noise texture and homogeneity in liver parenchyma as well as better subjective visualization of liver lesions. The ST_CNN may sacrifice the sharpness of vessels slightly compared to the conventional CNN model but without affecting the visibility of peripheral vessels or diagnosis of vascular pathology. Conclusions The proposed ST_CNN method trained from the data itself may achieve similar image quality in comparison with conventional deep CNN denoising methods pre-trained on external datasets.
Collapse
Affiliation(s)
- Zhongxing Zhou
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Akitoshi Inoue
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | | | - Lifeng Yu
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| |
Collapse
|
22
|
Waddington DEJ, Hindley N, Koonjoo N, Chiu C, Reynolds T, Liu PZY, Zhu B, Bhutto D, Paganelli C, Keall PJ, Rosen MS. Real-time radial reconstruction with domain transform manifold learning for MRI-guided radiotherapy. Med Phys 2023; 50:1962-1974. [PMID: 36646444 PMCID: PMC10809819 DOI: 10.1002/mp.16224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND MRI-guidance techniques that dynamically adapt radiation beams to follow tumor motion in real time will lead to more accurate cancer treatments and reduced collateral healthy tissue damage. The gold-standard for reconstruction of undersampled MR data is compressed sensing (CS) which is computationally slow and limits the rate that images can be available for real-time adaptation. PURPOSE Once trained, neural networks can be used to accurately reconstruct raw MRI data with minimal latency. Here, we test the suitability of deep-learning-based image reconstruction for real-time tracking applications on MRI-Linacs. METHODS We use automated transform by manifold approximation (AUTOMAP), a generalized framework that maps raw MR signal to the target image domain, to rapidly reconstruct images from undersampled radial k-space data. The AUTOMAP neural network was trained to reconstruct images from a golden-angle radial acquisition, a benchmark for motion-sensitive imaging, on lung cancer patient data and generic images from ImageNet. Model training was subsequently augmented with motion-encoded k-space data derived from videos in the YouTube-8M dataset to encourage motion robust reconstruction. RESULTS AUTOMAP models fine-tuned on retrospectively acquired lung cancer patient data reconstructed radial k-space with equivalent accuracy to CS but with much shorter processing times. Validation of motion-trained models with a virtual dynamic lung tumor phantom showed that the generalized motion properties learned from YouTube lead to improved target tracking accuracy. CONCLUSION AUTOMAP can achieve real-time, accurate reconstruction of radial data. These findings imply that neural-network-based reconstruction is potentially superior to alternative approaches for real-time image guidance applications.
Collapse
Affiliation(s)
- David E. J. Waddington
- Image X Institute, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
- Department of Medical PhysicsIngham Institute for Applied Medical ResearchLiverpoolNSWAustralia
- A. A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Nicholas Hindley
- Image X Institute, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
- A. A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Neha Koonjoo
- A. A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Christopher Chiu
- Image X Institute, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | - Tess Reynolds
- Image X Institute, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | - Paul Z. Y. Liu
- Image X Institute, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
- Department of Medical PhysicsIngham Institute for Applied Medical ResearchLiverpoolNSWAustralia
| | - Bo Zhu
- A. A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Danyal Bhutto
- A. A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
| | - Chiara Paganelli
- Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanItaly
| | - Paul J. Keall
- Image X Institute, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
- Department of Medical PhysicsIngham Institute for Applied Medical ResearchLiverpoolNSWAustralia
| | - Matthew S. Rosen
- A. A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of PhysicsHarvard UniversityCambridgeMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
23
|
Gao X, Su T, Zhang Y, Zhu J, Tan Y, Cui H, Long X, Zheng H, Liang D, Ge Y. Attention-based dual-branch deep network for sparse-view computed tomography image reconstruction. Quant Imaging Med Surg 2023; 13:1360-1374. [PMID: 36915341 PMCID: PMC10006128 DOI: 10.21037/qims-22-609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/01/2022] [Indexed: 02/25/2023]
Abstract
Background The widespread application of X-ray computed tomography (CT) imaging in medical screening makes radiation safety a major concern for public health. Sparse-view CT is a promising solution to reduce the radiation dose. However, the reconstructed CT images obtained using sparse-view CT may suffer severe streaking artifacts and structural information loss. Methods In this study, a novel attention-based dual-branch network (ADB-Net) is proposed to solve the ill-posed problem of sparse-view CT image reconstruction. In this network, downsampled sinogram input is processed through 2 parallel branches (CT branch and signogram branch) of the ADB-Net to independently extract the distinct, high-level feature maps. These feature maps are fused in a specified attention module from 3 perspectives (channel, plane, and spatial) to allow complementary optimizations that can mitigate the streaking artifacts and the structure loss in sparse-view CT imaging. Results Numerical simulations, an anthropomorphic thorax phantom, and in vivo preclinical experiments were conducted to verify the sparse-view CT imaging performance of the ADB-Net. The proposed network achieved a root-mean-square error (RMSE) of 20.6160, a structural similarity (SSIM) of 0.9257, and a peak signal-to-noise ratio (PSNR) of 38.8246 on numerical data. The visualization results demonstrate that this newly developed network can consistently remove the streaking artifacts while maintaining the fine structures. Conclusions The proposed attention-based dual-branch deep network, ADB-Net, provides a promising alternative to reconstruct high-quality sparse-view CT images for low-dose CT imaging.
Collapse
Affiliation(s)
- Xiang Gao
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ting Su
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yunxin Zhang
- Department of Vascular Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Jiongtao Zhu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yuhang Tan
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Han Cui
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaojing Long
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yongshuai Ge
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
24
|
Xia W, Shan H, Wang G, Zhang Y. Physics-/Model-Based and Data-Driven Methods for Low-Dose Computed Tomography: A survey. IEEE SIGNAL PROCESSING MAGAZINE 2023; 40:89-100. [PMID: 38404742 PMCID: PMC10883591 DOI: 10.1109/msp.2022.3204407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Since 2016, deep learning (DL) has advanced tomographic imaging with remarkable successes, especially in low-dose computed tomography (LDCT) imaging. Despite being driven by big data, the LDCT denoising and pure end-to-end reconstruction networks often suffer from the black box nature and major issues such as instabilities, which is a major barrier to apply deep learning methods in low-dose CT applications. An emerging trend is to integrate imaging physics and model into deep networks, enabling a hybridization of physics/model-based and data-driven elements. In this paper, we systematically review the physics/model-based data-driven methods for LDCT, summarize the loss functions and training strategies, evaluate the performance of different methods, and discuss relevant issues and future directions.
