1
|
Thies M, Wagner F, Maul N, Yu H, Goldmann M, Schneider LS, Gu M, Mei S, Folle L, Preuhs A, Manhart M, Maier A. A Gradient-Based Approach to Fast and Accurate Head Motion Compensation in Cone-Beam CT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:1098-1109. [PMID: 39365718 DOI: 10.1109/tmi.2024.3474250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Cone-beam computed tomography (CBCT) systems, with their flexibility, present a promising avenue for direct point-of-care medical imaging, particularly in critical scenarios such as acute stroke assessment. However, the integration of CBCT into clinical workflows faces challenges, primarily linked to long scan duration resulting in patient motion during scanning and leading to image quality degradation in the reconstructed volumes. This paper introduces a novel approach to CBCT motion estimation using a gradient-based optimization algorithm, which leverages generalized derivatives of the backprojection operator for cone-beam CT geometries. Building on that, a fully differentiable target function is formulated which grades the quality of the current motion estimate in reconstruction space. We drastically accelerate motion estimation yielding a 19-fold speed-up compared to existing methods. Additionally, we investigate the architecture of networks used for quality metric regression and propose predicting voxel-wise quality maps, favoring autoencoder-like architectures over contracting ones. This modification improves gradient flow, leading to more accurate motion estimation. The presented method is evaluated through realistic experiments on head anatomy. It achieves a reduction in reprojection error from an initial average of 3mm to 0.61mm after motion compensation and consistently demonstrates superior performance compared to existing approaches. The analytic Jacobian for the backprojection operation, which is at the core of the proposed method, is made publicly available. In summary, this paper contributes to the advancement of CBCT integration into clinical workflows by proposing a robust motion estimation approach that enhances efficiency and accuracy, addressing critical challenges in time-sensitive scenarios.
Collapse
|
2
|
Lu A, Huang H, Hu Y, Zbijewski W, Unberath M, Siewerdsen JH, Weiss CR, Sisniega A. Vessel-targeted compensation of deformable motion in interventional cone-beam CT. Med Image Anal 2024; 97:103254. [PMID: 38968908 PMCID: PMC11365791 DOI: 10.1016/j.media.2024.103254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
The present standard of care for unresectable liver cancer is transarterial chemoembolization (TACE), which involves using chemotherapeutic particles to selectively embolize the arteries supplying hepatic tumors. Accurate volumetric identification of intricate fine vascularity is crucial for selective embolization. Three-dimensional imaging, particularly cone-beam CT (CBCT), aids in visualization and targeting of small vessels in such highly variable anatomy, but long image acquisition time results in intra-scan patient motion, which distorts vascular structures and tissue boundaries. To improve clarity of vascular anatomy and intra-procedural utility, this work proposes a targeted motion estimation and compensation framework that removes the need for any prior information or external tracking and for user interaction. Motion estimation is performed in two stages: (i) a target identification stage that segments arteries and catheters in the projection domain using a multi-view convolutional neural network to construct a coarse 3D vascular mask; and (ii) a targeted motion estimation stage that iteratively solves for the time-varying motion field via optimization of a vessel-enhancing objective function computed over the target vascular mask. The vessel-enhancing objective is derived through eigenvalues of the local image Hessian to emphasize bright tubular structures. Motion compensation is achieved via spatial transformer operators that apply time-dependent deformations to partial angle reconstructions, allowing efficient minimization via gradient backpropagation. The framework was trained and evaluated in anatomically realistic simulated motion-corrupted CBCTs mimicking TACE of hepatic tumors, at intermediate (3.0 mm) and large (6.0 mm) motion magnitudes. Motion compensation substantially improved median vascular DICE score (from 0.30 to 0.59 for large motion), image SSIM (from 0.77 to 0.93 for large motion), and vessel sharpness (0.189 mm-1 to 0.233 mm-1 for large motion) in simulated cases. Motion compensation also demonstrated increased vessel sharpness (0.188 mm-1 before to 0.205 mm-1 after) and reconstructed vessel length (median increased from 37.37 to 41.00 mm) on a clinical interventional CBCT. The proposed anatomy-aware motion compensation framework presented a promising approach for improving the utility of CBCT for intra-procedural vascular imaging, facilitating selective embolization procedures.
