1
|
Mestre-Torà B, Duocastella M. Parallelized Ultrasound-Guiding for Enhanced Light Delivery within Scattering Media. ACS PHOTONICS 2024; 11:5161-5169. [PMID: 39712391 PMCID: PMC11660215 DOI: 10.1021/acsphotonics.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/24/2024]
Abstract
The delivery of light over an extended area within a sample forms the basis of biomedical applications that are as relevant as photoacoustic tomography, fluorescence imaging, and phototherapy techniques. However, light scattering limits the ability of these methods to reach deep regions within biological tissues. As a result, their operational range remains confined to superficial areas of samples, posing a significant barrier to effective optical treatment and diagnosis. Here, we propose an approach to address this issue and enhance light delivery across an extended region inside scattering samples. Our strategy involves using ultrasound to directly modulate the optical properties of the sample, generating refractive index gradients that act as embedded optical waveguides. By employing two perpendicularly oriented piezoelectric plates, several parallel waveguides can be simultaneously formed within the sample, allowing light to be guided over a wide area (3 × 3 mm2 in current experiments). Supported by Monte Carlo simulations, we demonstrate that ultrasound-light-guiding can enhance the intensity of light delivered inside scattering samples with an optical thickness of 2.5 and 12.5 by up to a factor of 700 and 42%, respectively. As a proof-of-concept, we demonstrated the ability of our approach to irradiate nanoparticles located within a scattering sample at light intensities that are not possible without ultrasound.
Collapse
Affiliation(s)
- Blanca Mestre-Torà
- Department
of Applied Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Martí Duocastella
- Department
of Applied Physics, University of Barcelona, 08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia (In2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Menozzi L, Yao J. Deep tissue photoacoustic imaging with light and sound. NPJ IMAGING 2024; 2:44. [PMID: 39525280 PMCID: PMC11541195 DOI: 10.1038/s44303-024-00048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Photoacoustic computed tomography (PACT) can harvest diffusive photons to image the optical absorption contrast of molecules in a scattering medium, with ultrasonically-defined spatial resolution. PACT has been extensively used in preclinical research for imaging functional and molecular information in various animal models, with recent clinical translations. In this review, we aim to highlight the recent technical breakthroughs in PACT and the emerging preclinical and clinical applications in deep tissue imaging.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710 USA
| |
Collapse
|
3
|
Gu Y, Sun Y, Wang X, Li H, Qiu J, Lu W. Application of photoacoustic computed tomography in biomedical imaging: A literature review. Bioeng Transl Med 2023; 8:e10419. [PMID: 36925681 PMCID: PMC10013779 DOI: 10.1002/btm2.10419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Photoacoustic computed tomography (PACT) is a hybrid imaging modality that combines optical excitation and acoustic detection techniques. It obtains high-resolution deep-tissue images based on the deep penetration of light, the anisotropy of light absorption in objects, and the photoacoustic effect. Hence, PACT shows great potential in biomedical sample imaging. Recently, due to its advantages of high sensitivity to optical absorption and wide scalability of spatial resolution with the desired imaging depth, PACT has received increasing attention in preclinical and clinical practice. To date, there has been a proliferation of PACT systems designed for specific biomedical imaging applications, from small animals to human organs, from ex vivo to in vivo real-time imaging, and from simple structural imaging to functional and molecular imaging with external contrast agents. Therefore, it is of great importance to summarize the previous applications of PACT systems in biomedical imaging and clinical practice. In this review, we searched for studies related to PACT imaging of biomedical tissues and samples over the past two decades; divided the studies into two categories, PACT imaging of preclinical animals and PACT imaging of human organs and body parts; and discussed the significance of the studies. Finally, we pointed out the future directions of PACT in biomedical applications. With the development of exogenous contrast agents and advances of imaging technique, in the future, PACT will enable biomedical imaging from organs to whole bodies, from superficial vasculature to internal organs, from anatomy to functions, and will play an increasingly important role in biomedical research and clinical practice.