Collapse
Affiliation(s)
- Wenjun Xia
- School of Cyber Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongming Shan
- Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, and also with Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200433, China
| | - Ge Wang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Yi Zhang
- School of Cyber Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
25
|
Xu J, Noo F. Linearized Analysis of Noise and Resolution for DL-Based Image Generation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:647-660. [PMID: 36227827 PMCID: PMC10132822 DOI: 10.1109/tmi.2022.3214475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Deep-learning (DL) based CT image generation methods are often evaluated using RMSE and SSIM. By contrast, conventional model-based image reconstruction (MBIR) methods are often evaluated using image properties such as resolution, noise, bias. Calculating such image properties requires time consuming Monte Carlo (MC) simulations. For MBIR, linearized analysis using first order Taylor expansion has been developed to characterize noise and resolution without MC simulations. This inspired us to investigate if linearization can be applied to DL networks to enable efficient characterization of resolution and noise. We used FBPConvNet as an example DL network and performed extensive numerical evaluations, including both computer simulations and real CT data. Our results showed that network linearization works well under normal exposure settings. For such applications, linearization can characterize image noise and resolutions without running MC simulations. We provide with this work the computational tools to implement network linearization. The efficiency and ease of implementation of network linearization can hopefully popularize the physics-related image quality measures for DL applications. Our methodology is general; it allows flexible compositions of DL nonlinear modules and linear operators such as filtered-backprojection (FBP). For the latter, we develop a generic method for computing the covariance images that is needed for network linearization.
Collapse
|
26
|
Zhang Z, Yang M, Li H, Chen S, Wang J, Xu L. An Innovative Low-dose CT Inpainting Algorithm based on Limited-angle Imaging Inpainting Model. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:131-152. [PMID: 36373341 DOI: 10.3233/xst-221260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND With the popularity of computed tomography (CT) technique, an increasing number of patients are receiving CT scans. Simultaneously, the public's attention to CT radiation dose is also increasing. How to obtain CT images suitable for clinical diagnosis while reducing the radiation dose has become the focus of researchers. OBJECTIVE To demonstrate that limited-angle CT imaging technique can be used to acquire lower dose CT images, we propose a generative adversarial network-based image inpainting model-Low-dose imaging and Limited-angle imaging inpainting Model (LDLAIM), this method can effectively restore low-dose CT images with limited-angle imaging, which verifies that limited-angle CT imaging technique can be used to acquire low-dose CT images. METHODS In this work, we used three datasets, including chest and abdomen dataset, head dataset and phantom dataset. They are used to synthesize low-dose and limited-angle CT images for network training. During training stage, we divide each dataset into training set, validation set and testing set according to the ratio of 8:1:1, and use the validation set to validate after finishing an epoch training, and use the testing set to test after finishing all the training. The proposed method is based on generative adversarial networks(GANs), which consists of a generator and a discriminator. The generator consists of residual blocks and encoder-decoder, and uses skip connection. RESULTS We use SSIM, PSNR and RMSE to evaluate the performance of the proposed method. In the chest and abdomen dataset, the mean SSIM, PSNR and RMSE of the testing set are 0.984, 35.385 and 0.017, respectively. In the head dataset, the mean SSIM, PSNR and RMSE of the testing set are 0.981, 38.664 and 0.011, respectively. In the phantom dataset, the mean SSIM, PSNR and RMSE of the testing set are 0.977, 33.468 and 0.022, respectively. By comparing the experimental results of other algorithms in these three datasets, it can be found that the proposed method is superior to other algorithms in these indicators. Meanwhile, the proposed method also achieved the highest score in the subjective quality score. CONCLUSIONS Experimental results show that the proposed method can effectively restore CT images when both low-dose CT imaging techniques and limited-angle CT imaging techniques are used simultaneously. This work proves that the limited-angle CT imaging technique can be used to reduce the CT radiation dose, and also provides a new idea for the research of low-dose CT imaging.
Collapse
Affiliation(s)
- Ziheng Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Minghan Yang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Huijuan Li
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Shuai Chen
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jianye Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Lei Xu
- The First Affiliated Hospitalof University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
27
|
Deep learning tomographic reconstruction through hierarchical decomposition of domain transforms. Vis Comput Ind Biomed Art 2022; 5:30. [PMID: 36484980 PMCID: PMC9733764 DOI: 10.1186/s42492-022-00127-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Deep learning (DL) has shown unprecedented performance for many image analysis and image enhancement tasks. Yet, solving large-scale inverse problems like tomographic reconstruction remains challenging for DL. These problems involve non-local and space-variant integral transforms between the input and output domains, for which no efficient neural network models are readily available. A prior attempt to solve tomographic reconstruction problems with supervised learning relied on a brute-force fully connected network and only allowed reconstruction with a 1284 system matrix size. This cannot practically scale to realistic data sizes such as 5124 and 5126 for three-dimensional datasets. Here we present a novel framework to solve such problems with DL by casting the original problem as a continuum of intermediate representations between the input and output domains. The original problem is broken down into a sequence of simpler transformations that can be well mapped onto an efficient hierarchical network architecture, with exponentially fewer parameters than a fully connected network would need. We applied the approach to computed tomography (CT) image reconstruction for a 5124 system matrix size. This work introduces a new kind of data-driven DL solver for full-size CT reconstruction without relying on the structure of direct (analytical) or iterative (numerical) inversion techniques. This work presents a feasibility demonstration of full-scale learnt reconstruction, whereas more developments will be needed to demonstrate superiority relative to traditional reconstruction approaches. The proposed approach is also extendable to other imaging problems such as emission and magnetic resonance reconstruction. More broadly, hierarchical DL opens the door to a new class of solvers for general inverse problems, which could potentially lead to improved signal-to-noise ratio, spatial resolution and computational efficiency in various areas.
