1
|
Mishra A, Bhusnur S, Mishra SK, Singh P. Comparative analysis of parametric B-spline and Hermite cubic spline based methods for accurate ECG signal modeling. J Electrocardiol 2024; 86:153783. [PMID: 39213712 DOI: 10.1016/j.jelectrocard.2024.153783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Analyzing Electrocardiogram (ECG) signals is imperative for diagnosing cardiovascular diseases. However, evaluating ECG analysis techniques faces challenges due to noise and artifacts in actual signals. Machine learning for automatic diagnosis encounters data acquisition hurdles due to medical data privacy constraints. Addressing these issues, ECG modeling assumes a crucial role in biomedical and parametric spline-based methods have garnered significant attention for their ability to accurately represent the complex temporal dynamics of ECG signals. This study conducts a comparative analysis of two parametric spline-based methods-B-spline and Hermite cubic spline-for ECG modeling, aiming to identify the most effective approach for accurate and reliable ECG representation. The Hermite cubic spline serves as one of the most effective interpolation methods, while B-spline is an approximation method. The comparative analysis includes both qualitative and quantitative evaluations. Qualitative assessment involves visually inspecting the generated spline-based models, comparing their resemblance to the original ECG signals, and employing power spectrum analysis. Quantitative analysis incorporates metrics such as root mean square error (RMSE), Percentage Root Mean Square Difference (PRD) and cross correlation, offering a more objective measure of the model's performance. Preliminary results indicate promising capabilities for both spline-based methods in representing ECG signals. However, the analysis unveils specific strengths and weaknesses for each method. The B-spline method offers greater flexibility and smoothness, while the cubic spline method demonstrates superior waveform capturing abilities with the preservation of control points, a critical aspect in the medical field. Presented research provides valuable insights for researchers and practitioners in selecting the most appropriate method for their specific ECG modeling requirements. Adjustments to control points and parameterization enable the generation of diverse ECG waveforms, enhancing the versatility of this modeling technique. This approach has the potential to extend its utility to other medical signals, presenting a promising avenue for advancing biomedical research.
Collapse
Affiliation(s)
- Alka Mishra
- Bhilai Institute of Technology, Bhilai House, Durg, Chhattisgarh 491001, India.
| | - Surekha Bhusnur
- Bhilai Institute of Technology, Bhilai House, Durg, Chhattisgarh 491001, India
| | | | - Pushpendra Singh
- Bhilai Institute of Technology, Bhilai House, Durg, Chhattisgarh 491001, India
| |
Collapse
|
2
|
Wang Q, Chen X, Wang D, Wang Z, Zhang X, Xie N, Liu L. Regularization Solver Guided FISTA for Electrical Impedance Tomography. SENSORS (BASEL, SWITZERLAND) 2023; 23:2233. [PMID: 36850826 PMCID: PMC9964865 DOI: 10.3390/s23042233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Electrical impedance tomography (EIT) is non-destructive monitoring technology that can visualize the conductivity distribution in the observed area. The inverse problem for imaging is characterized by a serious nonlinear and ill-posed nature, which leads to the low spatial resolution of the reconstructions. The iterative algorithm is an effective method to deal with the imaging inverse problem. However, the existing iterative imaging methods have some drawbacks, such as random and subjective initial parameter setting, very time consuming in vast iterations and shape blurring with less high-order information, etc. To solve these problems, this paper proposes a novel fast convergent iteration method for solving the inverse problem and designs an initial guess method based on an adaptive regularization parameter adjustment. This method is named the Regularization Solver Guided Fast Iterative Shrinkage Threshold Algorithm (RS-FISTA). The iterative solution process under the L1-norm regular constraint is derived in the LASSO problem. Meanwhile, the Nesterov accelerator is introduced to accelerate the gradient optimization race in the ISTA method. In order to make the initial guess contain more prior information and be independent of subjective factors such as human experience, a new adaptive regularization weight coefficient selection method is introduced into the initial conjecture of the FISTA iteration as it contains more accurate prior information of the conductivity distribution. The RS-FISTA method is compared with the methods of Landweber, CG, NOSER, Newton-Raphson, ISTA and FISTA, six different distributions with their optimal parameters. The SSIM, RMSE and PSNR of RS-FISTA methods are 0.7253, 3.44 and 37.55, respectively. In the performance test of convergence, the evaluation metrics of this method are relatively stable at 30 iterations. This shows that the proposed method not only has better visualization, but also has fast convergence. It is verified that the RS-FISTA algorithm is the better algorithm for EIT reconstruction from both simulation and physical experiments.
