1
|
Guo S, Fessler JA, Noll DC. Manifold Regularizer for High-Resolution fMRI Joint Reconstruction and Dynamic Quantification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2937-2948. [PMID: 38526890 PMCID: PMC11368907 DOI: 10.1109/tmi.2024.3381197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Oscillating Steady-State Imaging (OSSI) is a recently developed fMRI acquisition method that can provide 2 to 3 times higher SNR than standard fMRI approaches. However, because the OSSI signal exhibits a nonlinear oscillation pattern, one must acquire and combine nc (e.g., 10) OSSI images to get an image that is free of oscillation for fMRI, and fully sampled acquisitions would compromise temporal resolution. To improve temporal resolution and accurately model the nonlinearity of OSSI signals, instead of using subspace models that are not well suited for the data, we build the MR physics for OSSI signal generation as a regularizer for the undersampled reconstruction. Our proposed physics-based manifold model turns the disadvantages of OSSI acquisition into advantages and enables joint reconstruction and quantification. OSSI manifold model (OSSIMM) outperforms subspace models and reconstructs high-resolution fMRI images with a factor of 12 acceleration and without spatial or temporal smoothing. Furthermore, OSSIMM can dynamically quantify important physics parameters, including R2∗ maps, with a temporal resolution of 150 ms.
Collapse
|
2
|
Sedighin F. Tensor Methods in Biomedical Image Analysis. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:16. [PMID: 39100745 PMCID: PMC11296571 DOI: 10.4103/jmss.jmss_55_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 08/06/2024]
Abstract
In the past decade, tensors have become increasingly attractive in different aspects of signal and image processing areas. The main reason is the inefficiency of matrices in representing and analyzing multimodal and multidimensional datasets. Matrices cannot preserve the multidimensional correlation of elements in higher-order datasets and this highly reduces the effectiveness of matrix-based approaches in analyzing multidimensional datasets. Besides this, tensor-based approaches have demonstrated promising performances. These together, encouraged researchers to move from matrices to tensors. Among different signal and image processing applications, analyzing biomedical signals and images is of particular importance. This is due to the need for extracting accurate information from biomedical datasets which directly affects patient's health. In addition, in many cases, several datasets have been recorded simultaneously from a patient. A common example is recording electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) of a patient with schizophrenia. In such a situation, tensors seem to be among the most effective methods for the simultaneous exploitation of two (or more) datasets. Therefore, several tensor-based methods have been developed for analyzing biomedical datasets. Considering this reality, in this paper, we aim to have a comprehensive review on tensor-based methods in biomedical image analysis. The presented study and classification between different methods and applications can show the importance of tensors in biomedical image enhancement and open new ways for future studies.
Collapse
Affiliation(s)
- Farnaz Sedighin
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Tan J, Zhang X, Qing C, Xu X. Fourier Domain Robust Denoising Decomposition and Adaptive Patch MRI Reconstruction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7299-7311. [PMID: 37015441 DOI: 10.1109/tnnls.2022.3222394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The sparsity of the Fourier transform domain has been applied to magnetic resonance imaging (MRI) reconstruction in k -space. Although unsupervised adaptive patch optimization methods have shown promise compared to data-driven-based supervised methods, the following challenges exist in MRI reconstruction: 1) in previous k -space MRI reconstruction tasks, MRI with noise interference in the acquisition process is rarely considered. 2) Differences in transform domains should be resolved to achieve the high-quality reconstruction of low undersampled MRI data. 3) Robust patch dictionary learning problems are usually nonconvex and NP-hard, and alternate minimization methods are often computationally expensive. In this article, we propose a method for Fourier domain robust denoising decomposition and adaptive patch MRI reconstruction (DDAPR). DDAPR is a two-step optimization method for MRI reconstruction in the presence of noise and low undersampled data. It includes the low-rank and sparse denoising reconstruction model (LSDRM) and the robust dictionary learning reconstruction model (RDLRM). In the first step, we propose LSDRM for different domains. For the optimization solution, the proximal gradient method is used to optimize LSDRM by singular value decomposition and soft threshold algorithms. In the second step, we propose RDLRM, which is an effective adaptive patch method by introducing a low-rank and sparse penalty adaptive patch dictionary and using a sparse rank-one matrix to approximate the undersampled data. Then, the block coordinate descent (BCD) method is used to optimize the variables. The BCD optimization process involves valid closed-form solutions. Extensive numerical experiments show that the proposed method has a better performance than previous methods in image reconstruction based on compressed sensing or deep learning.