Collapse
|
28
|
Zhang P, Li K. A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107168. [PMID: 36219892 DOI: 10.1016/j.cmpb.2022.107168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The dual-domain deep learning-based reconstruction techniques have enjoyed many successful applications in the field of medical image reconstruction. Applying the analytical reconstruction based operator to transfer the data from the projection domain to the image domain, the dual-domain techniques may suffer from the insufficient suppression or removal of streak artifacts in areas with the missing view data, when addressing the sparse-view reconstruction problems. In this work, to overcome this problem, an intelligent sinogram synthesis based back-projection network (iSSBP-Net) was proposed for sparse-view computed tomography (CT) reconstruction. In the iSSBP-Net method, a convolutional neural network (CNN) was involved in the dual-domain method to inpaint the missing view data in the sinogram before CT reconstruction. METHODS The proposed iSSBP-Net method fused a sinogram synthesis sub-network (SS-Net), a sinogram filter sub-network (SF-Net), a back-projection layer, and a post-CNN into an end-to-end network. Firstly, to inpaint the missing view data, the SS-Net employed a CNN to synthesize the full-view sinogram in the projection domain. Secondly, to improve the visual quality of the sparse-view CT images, the synthesized sinogram was filtered by a CNN. Thirdly, the filtered sinogram was brought into the image domain through the back-projection layer. Finally, to yield images of high visual sensitivity, the post-CNN was applied to restore the desired images from the outputs of the back-projection layer. RESULTS The numerical experiments demonstrate that the proposed iSSBP-Net is superior to all competing algorithms under different scanning condintions for sparse-view CT reconstruction. Compared to the competing algorithms, the proposed iSSBP-Net method improved the peak signal-to-noise ratio of the reconstructed images about 1.21 dB, 0.26 dB, 0.01 dB, and 0.37 dB under the scanning conditions of 360, 180, 90, and 60 views, respectively. CONCLUSION The promising reconstruction results indicate that involving the SS-Net in the dual-domain method is could be an effective manner to suppress or remove the streak artifacts in sparse-view CT images. Due to the promising results reconstructed by the iSSBP-Net method, this study is intended to inspire the further development of sparse-view CT reconstruction by involving a SS-Net in the dual-domain method.
Collapse
Affiliation(s)
- Pengcheng Zhang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, PR China.
| | - Kunpeng Li
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, PR China
| |
Collapse
|
29
|
Friot-Giroux L, Peyrin F, Maxim V. Iterative tomographic reconstruction with TV prior for low-dose CBCT dental imaging. Phys Med Biol 2022; 67. [PMID: 36162406 DOI: 10.1088/1361-6560/ac950c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022]
Abstract
Objective.Cone-beam computed tomography is becoming more and more popular in applications such as 3D dental imaging. Iterative methods compared to the standard Feldkamp algorithm have shown improvements in image quality of reconstruction of low-dose acquired data despite their long computing time. An interesting aspect of iterative methods is their ability to include prior information such as sparsity-constraint. While a large panel of optimization algorithms along with their adaptation to tomographic problems are available, they are mainly studied on 2D parallel or fan-beam data. The issues raised by 3D CBCT and moreover by truncated projections are still poorly understood.Approach.We compare different carefully designed optimization schemes in the context of realistic 3D dental imaging. Besides some known algorithms, SIRT-TV and MLEM, we investigate the primal-dual hybrid gradient (PDHG) approach and a newly proposed MLEM-TV optimizer. The last one is alternating EM steps and TV-denoising, combination not yet investigated for CBCT. Experiments are performed on both simulated data from a 3D jaw phantom and data acquired with a dental clinical scanner.Main results.With some adaptations to the specificities of CBCT operators, PDHG and MLEM-TV algorithms provide the best reconstruction quality. These results were obtained by comparing the full-dose image with a low-dose image and an ultra low-dose image.Significance.The convergence speed of the original iterative methods is hampered by the conical geometry and significantly reduced compared to parallel geometries. We promote the pre-conditioned version of PDHG and we propose a pre-conditioned version of the MLEM-TV algorithm. To the best of our knowledge, this is the first time PDHG and convergent MLEM-TV algorithms are evaluated on experimental dental CBCT data, where constraints such as projection truncation and presence of metal have to be jointly overcome.
Collapse
Affiliation(s)
- Louise Friot-Giroux
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69620, LYON, France
| | - Françoise Peyrin
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69620, LYON, France
| | - Voichita Maxim
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69620, LYON, France
| |
Collapse
|
30
|
Qu X, Ren C, Yan G, Zheng D, Tang W, Wang S, Lin H, Zhang J, Jiang J. Deep-Learning-Based Ultrasound Sound-Speed Tomography Reconstruction with Tikhonov Pseudo-Inverse Priori. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2079-2094. [PMID: 35922265 PMCID: PMC10448397 DOI: 10.1016/j.ultrasmedbio.2022.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Ultrasound sound-speed tomography (USST) is a promising technology for breast imaging and breast cancer detection. Its reconstruction is a complex non-linear mapping from the projection data to the sound-speed image (SSI). The traditional reconstruction methods include mainly the ray-based methods and the waveform-based methods. The ray-based methods with linear approximation have low computational cost but low reconstruction quality; the full wave-based methods with the complex non-linear model have high quality but high cost. To achieve both high quality and low cost, we introduced traditional linear approximation as prior knowledge into a deep neural network and treated the complex non-linear mapping of USST reconstruction as a combination of linear mapping and non-linear mapping. In the proposed method, the linear mapping was seamlessly implemented with a fully connected layer and initialized using the Tikhonov pseudo-inverse matrix. The non-linear mapping was implemented using a U-shape Net (U-Net). Furthermore, we proposed the Tikhonov U-shape net (TU-Net), in which the linear mapping was done before the non-linear mapping, and the U-shape Tikhonov net (UT-Net), in which the non-linear mapping was done before the linear mapping. Moreover, we conducted simulations and experiments for evaluation. In the numerical simulation, the root-mean-squared error was 6.49 and 4.29 m/s for the UT-Net and TU-Net, the peak signal-to-noise ratio was 49.01 and 52.90 dB, the structural similarity was 0.9436 and 0.9761 and the reconstruction time was 10.8 and 11.3 ms, respectively. In this study, the SSIs obtained with the proposed methods exhibited high sound-speed accuracy. Both the UT-Net and the TU-Net achieved high quality and low computational cost.
Collapse
Affiliation(s)
- Xiaolei Qu
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Chujian Ren
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Guo Yan
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Dezhi Zheng
- Research Institute for Frontier Science, Beihang University, Beijing, China
| | - Wenzhong Tang
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Shuai Wang
- Research Institute for Frontier Science, Beihang University, Beijing, China
| | - Hongxiang Lin
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Jingya Zhang
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Jue Jiang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
31
|
Kandarpa VSS, Perelli A, Bousse A, Visvikis D. LRR-CED: low-resolution reconstruction-aware convolutional encoder–decoder network for direct sparse-view CT image reconstruction. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7bce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Sparse-view computed tomography (CT) reconstruction has been at the forefront of research in medical imaging. Reducing the total x-ray radiation dose to the patient while preserving the reconstruction accuracy is a big challenge. The sparse-view approach is based on reducing the number of rotation angles, which leads to poor quality reconstructed images as it introduces several artifacts. These artifacts are more clearly visible in traditional reconstruction methods like the filtered-backprojection (FBP) algorithm. Approach. Over the years, several model-based iterative and more recently deep learning-based methods have been proposed to improve sparse-view CT reconstruction. Many deep learning-based methods improve FBP-reconstructed images as a post-processing step. In this work, we propose a direct deep learning-based reconstruction that exploits the information from low-dimensional scout images, to learn the projection-to-image mapping. This is done by concatenating FBP scout images at multiple resolutions in the decoder part of a convolutional encoder–decoder (CED). Main results. This approach is investigated on two different networks, based on Dense Blocks and U-Net to show that a direct mapping can be learned from a sinogram to an image. The results are compared to two post-processing deep learning methods (FBP-ConvNet and DD-Net) and an iterative method that uses a total variation (TV) regularization. Significance. This work presents a novel method that uses information from both sinogram and low-resolution scout images for sparse-view CT image reconstruction. We also generalize this idea by demonstrating results with two different neural networks. This work is in the direction of exploring deep learning across the various stages of the image reconstruction pipeline involving data correction, domain transfer and image improvement.
