Vorobyev V, Shchelokova A, Efimtcev A, Baena JD, Abdeddaim R, Belov P, Melchakova I, Glybovski S. Improving
B 1 + homogeneity in abdominal imaging at 3 T with light, flexible, and compact metasurface.
Magn Reson Med 2021;
87:496-508. [PMID:
34314033 DOI:
10.1002/mrm.28946]
[Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE
Radiofrequency field inhomogeneity is a significant issue in imaging large fields of view in high- and ultrahigh-field MRI. Passive shimming with coupled coils or dielectric pads is the most common approach at 3 T. We introduce and test light and compact metasurface, providing the same homogeneity improvement in clinical abdominal imaging at 3 T as a conventional dielectric pad.
METHODS
The metasurface comprising a periodic structure of copper strips and parallel-plate capacitive elements printed on a flexible polyimide substrate supports propagation of slow electromagnetic waves similar to a high-permittivity slab. We compare the metasurface operating inside a transmit body birdcage coil to the state-of-the-art pad by numerical simulations and in vivo study on healthy volunteers.
RESULTS
Numerical simulations with different body models show that the local minimum of B 1 + causing a dark void in the abdominal domain is removed by the metasurface with comparable resulting homogeneity as for the pad with decreasing maximum and whole-body SAR values. In vivo results confirm similar homogeneity improvement and demonstrate the stability to body mass index.
CONCLUSION
The light, flexible, and inexpensive metasurface can replace a relatively heavy and expensive pad based on the aqueous suspension of barium titanate in abdominal imaging at 3 T.
Collapse