Collapse
|
4
|
Razumov A, Rogov O, Dylov DV. Optimal MRI undersampling patterns for ultimate benefit of medical vision tasks. Magn Reson Imaging 2023; 103:37-47. [PMID: 37423471 DOI: 10.1016/j.mri.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Compressed sensing is commonly concerned with optimizing the image quality after a partial undersampling of the measurable k-space to accelerate MRI. In this article, we propose to change the focus from the quality of the reconstructed image to the quality of the downstream image analysis outcome. Specifically, we propose to optimize the patterns according to how well a sought-after pathology could be detected or localized in the reconstructed images. We find the optimal undersampling patterns in k-space that maximize target value functions of interest in commonplace medical vision problems (reconstruction, segmentation, and classification) and propose a new iterative gradient sampling routine universally suitable for these tasks. We validate the proposed MRI acceleration paradigm on three classical medical datasets, demonstrating a noticeable improvement of the target metrics at the high acceleration factors (for the segmentation problem at ×16 acceleration, we report up to 12% improvement in Dice score over the other undersampling patterns).
Collapse
Affiliation(s)
- Artem Razumov
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Oleg Rogov
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitry V Dylov
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
5
|
Wang G, Nielsen JF, Fessler JA, Noll DC. Stochastic optimization of three-dimensional non-Cartesian sampling trajectory. Magn Reson Med 2023; 90:417-431. [PMID: 37066854 PMCID: PMC10231878 DOI: 10.1002/mrm.29645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023]
Abstract
PURPOSE Optimizing three-dimensional (3D) k-space sampling trajectories is important for efficient MRI yet presents a challenging computational problem. This work proposes a generalized framework for optimizing 3D non-Cartesian sampling patterns via data-driven optimization. METHODS We built a differentiable simulation model to enable gradient-based methods for sampling trajectory optimization. The algorithm can simultaneously optimize multiple properties of sampling patterns, including image quality, hardware constraints (maximum slew rate and gradient strength), reduced peripheral nerve stimulation (PNS), and parameter-weighted contrast. The proposed method can either optimize the gradient waveform (spline-based freeform optimization) or optimize properties of given sampling trajectories (such as the rotation angle of radial trajectories). Notably, the method can optimize sampling trajectories synergistically with either model-based or learning-based reconstruction methods. We proposed several strategies to alleviate the severe nonconvexity and huge computation demand posed by the large scale. The corresponding code is available as an open-source toolbox. RESULTS We applied the optimized trajectory to multiple applications including structural and functional imaging. In the simulation studies, the image quality of a 3D kooshball trajectory was improved from 0.29 to 0.22 (NRMSE) with Stochastic optimization framework for 3D NOn-Cartesian samPling trajectorY (SNOPY) optimization. In the prospective studies, by optimizing the rotation angles of a stack-of-stars (SOS) trajectory, SNOPY reduced the NRMSE of reconstructed images from 1.19 to 0.97 compared to the best empirical method (RSOS-GR). Optimizing the gradient waveform of a rotational EPI trajectory improved participants' rating of the PNS from "strong" to "mild." CONCLUSION SNOPY provides an efficient data-driven and optimization-based method to tailor non-Cartesian sampling trajectories.