Collapse
|
32
|
Shi C, Xiao Y, Chen Z. Dual-domain sparse-view CT reconstruction with Transformers. Phys Med 2022; 101:1-7. [PMID: 35849908 DOI: 10.1016/j.ejmp.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022] Open
Abstract
PURPOSE Computed Tomography (CT) has been widely used in the medical field. Sparse-view CT is an effective and feasible method to reduce the radiation dose. However, the conventional filtered back projection (FBP) algorithm will suffer from severe artifacts in sparse-view CT. Iterative reconstruction algorithms have been adopted to remove artifacts, but they are time-consuming due to repeated projection and back projection and may cause blocky effects. To overcome the difficulty in sparse-view CT, we proposed a dual-domain sparse-view CT algorithm CT Transformer (CTTR) and paid attention to sinogram information. METHODS CTTR treats sinograms as sentences and enhances reconstructed images with sinogram's characteristics. We qualitatively evaluate the CTTR, an iterative method TVM-POCS, a convolutional neural network based method FBPConvNet in terms of a reduction in artifacts and a preservation of details. Besides, we also quantitatively evaluate these methods in terms of RMSE, PSNR and SSIM. RESULTS We evaluate our method on the Lung Image Database Consortium image collection with different numbers of projection views and noise levels. Experiment studies show that, compared with other methods, CTTR can reduce more artifacts and preserve more details on various scenarios. Specifically, CTTR improves the FBPConvNet performance of PSNR by 0.76dB with 30 projections. CONCLUSIONS The performance of our proposed CTTR is better than the method based on CNN in the case of extremely sparse views both on visual results and quantitative evaluation. Our proposed method provides a new idea for the application of Transformers to CT image processing.
Collapse
Affiliation(s)
- Changrong Shi
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China; Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| | - Yongshun Xiao
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China; Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China.
| | - Zhiqiang Chen
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China; Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
| |
Collapse
|
33
|
Rusanov B, Hassan GM, Reynolds M, Sabet M, Kendrick J, Farzad PR, Ebert M. Deep learning methods for enhancing cone-beam CT image quality towards adaptive radiation therapy: A systematic review. Med Phys 2022; 49:6019-6054. [PMID: 35789489 PMCID: PMC9543319 DOI: 10.1002/mp.15840] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/21/2022] [Accepted: 06/16/2022] [Indexed: 11/11/2022] Open
Abstract
The use of deep learning (DL) to improve cone-beam CT (CBCT) image quality has gained popularity as computational resources and algorithmic sophistication have advanced in tandem. CBCT imaging has the potential to facilitate online adaptive radiation therapy (ART) by utilizing up-to-date patient anatomy to modify treatment parameters before irradiation. Poor CBCT image quality has been an impediment to realizing ART due to the increased scatter conditions inherent to cone-beam acquisitions. Given the recent interest in DL applications in radiation oncology, and specifically DL for CBCT correction, we provide a systematic theoretical and literature review for future stakeholders. The review encompasses DL approaches for synthetic CT generation, as well as projection domain methods employed in the CBCT correction literature. We review trends pertaining to publications from January 2018 to April 2022 and condense their major findings - with emphasis on study design and deep learning techniques. Clinically relevant endpoints relating to image quality and dosimetric accuracy are summarised, highlighting gaps in the literature. Finally, we make recommendations for both clinicians and DL practitioners based on literature trends and the current DL state of the art methods utilized in radiation oncology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Branimir Rusanov
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Department of Radiation Oncology, Sir Chairles Gairdner Hospital, Perth, Western Australia, 6009, Australia
| | - Ghulam Mubashar Hassan
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Mark Reynolds
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Mahsheed Sabet
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Department of Radiation Oncology, Sir Chairles Gairdner Hospital, Perth, Western Australia, 6009, Australia
| | - Jake Kendrick
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Department of Radiation Oncology, Sir Chairles Gairdner Hospital, Perth, Western Australia, 6009, Australia
| | - Pejman Rowshan Farzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Department of Radiation Oncology, Sir Chairles Gairdner Hospital, Perth, Western Australia, 6009, Australia
| | - Martin Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Department of Radiation Oncology, Sir Chairles Gairdner Hospital, Perth, Western Australia, 6009, Australia
| |
Collapse
|
34
|
Corona-Figueroa A, Frawley J, Taylor SB, Bethapudi S, Shum HPH, Willcocks CG. MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3843-3848. [PMID: 36085823 DOI: 10.1109/embc48229.2022.9871757] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Computed tomography (CT) is an effective med-ical imaging modality, widely used in the field of clinical medicine for the diagnosis of various pathologies. Advances in Multidetector CT imaging technology have enabled additional functionalities, including generation of thin slice multi planar cross-sectional body imaging and 3D reconstructions. However, this involves patients being exposed to a considerable dose of ionising radiation. Excessive ionising radiation can lead to deterministic and harmful effects on the body. This paper proposes a Deep Learning model that learns to reconstruct CT projections from a few or even a single-view X-ray. This is based on a novel architecture that builds from neural radiance fields, which learns a continuous representation of CT scans by disentangling the shape and volumetric depth of surface and internal anatomical structures from 2D images. Our model is trained on chest and knee datasets, and we demonstrate qual-itative and quantitative high-fidelity renderings and compare our approach to other recent radiance field-based methods. Our code and link to our datasets are available at https://qithub.com/abrilcf/mednerf Clinical relevance- Our model is able to infer the anatomical 3D structure from a few or a single-view X-ray showing future potential for reduced ionising radiation exposure during the imaging process.