Collapse
Affiliation(s)
- Alexander Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, Traylor Research Building, #622 720 Rutland Avenue Baltimore MD 21205, USA
| | - Heyuan Huang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, Traylor Research Building, #622 720 Rutland Avenue Baltimore MD 21205, USA
| | - Yicheng Hu
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Wojciech Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, Traylor Research Building, #622 720 Rutland Avenue Baltimore MD 21205, USA
| | - Mathias Unberath
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, Traylor Research Building, #622 720 Rutland Avenue Baltimore MD 21205, USA; Departments of Imaging Physics, Radiation Physics, and Neurosurgery, The University of Texas M.D. Anderson Cancer Center, TX, USA
| | - Clifford R Weiss
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Alejandro Sisniega
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, Traylor Research Building, #622 720 Rutland Avenue Baltimore MD 21205, USA.
| |
Collapse
|
3
|
Huang H, Liu Y, Siewerdsen JH, Lu A, Hu Y, Zbijewski W, Unberath M, Weiss CR, Sisniega A. Deformable motion compensation in interventional cone-beam CT with a context-aware learned autofocus metric. Med Phys 2024; 51:4158-4180. [PMID: 38733602 DOI: 10.1002/mp.17125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
PURPOSE Interventional Cone-Beam CT (CBCT) offers 3D visualization of soft-tissue and vascular anatomy, enabling 3D guidance of abdominal interventions. However, its long acquisition time makes CBCT susceptible to patient motion. Image-based autofocus offers a suitable platform for compensation of deformable motion in CBCT, but it relies on handcrafted motion metrics based on first-order image properties and that lack awareness of the underlying anatomy. This work proposes a data-driven approach to motion quantification via a learned, context-aware, deformable metric,VI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ , that quantifies the amount of motion degradation as well as the realism of the structural anatomical content in the image. METHODS The proposedVI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ was modeled as a deep convolutional neural network (CNN) trained to recreate a reference-based structural similarity metric-visual information fidelity (VIF). The deep CNN acted on motion-corrupted images, providing an estimation of the spatial VIF map that would be obtained against a motion-free reference, capturing motion distortion, and anatomic plausibility. The deep CNN featured a multi-branch architecture with a high-resolution branch for estimation of voxel-wise VIF on a small volume of interest. A second contextual, low-resolution branch provided features associated to anatomical context for disentanglement of motion effects and anatomical appearance. The deep CNN was trained on paired motion-free and motion-corrupted data obtained with a high-fidelity forward projection model for a protocol involving 120 kV and 9.90 mGy. The performance ofVI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ was evaluated via metrics of correlation with ground truth VIF ${\bm{VIF}}$ and with the underlying deformable motion field in simulated data with deformable motion fields with amplitude ranging from 5 to 20 mm and frequency from 2.4 up to 4 cycles/scan. Robustness to variation in tissue contrast and noise levels was assessed in simulation studies with varying beam energy (90-120 kV) and dose (1.19-39.59 mGy). Further validation was obtained on experimental studies with a deformable phantom. Final validation was obtained via integration ofVI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ on an autofocus compensation framework, applied to motion compensation on experimental datasets and evaluated via metric of spatial resolution on soft-tissue boundaries and sharpness of contrast-enhanced vascularity. RESULTS The magnitude and spatial map ofVI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ showed consistent and high correlation levels with the ground truth in both simulation and real data, yielding average normalized cross correlation (NCC) values of 0.95 and 0.88, respectively. Similarly,VI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ achieved good correlation values with the underlying motion field, with average NCC of 0.90. In experimental phantom studies,VI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ properly reflects the change in motion amplitudes and frequencies: voxel-wise averaging of the localVI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ across the full reconstructed volume yielded an average value of 0.69 for the case with mild motion (2 mm, 12 cycles/scan) and 0.29 for the case with severe motion (12 mm, 6 cycles/scan). Autofocus motion compensation usingVI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ resulted in noticeable mitigation of motion artifacts and improved spatial resolution of soft tissue and high-contrast structures, resulting in reduction of edge spread function width of 8.78% and 9.20%, respectively. Motion compensation also increased the conspicuity of contrast-enhanced vascularity, reflected in an increase of 9.64% in vessel sharpness. CONCLUSION The proposedVI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ , featuring a novel context-aware architecture, demonstrated its capacity as a reference-free surrogate of structural similarity to quantify motion-induced degradation of image quality and anatomical plausibility of image content. The validation studies showed robust performance across motion patterns, x-ray techniques, and anatomical instances. The proposed anatomy- and context-aware metric poses a powerful alternative to conventional motion estimation metrics, and a step forward for application of deep autofocus motion compensation for guidance in clinical interventional procedures.