Collapse
Affiliation(s)
- Yanru Gu
- Department of RadiologyThe Second Affiliated Hospital of Shandong First Medical UniversityTaianChina
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| | - Yuanyuan Sun
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| | - Xiao Wang
- College of Ocean Science and EngineeringShandong University of Science and TechnologyQingdaoChina
| | - Hongyu Li
- College of Ocean Science and EngineeringShandong University of Science and TechnologyQingdaoChina
| | - Jianfeng Qiu
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| | - Weizhao Lu
- Department of RadiologyThe Second Affiliated Hospital of Shandong First Medical UniversityTaianChina
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| |
Collapse
|
4
|
Menozzi L, del Águila Á, Vu T, Ma C, Yang W, Yao J. Three-dimensional non-invasive brain imaging of ischemic stroke by integrated photoacoustic, ultrasound and angiographic tomography (PAUSAT). PHOTOACOUSTICS 2023; 29:100444. [PMID: 36620854 PMCID: PMC9813577 DOI: 10.1016/j.pacs.2022.100444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
We present an ischemic stroke study using our newly-developed PAUSAT system that integrates photoacoustic computed tomography (PACT), high-frequency ultrasound imaging, and acoustic angiographic tomography. PAUSAT is capable of three-dimensional (3D) imaging of the brain morphology, blood perfusion, and blood oxygenation. Using PAUSAT, we studied the hemodynamic changes in the whole mouse brain induced by two common ischemic stroke models: the permanent middle cerebral artery occlusion (pMCAO) model and the photothrombotic (PT) model. We imaged the same mouse brains before and after stroke, and quantitatively compared the two stroke models. We observed clear hemodynamic changes after ischemic stroke, including reduced blood perfusion and oxygenation. Such changes were spatially heterogenous. We also quantified the tissue infarct volume in both stroke models. The PAUSAT measurements were validated by laser speckle imaging and histology. Our results have collectively demonstrated that PAUSAT can be a valuable tool for non-invasive longitudinal studies of neurological diseases at the whole-brain scale.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham 27708, NC, USA
| | - Ángela del Águila
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University School of Medicine, Durham 27710, NC, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham 27708, NC, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham 27708, NC, USA
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University School of Medicine, Durham 27710, NC, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham 27708, NC, USA
| |
Collapse
|
5
|
Zhang Y, Wang Y, Lai P, Wang L. Video-Rate Dual-Modal Wide-Beam Harmonic Ultrasound and Photoacoustic Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:727-736. [PMID: 34694993 DOI: 10.1109/tmi.2021.3122240] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dual-modal ultrasound (US) and photoacoustic (PA) imaging has tremendous advantages in biomedical applications, such as pharmacokinetics, cancer screening, and imaging-guided therapy. Compared with ring-shaped arrays, a linear piezoelectric transducer array applies to more anatomical sites and has been widely used in US/PA imaging. However, the linear array may limit the imaging quality due to narrow bandwidth, partial detection view, or sparse spatial sampling. To meet clinic demand of high-quality US/PA imaging with the linear transducer, we develop dual-modal wide-beam harmonic ultrasound (WBHUS) and photoacoustic computed tomography at video rate. The harmonic US imaging employs pulse phase inversion to reduce clutters and improve spatial resolution. Wide-beam US transmission can shorten the scanning times by 267% and enables a 20-Hz imaging rate, which can minimize motion artifacts in in vivo imaging. The harmonic US imaging does not only provide accurate anatomical references for locating PA features but also reduces artifacts in PA images. The improved image quality allows us to acquire high-resolution anatomical structures in deep tissue without labeling. The fast-imaging speed enables visualizing interventional procedures and monitoring the pulsations of the thoracic aorta and radial artery in real-time. The video-rate dual-modal harmonic US and single-shot PA computed tomography use a clinical-grade linear-array transducer and thus can be readily implemented in clinical US imaging.
Collapse
|
6
|
Losch MS, Kardux F, Dankelman J, Hendriks BHW. Steering light in fiber-optic medical devices: a patent review. Expert Rev Med Devices 2022; 19:259-271. [PMID: 35298323 PMCID: PMC11229789 DOI: 10.1080/17434440.2022.2054334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Steering light is relevant to many medical applications that require tissue illumination, sensing, or modification. To control the propagation direction of light beams, a great variety of innovative fiber-optic medical devices have been designed. AREAS COVERED This review provides a comprehensive overview of the patent literature on light beam control in fiber-optic medical devices. The Web of Science Derwent Innovation Index database was scanned, and 81 patents on fiber-optic devices published in the last 20 years (2001-2021) were retrieved and categorized based on the working principle to steer light (refraction/reflection, scattering, diffraction) and the design strategy that was employed (within fiber, at fiber end, outside fiber). EXPERT OPINION Patents describing medical devices were found for all categories, except for generating diffraction at the fiber end surface. The insight in the different designs reveals that there are still several opportunities to design innovative devices that can collect light at an angle off-axis, reduce the angular distribution of light, or split light into multiple beams.