Collapse
|
35
|
Hsieh SS, Leng S, Yu L, Huber NR, McCollough CH. A minimum SNR criterion for computed tomography object detection in the projection domain. Med Phys 2022; 49:4988-4998. [PMID: 35754205 PMCID: PMC9446706 DOI: 10.1002/mp.15832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 06/10/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND A common rule of thumb for object detection is the Rose criterion, which states that a signal must be five standard deviations above background to be detectable to a human observer. The validity of the Rose criterion in CT imaging is limited due to the presence of correlated noise. Recent reconstruction and denoising methodologies are also able to restore apparent image quality in very noisy conditions, and the ultimate limits of these methodologies are not yet known. PURPOSE To establish a lower bound on the minimum achievable signal-to-noise ratio (SNR) for object detection, below which detection performance is poor regardless of reconstruction or denoising methodology. METHODS We consider a numerical observer that operates on projection data and has perfect knowledge of the background and the objects to be detected, and determine the minimum projection SNR that is necessary to achieve predetermined lesion-level sensitivity and case-level specificity targets. We define a set of discrete signal objects that encompasses any lesion of interest and could include lesions of different sizes, shapes, and locations. The task is to determine which object of is present, or to state the null hypothesis that no object is present. We constrain each object in to have equivalent projection SNR and use Monte Carlo methods to calculate the required projection SNR necessary. Because our calculations are performed in projection space, they impose an upper limit on the performance possible from reconstructed images. We chose to be a collection of elliptical or circular low contrast metastases and simulated detection of these objects in a parallel beam system with Gaussian statistics. Unless otherwise stated, we assume a target of 80% lesion-level sensitivity and 80% case-level specificity and a search field of view that is 6 cm by 6 cm by 10 slices. RESULTS When contains only a single object, our problem is equivalent to two-alternative forced choice (2AFC) and the required projection SNR is 1.7. When consists of circular 6 mm lesions at different locations in space, the required projection SNR is 5.1. When is extended to include ellipses and circles of different sizes, the required projection SNR increases to 5.3. The required SNR increases if the sensitivity target, specificity target, or search field of view increases. CONCLUSIONS Even with perfect knowledge of the background and target objects, the ideal observer still requires an SNR of approximately 5. This is a lower bound on the SNR that would be required in real conditions, where the background and target objects are not known perfectly. Algorithms that denoise lesions with less than 5 projection SNR, regardless of the denoising methodology, are expected to show vanishing effects or false positive lesions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Scott S Hsieh
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathan R Huber
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
36
|
Shen L, Zhao W, Capaldi D, Pauly J, Xing L. A geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction. Comput Biol Med 2022; 148:105710. [DOI: 10.1016/j.compbiomed.2022.105710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Accepted: 06/04/2022] [Indexed: 11/26/2022]
|
37
|
The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractConventional reconstruction techniques, such as filtered back projection (FBP) and iterative reconstruction (IR), which have been utilised widely in the image reconstruction process of computed tomography (CT) are not suitable in the case of low-dose CT applications, because of the unsatisfying quality of the reconstructed image and inefficient reconstruction time. Therefore, as the demand for CT radiation dose reduction continues to increase, the use of artificial intelligence (AI) in image reconstruction has become a trend that attracts more and more attention. This systematic review examined various deep learning methods to determine their characteristics, availability, intended use and expected outputs concerning low-dose CT image reconstruction. Utilising the methodology of Kitchenham and Charter, we performed a systematic search of the literature from 2016 to 2021 in Springer, Science Direct, arXiv, PubMed, ACM, IEEE, and Scopus. This review showed that algorithms using deep learning technology are superior to traditional IR methods in noise suppression, artifact reduction and structure preservation, in terms of improving the image quality of low-dose reconstructed images. In conclusion, we provided an overview of the use of deep learning approaches in low-dose CT image reconstruction together with their benefits, limitations, and opportunities for improvement.
Collapse
|
38
|
Zhao X, Li Y, Han Y, Chen P, Wei J. Statistical iterative spectral CT imaging method based on blind separation of polychromatic projections. OPTICS EXPRESS 2022; 30:18219-18237. [PMID: 36221628 DOI: 10.1364/oe.456184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 06/16/2023]
Abstract
Spectral computed tomography (CT) can provide narrow-energy-width reconstructed images, thereby suppressing beam hardening artifacts and providing rich attenuation information for component characterization. We propose a statistical iterative spectral CT imaging method based on blind separation of polychromatic projections to improve the accuracy of narrow-energy-width image decomposition. For direct inversion in blind scenarios, we introduce the system matrix into the X-ray multispectral forward model to reduce indirect errors. A constrained optimization problem with edge-preserving regularization is established and decomposed into two sub-problems to be alternately solved. Experiments indicate that the novel algorithm obtains more accurate narrow-energy-width images than the state-of-the-art method.
Collapse
|
39
|
Lu K, Ren L, Yin FF. A geometry-guided multi-beamlet deep learning technique for CT reconstruction. Biomed Phys Eng Express 2022; 8. [PMID: 35512654 PMCID: PMC9194758 DOI: 10.1088/2057-1976/ac6d12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/05/2022] [Indexed: 11/11/2022]
Abstract
Purpose. Previous studies have proposed deep-learning techniques to reconstruct CT images from sinograms. However, these techniques employ large fully-connected (FC) layers for projection-to-image domain transformation, producing large models requiring substantial computation power, potentially exceeding the computation memory limit. Our previous work proposed a geometry-guided-deep-learning (GDL) technique for CBCT reconstruction that reduces model size and GPU memory consumption. This study further develops the technique and proposes a novel multi-beamlet deep learning (GMDL) technique of improved performance. The study compares the proposed technique with the FC layer-based deep learning (FCDL) method and the GDL technique through low-dose real-patient CT image reconstruction.Methods. Instead of using a large FC layer, the GMDL technique learns the projection-to-image domain transformation by constructing many small FC layers. In addition to connecting each pixel in the projection domain to beamlet points along the central beamlet in the image domain as GDL does, these smaller FC layers in GMDL connect each pixel to beamlets peripheral to the central beamlet based on the CT projection geometry. We compare ground truth images with low-dose images reconstructed with the GMDL, the FCDL, the GDL, and the conventional FBP methods. The images are quantitatively analyzed in terms of peak-signal-to-noise-ratio (PSNR), structural-similarity-index-measure (SSIM), and root-mean-square-error (RMSE).Results. Compared to other methods, the GMDL reconstructed low-dose CT images show improved image quality in terms of PSNR, SSIM, and RMSE. The optimal number of peripheral beamlets for the GMDL technique is two beamlets on each side of the central beamlet. The model size and memory consumption of the GMDL model is less than 1/100 of the FCDL model.Conclusion. Compared to the FCDL method, the GMDL technique is demonstrated to be able to reconstruct real patient low-dose CT images of improved image quality with significantly reduced model size and GPU memory requirement.