Collapse
Affiliation(s)
- Heyuan Huang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yixuan Liu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander Lu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yicheng Hu
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wojciech Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mathias Unberath
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Clifford R Weiss
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alejandro Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Huang H, Siewerdsen JH, Zbijewski W, Weiss CR, Unberath M, Ehtiati T, Sisniega A. Reference-free learning-based similarity metric for motion compensation in cone-beam CT. Phys Med Biol 2022; 67:10.1088/1361-6560/ac749a. [PMID: 35636391 PMCID: PMC9254028 DOI: 10.1088/1361-6560/ac749a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 11/12/2022]
Abstract
Purpose. Patient motion artifacts present a prevalent challenge to image quality in interventional cone-beam CT (CBCT). We propose a novel reference-free similarity metric (DL-VIF) that leverages the capability of deep convolutional neural networks (CNN) to learn features associated with motion artifacts within realistic anatomical features. DL-VIF aims to address shortcomings of conventional metrics of motion-induced image quality degradation that favor characteristics associated with motion-free images, such as sharpness or piecewise constancy, but lack any awareness of the underlying anatomy, potentially promoting images depicting unrealistic image content. DL-VIF was integrated in an autofocus motion compensation framework to test its performance for motion estimation in interventional CBCT.Methods. DL-VIF is a reference-free surrogate for the previously reported visual image fidelity (VIF) metric, computed against a motion-free reference, generated using a CNN trained using simulated motion-corrupted and motion-free CBCT data. Relatively shallow (2-ResBlock) and deep (3-Resblock) CNN architectures were trained and tested to assess sensitivity to motion artifacts and generalizability to unseen anatomy and motion patterns. DL-VIF was integrated into an autofocus framework for rigid motion compensation in head/brain CBCT and assessed in simulation and cadaver studies in comparison to a conventional gradient entropy metric.Results. The 2-ResBlock architecture better reflected motion severity and extrapolated to unseen data, whereas 3-ResBlock was found more susceptible to overfitting, limiting its generalizability to unseen scenarios. DL-VIF outperformed gradient entropy in simulation studies yielding average multi-resolution structural similarity index (SSIM) improvement over uncompensated image of 0.068 and 0.034, respectively, referenced to motion-free images. DL-VIF was also more robust in motion compensation, evidenced by reduced variance in SSIM for various motion patterns (σDL-VIF = 0.008 versusσgradient entropy = 0.019). Similarly, in cadaver studies, DL-VIF demonstrated superior motion compensation compared to gradient entropy (an average SSIM improvement of 0.043 (5%) versus little improvement and even degradation in SSIM, respectively) and visually improved image quality even in severely motion-corrupted images.Conclusion: The studies demonstrated the feasibility of building reference-free similarity metrics for quantification of motion-induced image quality degradation and distortion of anatomical structures in CBCT. DL-VIF provides a reliable surrogate for motion severity, penalizes unrealistic distortions, and presents a valuable new objective function for autofocus motion compensation in CBCT.
Collapse
Affiliation(s)
- H Huang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States of America
| | - W Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - C R Weiss
- Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, MD, United States of America
| | - M Unberath
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States of America
| | - T Ehtiati
- Siemens Medical Solutions USA, Inc., Imaging & Therapy Systems, Hoffman Estates, IL, United States of America
| | - A Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|