Collapse
Affiliation(s)
- Qian Wang
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoyan Chen
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Di Wang
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zichen Wang
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinyu Zhang
- College of Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Na Xie
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lili Liu
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Liu X, Zhang T, Ye J, Tian X, Zhang W, Yang B, Dai M, Xu C, Fu F. Fast Iterative Shrinkage-Thresholding Algorithm with Continuation for Brain Injury Monitoring Imaging Based on Electrical Impedance Tomography. SENSORS (BASEL, SWITZERLAND) 2022; 22:9934. [PMID: 36560297 PMCID: PMC9783778 DOI: 10.3390/s22249934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However, brain injury monitoring by EIT imaging suffers from image noise (IN) and resolution problems, causing blurred reconstructions. To address these problems, a least absolute shrinkage and selection operator model is built, and a fast iterative shrinkage-thresholding algorithm with continuation (FISTA-C) is proposed. Results of numerical simulations and head phantom experiments indicate that FISTA-C reduces IN by 63.2%, 47.2%, and 29.9% and 54.4%, 44.7%, and 22.7%, respectively, when compared with the damped least-squares algorithm, the split Bergman, and the FISTA algorithms. When the signal-to-noise ratio of the measurements is 80-50 dB, FISTA-C can reduce IN by 83.3%, 72.3%, and 68.7% on average when compared with the three algorithms, respectively. Both simulation and phantom experiments suggest that FISTA-C produces the best image resolution and can identify the two closest targets. Moreover, FISTA-C is more practical for clinical application because it does not require excessive parameter adjustments. This technology can provide better reconstruction performance and significantly outperforms the traditional algorithms in terms of IN and resolution and is expected to offer a general algorithm for brain injury monitoring imaging via EIT.
Collapse
Affiliation(s)
- Xuechao Liu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| | - Tao Zhang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Drug and Instrument Supervision and Inspection Station, Xining Joint Logistics Support Center, Lanzhou 730050, China
| | - Jian’an Ye
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Xiang Tian
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Weirui Zhang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Bin Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| | - Meng Dai
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| | - Canhua Xu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| | - Feng Fu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| |
Collapse
|
4
|
Zhang T, Tian X, Liu X, Ye J, Fu F, Shi X, Liu R, Xu C. Advances of deep learning in electrical impedance tomography image reconstruction. Front Bioeng Biotechnol 2022; 10:1019531. [PMID: 36588934 PMCID: PMC9794741 DOI: 10.3389/fbioe.2022.1019531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Electrical impedance tomography (EIT) has been widely used in biomedical research because of its advantages of real-time imaging and nature of being non-invasive and radiation-free. Additionally, it can reconstruct the distribution or changes in electrical properties in the sensing area. Recently, with the significant advancements in the use of deep learning in intelligent medical imaging, EIT image reconstruction based on deep learning has received considerable attention. This study introduces the basic principles of EIT and summarizes the application progress of deep learning in EIT image reconstruction with regards to three aspects: a single network reconstruction, deep learning combined with traditional algorithm reconstruction, and multiple network hybrid reconstruction. In future, optimizing the datasets may be the main challenge in applying deep learning for EIT image reconstruction. Adopting a better network structure, focusing on the joint reconstruction of EIT and traditional algorithms, and using multimodal deep learning-based EIT may be the solution to existing problems. In general, deep learning offers a fresh approach for improving the performance of EIT image reconstruction and could be the foundation for building an intelligent integrated EIT diagnostic system in the future.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China,Drug and Instrument Supervision and Inspection Station, Xining Joint Logistics Support Center, Lanzhou, China
| | - Xiang Tian
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - XueChao Liu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - JianAn Ye
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - Feng Fu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - XueTao Shi
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - RuiGang Liu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - CanHua Xu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China,*Correspondence: CanHua Xu,
| |
Collapse
|
5
|