Collapse
Affiliation(s)
- Ke Lu
- Medical Physics Graduate Program, Duke University, Durham, NC, United States of America.,Department of Radiation Oncology, Duke University, Durham, NC, United States of America
| | - Lei Ren
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Fang-Fang Yin
- Medical Physics Graduate Program, Duke University, Durham, NC, United States of America.,Department of Radiation Oncology, Duke University, Durham, NC, United States of America.,Medical Physics Graduate Program, Duke Kunshan University, Kunshan, People's Republic of China
| |
Collapse
|
40
|
Coussat A, Rit S, Clackdoyle R, Defrise M, Desbat L, Letang JM. Region-of-Interest CT Reconstruction Using Object Extent and Singular Value Decomposition. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3091288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aurelien Coussat
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJMSaint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Simon Rit
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJMSaint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Rolf Clackdoyle
- TIMC-IMAG Laboratory (CNRS UMR 5525), Université Grenoble Alpes, Grenoble, France
| | - Michel Defrise
- Department of Nuclear Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurent Desbat
- TIMC-IMAG Laboratory (CNRS UMR 5525), Université Grenoble Alpes, Grenoble, France
| | - Jean Michel Letang
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJMSaint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| |
Collapse
|
41
|
Lu S, Li S, Wang Y, Zhang L, Hu Y, Li B. Prior information-based high-resolution tomography image reconstruction from a single digitally reconstructed radiograph. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac508d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Tomography images are essential for clinical diagnosis and trauma surgery, allowing doctors to understand the internal information of patients in more detail. Since the large amount of x-ray radiation from the continuous imaging during the process of computed tomography scanning can cause serious harm to the human body, reconstructing tomographic images from sparse views becomes a potential solution to this problem. Here we present a deep-learning framework for tomography image reconstruction, namely TIReconNet, which defines image reconstruction as a data-driven supervised learning task that allows a mapping between the 2D projection view and the 3D volume to emerge from corpus. The proposed framework consists of four parts: feature extraction module, shape mapping module, volume generation module and super resolution module. The proposed framework combines 2D and 3D operations, which can generate high-resolution tomographic images with a relatively small amount of computing resources and maintain spatial information. The proposed method is verified on chest digitally reconstructed radiographs, and the reconstructed tomography images have achieved PSNR value of 18.621 ± 1.228 dB and SSIM value of 0.872 ± 0.041 when compared against the ground truth. In conclusion, an innovative convolutional neural network architecture is proposed and validated in this study, which proves that there is the potential to generate a 3D high-resolution tomographic image from a single 2D image using deep learning. This method may actively promote the application of reconstruction technology for radiation reduction, and further exploration of intraoperative guidance in trauma and orthopedics.
Collapse
|
42
|
Patwari M, Gutjahr R, Raupach R, Maier A. Limited parameter denoising for low-dose X-ray computed tomography using deep reinforcement learning. Med Phys 2022; 49:4540-4553. [PMID: 35362172 DOI: 10.1002/mp.15643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/07/2021] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The use of deep learning has successfully solved several problems in the field of medical imaging. Deep learning has been applied to the CT denoising problem successfully. However, the use of deep learning requires large amounts of data to train deep convolutional networks (CNNs). Moreover, due to large parameter count, such deep CNNs may cause unexpected results. PURPOSE In this study, we introduce a novel CT denoising framework, which has interpretable behaviour, and provides useful results with limited data. METHODS We employ bilateral filtering in both the projection and volume domains to remove noise. To account for non-stationary noise, we tune the σ parameters of the volume for every projection view, and for every volume pixel. The tuning is carried out by two deep CNNs. Due to impracticality of labelling, the two deep CNNs are trained via a Deep-Q reinforcement learning task. The reward for the task is generated by using a custom reward function represented by a neural network. Our experiments were carried out on abdominal scans for the Mayo Clinic TCIA dataset, and the AAPM Low Dose CT Grand Challenge. RESULTS Our denoising framework has excellent denoising performance increasing the PSNR from 28.53 to 28.93, and increasing the SSIM from 0.8952 to 0.9204. We outperform several state-of-the-art deep CNNs, which have several orders of magnitude higher number of parameters (p-value (PSNR) = 0.000, p-value (SSIM) = 0.000). Our method does not introduce any blurring, which is introduced by MSE loss based methods, or any deep learning artifacts, which are introduced by WGAN based models. Our ablation studies show that parameter tuning and using our reward network results in the best possible results. CONCLUSIONS We present a novel CT denoising framework, which focuses on interpretability to deliver good denoising performance, especially with limited data. Our method outperforms state-of-the-art deep neural networks. Future work will be focused on accelerating our method, and generalizing to different geometries and body parts. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mayank Patwari
- Pattern Recognition Lab, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany.,CT Concepts, Siemens Healthineers AG, Forchheim, 91301, Germany
| | - Ralf Gutjahr
- CT Concepts, Siemens Healthineers AG, Forchheim, 91301, Germany
| | - Rainer Raupach
- CT Concepts, Siemens Healthineers AG, Forchheim, 91301, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| |
Collapse
|
43
|
Dong G, Zhang C, Deng L, Zhu Y, Dai J, Song L, Meng R, Niu T, Liang X, Xie Y. A deep unsupervised learning framework for the 4D CBCT artifact correction. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac55a5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Four-dimensional cone-beam computed tomography (4D CBCT) has unique advantages in moving target localization, tracking and therapeutic dose accumulation in adaptive radiotherapy. However, the severe fringe artifacts and noise degradation caused by 4D CBCT reconstruction restrict its clinical application. We propose a novel deep unsupervised learning model to generate the high-quality 4D CBCT from the poor-quality 4D CBCT. Approach. The proposed model uses a contrastive loss function to preserve the anatomical structure in the corrected image. To preserve the relationship between the input and output image, we use a multilayer, patch-based method rather than operate on entire images. Furthermore, we draw negatives from within the input 4D CBCT rather than from the rest of the dataset. Main results. The results showed that the streak and motion artifacts were significantly suppressed. The spatial resolution of the pulmonary vessels and microstructure were also improved. To demonstrate the results in the different directions, we make the animation to show the different views of the predicted correction image in the supplementary animation. Significance. The proposed method can be integrated into any 4D CBCT reconstruction method and maybe a practical way to enhance the image quality of the 4D CBCT.