Collapse
Affiliation(s)
- Guanhua Wang
- Biomedical Engineering, University of Michigan, Michigan, United States
| | | | - Jeffrey A. Fessler
- Biomedical Engineering, University of Michigan, Michigan, United States
- EECS, University of Michigan, Michigan, United States
| | - Douglas C. Noll
- Biomedical Engineering, University of Michigan, Michigan, United States
| |
Collapse
|
6
|
Meyer NK, Kang D, Black DF, Campeau NG, Welker KM, Gray EM, In MH, Shu Y, Huston III J, Bernstein MA, Trzasko JD. Enhanced clinical task-based fMRI metrics through locally low-rank denoising of complex-valued data. Neuroradiol J 2023; 36:273-288. [PMID: 36063799 PMCID: PMC10268095 DOI: 10.1177/19714009221122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study investigates a locally low-rank (LLR) denoising algorithm applied to source images from a clinical task-based functional MRI (fMRI) exam before post-processing for improving statistical confidence of task-based activation maps. METHODS Task-based motor and language fMRI was obtained in eleven healthy volunteers under an IRB approved protocol. LLR denoising was then applied to raw complex-valued image data before fMRI processing. Activation maps generated from conventional non-denoised (control) data were compared with maps derived from LLR-denoised image data. Four board-certified neuroradiologists completed consensus assessment of activation maps; region-specific and aggregate motor and language consensus thresholds were then compared with nonparametric statistical tests. Additional evaluation included retrospective truncation of exam data without and with LLR denoising; a ROI-based analysis tracked t-statistics and temporal SNR (tSNR) as scan durations decreased. A test-retest assessment was performed; retest data were matched with initial test data and compared for one subject. RESULTS fMRI activation maps generated from LLR-denoised data predominantly exhibited statistically significant (p = 4.88×10-4 to p = 0.042; one p = 0.062) increases in consensus t-statistic thresholds for motor and language activation maps. Following data truncation, LLR data showed task-specific increases in t-statistics and tSNR respectively exceeding 20 and 50% compared to control. LLR denoising enabled truncation of exam durations while preserving cluster volumes at fixed thresholds. Test-retest showed variable activation with LLR data thresholded higher in matching initial test data. CONCLUSION LLR denoising affords robust increases in t-statistics on fMRI activation maps compared to routine processing, and offers potential for reduced scan duration while preserving map quality.
Collapse
Affiliation(s)
- Nolan K Meyer
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - David F Black
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Kirk M Welker
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Erin M Gray
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
7
|
Slavkova KP, DiCarlo JC, Wadhwa V, Kumar S, Wu C, Virostko J, Yankeelov TE, Tamir JI. An untrained deep learning method for reconstructing dynamic MR images from accelerated model-based data. Magn Reson Med 2023; 89:1617-1633. [PMID: 36468624 PMCID: PMC9892348 DOI: 10.1002/mrm.29547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE To implement physics-based regularization as a stopping condition in tuning an untrained deep neural network for reconstructing MR images from accelerated data. METHODS The ConvDecoder (CD) neural network was trained with a physics-based regularization term incorporating the spoiled gradient echo equation that describes variable-flip angle data. Fully-sampled variable-flip angle k-space data were retrospectively accelerated by factors of R = {8, 12, 18, 36} and reconstructed with CD, CD with the proposed regularization (CD + r), locally low-rank (LR) reconstruction, and compressed sensing with L1-wavelet regularization (L1). Final images from CD + r training were evaluated at the "argmin" of the regularization loss; whereas the CD, LR, and L1 reconstructions were chosen optimally based on ground truth data. The performance measures used were the normalized RMS error, the concordance correlation coefficient, and the structural similarity index. RESULTS The CD + r reconstructions, chosen using the stopping condition, yielded structural similarity indexs that were similar to the CD (p = 0.47) and LR structural similarity indexs (p = 0.95) across R and that were significantly higher than the L1 structural similarity indexs (p = 0.04). The concordance correlation coefficient values for the CD + r T1 maps across all R and subjects were greater than those corresponding to the L1 (p = 0.15) and LR (p = 0.13) T1 maps, respectively. For R ≥ 12 (≤4.2 min scan time), L1 and LR T1 maps exhibit a loss of spatially refined details compared to CD + r. CONCLUSION The use of an untrained neural network together with a physics-based regularization loss shows promise as a measure for determining the optimal stopping point in training without relying on fully-sampled ground truth data.