Santos TBR, Nakanishi RM, de Camargo EDLB, Amato MBP, Kaipio JP, Lima RG, Mueller JL. Improved resolution of D-bar images of ventilation using a Schur complement property and an anatomical atlas. Med Phys 2022; 49:4653-4670. [PMID: 35411573 PMCID: PMC9544658 DOI: 10.1002/mp.15669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Electrical impedance tomography (EIT) is a nonionizing imaging technique for real-time imaging of ventilation of patients with respiratory distress. Cross-sectional dynamic images are formed by reconstructing the conductivity distribution from measured voltage data arising from applied alternating currents on electrodes placed circumferentially around the chest. Since the conductivity of lung tissue depends on air content, blood flow, and the presence of pathology, the dynamic images provide regional information about ventilation, pulsatile perfusion, and abnormalities. However, due to the ill-posedness of the inverse conductivity problem, EIT images have a coarse spatial resolution. One method of improving the resolution is to include prior information in the reconstruction. PURPOSE In this work, we propose a technique in which a statistical prior built from an anatomical atlas is used to postprocess EIT reconstructions of human chest data. The effectiveness of the method is demonstrated on data from two patients with cystic fibrosis. METHODS A direct reconstruction algorithm known as the D-bar method was used to compute a two-dimensional reconstruction of the conductivity distribution in the plane of the electrodes. Reconstructions using one step in an iterative (regularized) Newton's method were also computed for comparison. An anatomical atlas consisting of 1589 synthetic EIT images computed from X-ray computed tomography (CT) scans of 74 adult male subjects was computed for use as a statistical prior. The resolution of the D-bar images was then improved by maximizing the conditional probability density function of an image that is consistent with the a priori information and the statistical model. A new method to evaluate the accuracy of the EIT images using CT scans of the imaged patient as ground truth is presented. The novel approach is tested on data from two patients with cystic fibrosis. RESULTS AND CONCLUSIONS The D-bar images resulted in better structural similarity index measures (SSIM) and multiscale (MS) SSIM measures for both subjects using the mask or amplitude evaluation approach than the one-step (regularized) Newton's method. Further improvement was achieved using the Schur complement (SC) approach, with MS-SSIM values of 0.718 and 0.682 using SC evaluated with the mask and amplitude approach, respectively, for Patient 1, and MS-SSIM values of 0.726 and 0.692 using SC evaluated with the mask and amplitude approach, respectively, for Patient 2. The results from applying an anatomical atlas and statistical prior to EIT data from two patients with cystic fibrosis suggest that the spatial resolution of the EIT image can be improved to reveal pathology that may be difficult to discern in the original EIT image. The novel metric of evaluation is consistent with the appearance of improved spatial resolution and provides a new way to evaluate the accuracy of EIT reconstructions when a CT scan is available.
Collapse
Affiliation(s)
| | - Rafael Mikio Nakanishi
- Mechanical Engineering DepartmentPolytechnic School of the University of São PauloSão PauloSPBrazil
| | | | | | - Jari P. Kaipio
- Department of MathematicsUniversity of AucklandNew Zealand
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Raul Gonzalez Lima
- Mechanical Engineering DepartmentPolytechnic School of the University of São PauloSão PauloSPBrazil
| | - Jennifer L. Mueller
- Department of Mathematics and School of Biomedical Engineering and the Department of Electrical and Computer EngineeringColorado State UniversityColoradoUSA
| |
Collapse
|
6
|
Calderón's Method with a Spatial Prior for 2-D EIT Imaging of Ventilation and Perfusion. SENSORS 2021; 21:s21165635. [PMID: 34451077 PMCID: PMC8402350 DOI: 10.3390/s21165635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Bedside imaging of ventilation and perfusion is a leading application of 2-D medical electrical impedance tomography (EIT), in which dynamic cross-sectional images of the torso are created by numerically solving the inverse problem of computing the conductivity from voltage measurements arising on electrodes due to currents applied on electrodes on the surface. Methods of reconstruction may be direct or iterative. Calderón’s method is a direct reconstruction method based on complex geometrical optics solutions to Laplace’s equation capable of providing real-time reconstructions in a region of interest. In this paper, the importance of accurate modeling of the electrode location on the body is demonstrated on simulated and experimental data, and a method of including a priori spatial information in dynamic human subject data is presented. The results of accurate electrode modeling and a spatial prior are shown to improve detection of inhomogeneities not included in the prior and to improve the resolution of ventilation and perfusion images in a human subject.