Collapse
|
44
|
Leuliet T, Maxim V, Peyrin F, Sixou B. Impact of the training loss in deep learning based CT reconstruction of bone microarchitecture. Med Phys 2022; 49:2952-2964. [PMID: 35218039 DOI: 10.1002/mp.15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/23/2021] [Accepted: 02/13/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Computed tomography (CT) is a technique of choice to image bone structure at different scales. Methods to enhance the quality of degraded reconstructions obtained from low-dose CT data have shown impressive results recently, especially in the realm of supervised deep learning. As the choice of the loss function affects the reconstruction quality, it is necessary to focus on the way neural networks evaluate the correspondence between predicted and target images during the training stage. This is even more true in the case of bone microarchitecture imaging at high spatial resolution where both the quantitative analysis of Bone Mineral Density (BMD) and bone microstructure are essential for assessing diseases such as osteoporosis. Our aim is thus to evaluate the quality of reconstruction on key metrics for diagnosis depending on the loss function that has been used for training the neural network. METHODS We compare and analyze volumes that are reconstructed with neural networks trained with pixelwise, structural and adversarial loss functions or with a combination of them. We perform realistic simulations of various low-dose acquisitions of bone microarchitecture. Our comparative study is performed with metrics that have an interest regarding the diagnosis of bone diseases. We therefore focus on bone-specific metrics such as BV/TV, resolution, connectivity assessed with the Euler number and quantitative analysis of BMD to evaluate the quality of reconstruction obtained with networks trained with the different loss functions. RESULTS We find that using L1 norm as the pixelwise loss is the best choice compared to L2 or no pixelwise loss since it improves resolution without deteriorating other metrics. VGG perceptual loss, especially when combined with an adversarial loss, allows to better retrieve topological and morphological parameters of bone microarchitecture compared to SSIM. This however leads to a decreased resolution performance. The adversarial loss enchances the reconstruction performance in terms of BMD distribution accuracy. CONCLUSIONS In order to retrieve the quantitative and structural characteristics of bone microarchitecture that are essential for post-reconstruction diagnosis, our results suggest to use L1 norm as part of the loss function. Then, trade-offs should be made depending on the application: VGG perceptual loss improves accuracy in terms of connectivity at the cost of a deteriorated resolution, and adversarial losses help better retrieve BMD distribution while significantly increasing the training time. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Théo Leuliet
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| | - Voichiţa Maxim
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| | - Françoise Peyrin
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| | - Bruno Sixou
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| |
Collapse
|
45
|
Zarei M, Sotoudeh-Paima S, Abadi E, Samei E. A truth-based primal-dual learning approach to reconstruct CT images utilizing the virtual imaging trial platform. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12031:120313B. [PMID: 35574204 PMCID: PMC9101919 DOI: 10.1117/12.2613168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inherent to Computed tomography (CT) is image reconstruction, constructing 3D voxel values from noisy projection data. Modeling this inverse operation is not straightforward. Given the ill-posed nature of inverse problem in CT reconstruction, data-driven methods need regularization to enhance the accuracy of the reconstructed images. Besides, generalization of the results hinges upon the availability of large training datasets with access to ground truth. This paper offers a new strategy to reconstruct CT images with the advantage of ground truth accessible through a virtual imaging trial (VIT) platform. A learned primal-dual deep neural network (LPD-DNN) employed the forward model and its adjoint as a surrogate of the imaging's geometry and physics. VIT offered simulated CT projections paired with ground truth labels from anthropomorphic human models without image noise and resolution degradation. The models included a library of anthropomorphic, computational patient models (XCAT). The DukeSim simulator was utilized to form realistic projection data emulating the impact of the physics and geometry of a commercial-equivalent CT scanner. The resultant noisy sinogram data associated with each slice was thus generated for training. Corresponding linear attenuation coefficients of phantoms' materials at the effective energy of the x-ray spectrum were used as the ground truth labels. The LPD-DNN was deployed to learn the complex operators and hyper-parameters in the proximal primal-dual optimization. The obtained validation results showed a 12% normalized root mean square error with respect to the ground truth labels, a peak signal-to-noise ratio of 32 dB, a signal-to-noise ratio of 1.5, and a structural similarity index of 96%. These results were highly favorable compared to standard filtered-back projection reconstruction (65%, 17 dB, 1.0, 26%).
Collapse
Affiliation(s)
- Mojtaba Zarei
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories
- Department of Radiology, Duke University School of Medicine
- Dept. of Electrical & Computer Engineering, Pratt School of Engineering, Duke University
| | - Saman Sotoudeh-Paima
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories
- Department of Radiology, Duke University School of Medicine
- Dept. of Electrical & Computer Engineering, Pratt School of Engineering, Duke University
| | - Ehsan Abadi
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories
- Department of Radiology, Duke University School of Medicine
- Dept. of Electrical & Computer Engineering, Pratt School of Engineering, Duke University
| | - Ehsan Samei
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories
- Department of Radiology, Duke University School of Medicine
- Dept. of Electrical & Computer Engineering, Pratt School of Engineering, Duke University
| |
Collapse
|
46
|
Fu Y, Zhang H, Morris ED, Glide-Hurst CK, Pai S, Traverso A, Wee L, Hadzic I, Lønne PI, Shen C, Liu T, Yang X. Artificial Intelligence in Radiation Therapy. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:158-181. [PMID: 35992632 PMCID: PMC9385128 DOI: 10.1109/trpms.2021.3107454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Artificial intelligence (AI) has great potential to transform the clinical workflow of radiotherapy. Since the introduction of deep neural networks, many AI-based methods have been proposed to address challenges in different aspects of radiotherapy. Commercial vendors have started to release AI-based tools that can be readily integrated to the established clinical workflow. To show the recent progress in AI-aided radiotherapy, we have reviewed AI-based studies in five major aspects of radiotherapy including image reconstruction, image registration, image segmentation, image synthesis, and automatic treatment planning. In each section, we summarized and categorized the recently published methods, followed by a discussion of the challenges, concerns, and future development. Given the rapid development of AI-aided radiotherapy, the efficiency and effectiveness of radiotherapy in the future could be substantially improved through intelligent automation of various aspects of radiotherapy.