Collapse
Affiliation(s)
| | - Julie C. DiCarlo
- The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Viraj Wadhwa
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX USA
| | - Sidharth Kumar
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX USA
| | - Chengyue Wu
- The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
| | - John Virostko
- The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX USA
- Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Thomas E. Yankeelov
- The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
- Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Jonathan I. Tamir
- The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX USA
- Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| |
Collapse
|
8
|
McIlvain G, Cerjanic A, Christodoulou AG, McGarry MDJ, Johnson CL. OSCILLATE: A low-rank approach for accelerated magnetic resonance elastography. Magn Reson Med 2022; 88:1659-1672. [PMID: 35649188 PMCID: PMC9339522 DOI: 10.1002/mrm.29308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/29/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE MR elastography (MRE) is a technique to characterize brain mechanical properties in vivo. Due to the need to capture tissue deformation in multiple directions over time, MRE is an inherently long acquisition, which limits achievable resolution and use in challenging populations. The purpose of this work is to develop a method for accelerating MRE acquisition by using low-rank image reconstruction to exploit inherent spatiotemporal correlations in MRE data. THEORY AND METHODS The proposed MRE sampling and reconstruction method, OSCILLATE (Observing Spatiotemporal Correlations for Imaging with Low-rank Leveraged Acceleration in Turbo Elastography), involves alternating which k-space points are sampled between each repetition by a reduction factor, ROSC. Using a predetermined temporal basis from a low-resolution navigator in a joint low-rank image reconstruction, all images can be accurately reconstructed from a reduced amount of k-space data. RESULTS Decomposition of MRE displacement data demonstrated that, on average, 96.1% of all energy from an MRE dataset is captured at rank L = 12 (reduced from a full rank of 24). Retrospectively undersampling data with ROSC = 2 and reconstructing at low-rank (L = 12) yields highly accurate stiffness maps with voxel-wise error of 5.8% ± 0.7%. Prospectively undersampled data at ROSC = 2 were successfully reconstructed without loss of material property map fidelity, with average global stiffness error of 1.0% ± 0.7% compared to fully sampled data. CONCLUSIONS OSCILLATE produces whole-brain MRE data at 2 mm isotropic resolution in 1 min 48 s.
Collapse
Affiliation(s)
- Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Alex Cerjanic
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- University of Illinois College of Medicine, Urbana, IL, United States
| | - Anthony G Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Matthew DJ McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
9
|
Zhao Y, Yi Z, Xiao L, Lau V, Liu Y, Zhang Z, Guo H, Leong AT, Wu EX. Joint denoising of
diffusion‐weighted
images via structured
low‐rank
patch matrix approximation. Magn Reson Med 2022; 88:2461-2474. [DOI: 10.1002/mrm.29407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yujiao Zhao
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong SAR People's Republic of China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong SAR People's Republic of China
| | - Zheyuan Yi
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong SAR People's Republic of China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong SAR People's Republic of China
| | - Linfang Xiao
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong SAR People's Republic of China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong SAR People's Republic of China
| | - Vick Lau
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong SAR People's Republic of China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong SAR People's Republic of China
| | - Yilong Liu
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong SAR People's Republic of China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong SAR People's Republic of China
| | - Zhe Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering School of Medicine, Tsinghua University Beijing People's Republic of China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering School of Medicine, Tsinghua University Beijing People's Republic of China
| | - Alex T. Leong
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong SAR People's Republic of China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong SAR People's Republic of China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing The University of Hong Kong Hong Kong SAR People's Republic of China
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong SAR People's Republic of China
| |
Collapse
|
10
|
Wang N, Yao D, Ma L, Liu M. Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI. Med Image Anal 2021; 75:102279. [PMID: 34731776 DOI: 10.1016/j.media.2021.102279] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study neuropsychiatric disorders such as autism spectrum disorder (ASD). Existing studies usually suffer from (1) significant data heterogeneity caused by different scanners or studied populations in multiple sites, (2) curse of dimensionality caused by millions of voxels in each fMRI scan and a very limited number (tens or hundreds) of training samples, and (3) poor interpretability, which hinders the identification of reproducible disease biomarkers. To this end, we propose a Multi-site Clustering and Nested Feature Extraction (MC-NFE) method for fMRI-based ASD detection. Specifically, we first divide multi-site training data into ASD and healthy control (HC) groups. To model inter-site heterogeneity within each category, we use a similarity-driven multiview linear reconstruction model to learn latent representations and perform subject clustering within each group. We then design a nested singular value decomposition (SVD) method to mitigate inter-site heterogeneity and extract FC features by learning both local cluster-shared features across sites within each category and global category-shared features across ASD and HC groups, followed by a linear support vector machine (SVM) for ASD detection. Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis.
Collapse
Affiliation(s)
- Nan Wang
- East China Normal University, Shanghai 200062, China
| | - Dongren Yao
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lizhuang Ma
- East China Normal University, Shanghai 200062, China; Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|