Collapse
|
7
|
Liu D, Gu D, Smyl D, Khambampati AK, Deng J, Du J. Shape-Driven EIT Reconstruction Using Fourier Representations. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:481-490. [PMID: 33044928 DOI: 10.1109/tmi.2020.3030024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Shape-driven approaches have been proposed as an effective strategy for the electrical impedance tomography (EIT) reconstruction problem in recent years. In order to augment the shape-driven approaches, we propose a new method that transforms the shape to be reconstructed as basic primitives directly modeled by using Fourier representations. To allow automatic topological changes between the basic primitives and surrounding objects simultaneously, Boolean operations are employed. The Boolean operations with direct representation of primitives can be utilized for dimensionality and ill-posedness reduction, enabling feasible shape and topology optimization with shape-driven approaches. As a proof of principle, we leverage the proposed method for two dimensional shape reconstruction in EIT with various conductivity distributions. We demonstrate that our method is able to improve EIT reconstructions by enabling accurate shape and topology optimization.
Collapse
|
8
|
Liu D, Smyl D, Gu D, Du J. Shape-Driven Difference Electrical Impedance Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3801-3812. [PMID: 32746122 DOI: 10.1109/tmi.2020.3004806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work proposes a novel shape-driven reconstruction approach for difference electrical impedance tomography (EIT). In the proposed approach, the reconstruction problem is formulated as a shape reconstruction problem and solved via an explicit and geometrical methodology, where the geometry of the embedded inclusions is represented by a shape and topology description function (STDF). To incorporate more geometry and prior information directly into the reconstruction and to provide better flexibility in the solution process, the concept of a moving morphable component (MMC) is applied here implying that MMC is treated as the basic building block of the embedded inclusions. Simulations, phantom studies, and in vivo pig data are used to test the proposed approach for the most popular biomedical application of EIT - lung imaging - and the performance is compared with the conventional linear approach. In addition, the modality's robustness is studied in cases where (i) modeling errors are caused by inhomogeneity in the background conductivity, and (ii) uncertainties in the contact impedances and reference state are present. The results of this work indicate that the proposed approach is tolerant to modeling errors and is fairly robust to typical EIT uncertainties, producing greatly improved image quality compared to the conventional linear approach.
Collapse
|
9
|
Liu D, Gu D, Smyl D, Deng J, Du J. Shape Reconstruction Using Boolean Operations in Electrical Impedance Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2954-2964. [PMID: 32217471 DOI: 10.1109/tmi.2020.2983055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we propose a new shape reconstruction framework rooted in the concept of Boolean operations for electrical impedance tomography (EIT). Within the framework, the evolution of inclusion shapes and topologies are simultaneously estimated through an explicit boundary description. For this, we use B-spline curves as basic shape primitives for shape reconstruction and topology optimization. The effectiveness of the proposed approach is demonstrated using simulated and experimentally-obtained data (testing EIT lung imaging). In the study, improved preservation of sharp features is observed when employing the proposed approach relative to the recently developed moving morphable components-based approach. In addition, robustness studies of the proposed approach considering background inhomogeneity and differing numbers of B-spline curve control points are performed. It is found that the proposed approach is tolerant to modeling errors caused by background inhomogeneity and is also quite robust to the selection of control points.
Collapse
|