Collapse
Affiliation(s)
- Yabo Fu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Hao Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric D. Morris
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Carri K. Glide-Hurst
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Suraj Pai
- Maastricht University Medical Centre, Netherlands
| | | | - Leonard Wee
- Maastricht University Medical Centre, Netherlands
| | | | - Per-Ivar Lønne
- Department of Medical Physics, Oslo University Hospital, PO Box 4953 Nydalen, 0424 Oslo, Norway
| | - Chenyang Shen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75002, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
47
|
Montoya JC, Zhang C, Li Y, Li K, Chen GH. Reconstruction of three-dimensional tomographic patient models for radiation dose modulation in CT from two scout views using deep learning. Med Phys 2022; 49:901-916. [PMID: 34908175 PMCID: PMC9080958 DOI: 10.1002/mp.15414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND A tomographic patient model is essential for radiation dose modulation in x-ray computed tomography (CT). Currently, two-view scout images (also known as topograms) are used to estimate patient models with relatively uniform attenuation coefficients. These patient models do not account for the detailed anatomical variations of human subjects, and thus, may limit the accuracy of intraview or organ-specific dose modulations in emerging CT technologies. PURPOSE The purpose of this work was to show that 3D tomographic patient models can be generated from two-view scout images using deep learning strategies, and the reconstructed 3D patient models indeed enable accurate prescriptions of fluence-field modulated or organ-specific dose delivery in the subsequent CT scans. METHODS CT images and the corresponding two-view scout images were retrospectively collected from 4214 individual CT exams. The collected data were curated for the training of a deep neural network architecture termed ScoutCT-NET to generate 3D tomographic attenuation models from two-view scout images. The trained network was validated using a cohort of 55 136 images from 212 individual patients. To evaluate the accuracy of the reconstructed 3D patient models, radiation delivery plans were generated using ScoutCT-NET 3D patient models and compared with plans prescribed based on true CT images (gold standard) for both fluence-field-modulated CT and organ-specific CT. Radiation dose distributions were estimated using Monte Carlo simulations and were quantitatively evaluated using the Gamma analysis method. Modulated dose profiles were compared against state-of-the-art tube current modulation schemes. Impacts of ScoutCT-NET patient model-based dose modulation schemes on universal-purpose CT acquisitions and organ-specific acquisitions were also compared in terms of overall image appearance, noise magnitude, and noise uniformity. RESULTS The results demonstrate that (1) The end-to-end trained ScoutCT-NET can be used to generate 3D patient attenuation models and demonstrate empirical generalizability. (2) The 3D patient models can be used to accurately estimate the spatial distribution of radiation dose delivered by standard helical CTs prior to the actual CT acquisition; compared to the gold-standard dose distribution, 95.0% of the voxels in the ScoutCT-NET based dose maps have acceptable gamma values for 5 mm distance-to-agreement and 10% dose difference. (3) The 3D patient models also enabled accurate prescription of fluence-field modulated CT to generate a more uniform noise distribution across the patient body compared to tube current-modulated CT. (4) ScoutCT-NET 3D patient models enabled accurate prescription of organ-specific CT to boost image quality for a given body region-of-interest under a given radiation dose constraint. CONCLUSION 3D tomographic attenuation models generated by ScoutCT-NET from two-view scout images can be used to prescribe fluence-field-modulated or organ-specific CT scans with high accuracy for the overall objective of radiation dose reduction or image quality improvement for a given imaging task.
Collapse
Affiliation(s)
- Juan C Montoya
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Chengzhu Zhang
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yinsheng Li
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ke Li
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Guang-Hong Chen
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
48
|
Wang Y, Cai A, Liang N, Yu X, Zhong X, Li L, Yan B. One half-scan dual-energy CT imaging using the Dual-domain Dual-way Estimated Network (DoDa-Net) model. Quant Imaging Med Surg 2022; 12:653-674. [PMID: 34993109 DOI: 10.21037/qims-21-441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/27/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Compared with single-energy computed tomography (CT), dual-energy CT (DECT) can distinguish materials better. However, most DECT reconstruction theories require two full-scan projection datasets of different energies, and this requirement is hard to meet, especially for cases where a physical blockage disables a full circular rotation. Thus, it is critical to relax the requirements of data acquisition to promote the application of DECT. METHODS A flexible one half-scan DECT scheme is proposed, which acquires two projection datasets on two-quarter arcs (one for each energy). The limited-angle problem of the one half-scan DECT scheme can be solved by a reconstruction method. Thus, a dual-domain dual-way estimation network called DoDa-Net is proposed by utilizing the ability of deep learning in non-linear mapping. Specifically, the dual-way mapping Generative Adversarial Network (DM-GAN) was first designed to mine the relationship between two different energy projection data. Two half-scan projection datasets were obtained, the data of which was twice that of the original projection dataset. Furthermore, the data transformation from the projection domain to the image domain was realized by the total variation (TV)-based method. In addition, the image processing network (Im-Net) was employed to optimize the image domain data. RESULTS The proposed method was applied to a digital phantom and real anthropomorphic head phantom data to verify its effectiveness. The reconstruction results of the real data are encouraging and prove the proposed method's ability to suppress noise while preserving image details. Also, the experiments conducted on simulated data show that the proposed method obtains the closest results to the ground truth among the comparison methods. For low- and high-energy reconstruction, the peak signal-to-noise ratio (PSNR) of the proposed method is as high as 40.3899 and 40.5573 dB, while the PSNR of other methods is lower than 36.5200 dB. Compared with FBP, TV, and other GAN-based methods, the proposed method reduces root mean square error (RMSE) by, respectively, 0.0124, 0.0037, and 0.0016 for low-energy reconstruction, and 0.0102, 0.0028, and 0.0015 for high-energy reconstruction. CONCLUSIONS The developed DoDa-Net model for the proposed one half-scan DECT scheme consists of two stages. In stage one, DM-GAN is used to realize the dual map of projection data. In stage two, the TV-based method is employed to transform the data from the projection domain to the image domain. Furthermore, the reconstructed image is processed by the Im-Net. According to the experimental results of qualitative and quantitative evaluation, the proposed method has advantages in detail preservation, indicating the potential of the proposed method in one half-scan DECT reconstruction.
Collapse
Affiliation(s)
- Yizhong Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Ailong Cai
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Ningning Liang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Xiaohuan Yu
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Xinyi Zhong
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Lei Li
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| |
Collapse
|
49
|
Zeng D, Wang L, Geng M, Li S, Deng Y, Xie Q, Li D, Zhang H, Li Y, Xu Z, Meng D, Ma J. Noise-Generating-Mechanism-Driven Unsupervised Learning for Low-Dose CT Sinogram Recovery. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3083361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
End-to-End Deep Learning CT Image Reconstruction for Metal Artifact Reduction. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metal artifacts are common in CT-guided interventions due to the presence of metallic instruments. These artifacts often obscure clinically relevant structures, which can complicate the intervention. In this work, we present a deep learning CT reconstruction called iCTU-Net for the reduction of metal artifacts. The network emulates the filtering and back projection steps of the classical filtered back projection (FBP). A U-Net is used as post-processing to refine the back projected image. The reconstruction is trained end-to-end, i.e., the inputs of the iCTU-Net are sinograms and the outputs are reconstructed images. The network does not require a predefined back projection operator or the exact X-ray beam geometry. Supervised training is performed on simulated interventional data of the abdomen. For projection data exhibiting severe artifacts, the iCTU-Net achieved reconstructions with SSIM = 0.970±0.009 and PSNR = 40.7±1.6. The best reference method, an image based post-processing network, only achieved SSIM = 0.944±0.024 and PSNR = 39.8±1.9. Since the whole reconstruction process is learned, the network was able to fully utilize the raw data, which benefited from the removal of metal artifacts. The proposed method was the only studied method that could eliminate the metal streak artifacts.
Collapse
|