Collapse
Affiliation(s)
- Merle S Losch
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Famke Kardux
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Jenny Dankelman
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Benno H W Hendriks
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Department of In-Body Systems, Philips ResearchRoyal Philips, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Practical review on photoacoustic computed tomography using curved ultrasound array transducer. Biomed Eng Lett 2021; 12:19-35. [DOI: 10.1007/s13534-021-00214-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
|
8
|
Wu M, Awasthi N, Rad NM, Pluim JPW, Lopata RGP. Advanced Ultrasound and Photoacoustic Imaging in Cardiology. SENSORS (BASEL, SWITZERLAND) 2021; 21:7947. [PMID: 34883951 PMCID: PMC8659598 DOI: 10.3390/s21237947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. An effective management and treatment of CVDs highly relies on accurate diagnosis of the disease. As the most common imaging technique for clinical diagnosis of the CVDs, US imaging has been intensively explored. Especially with the introduction of deep learning (DL) techniques, US imaging has advanced tremendously in recent years. Photoacoustic imaging (PAI) is one of the most promising new imaging methods in addition to the existing clinical imaging methods. It can characterize different tissue compositions based on optical absorption contrast and thus can assess the functionality of the tissue. This paper reviews some major technological developments in both US (combined with deep learning techniques) and PA imaging in the application of diagnosis of CVDs.
Collapse
Affiliation(s)
- Min Wu
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (N.M.R.); (R.G.P.L.)
| | - Navchetan Awasthi
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (N.M.R.); (R.G.P.L.)
- Medical Image Analysis Group (IMAG/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
| | - Nastaran Mohammadian Rad
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (N.M.R.); (R.G.P.L.)
- Medical Image Analysis Group (IMAG/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
| | - Josien P. W. Pluim
- Medical Image Analysis Group (IMAG/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
| | - Richard G. P. Lopata
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (N.M.R.); (R.G.P.L.)
| |
Collapse
|
9
|
Wiacek A, Lediju Bell MA. Photoacoustic-guided surgery from head to toe [Invited]. BIOMEDICAL OPTICS EXPRESS 2021; 12:2079-2117. [PMID: 33996218 PMCID: PMC8086464 DOI: 10.1364/boe.417984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Photoacoustic imaging-the combination of optics and acoustics to visualize differences in optical absorption - has recently demonstrated strong viability as a promising method to provide critical guidance of multiple surgeries and procedures. Benefits include its potential to assist with tumor resection, identify hemorrhaged and ablated tissue, visualize metal implants (e.g., needle tips, tool tips, brachytherapy seeds), track catheter tips, and avoid accidental injury to critical subsurface anatomy (e.g., major vessels and nerves hidden by tissue during surgery). These benefits are significant because they reduce surgical error, associated surgery-related complications (e.g., cancer recurrence, paralysis, excessive bleeding), and accidental patient death in the operating room. This invited review covers multiple aspects of the use of photoacoustic imaging to guide both surgical and related non-surgical interventions. Applicable organ systems span structures within the head to contents of the toes, with an eye toward surgical and interventional translation for the benefit of patients and for use in operating rooms and interventional suites worldwide. We additionally include a critical discussion of complete systems and tools needed to maximize the success of surgical and interventional applications of photoacoustic-based technology, spanning light delivery, acoustic detection, and robotic methods. Multiple enabling hardware and software integration components are also discussed, concluding with a summary and future outlook based on the current state of technological developments, recent achievements, and possible new directions.
Collapse
Affiliation(s)
- Alycen Wiacek
- Department of Electrical and Computer Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
| | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
10
|
Li M, Sankin G, Vu T, Yao J, Zhong P. Tri-modality cavitation mapping in shock wave lithotripsy. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:1258. [PMID: 33639826 PMCID: PMC8329839 DOI: 10.1121/10.0003555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Shock wave lithotripsy (SWL) has been widely used for non-invasive treatment of kidney stones. Cavitation plays an important role in stone fragmentation, yet it may also contribute to renal injury during SWL. It is therefore crucial to determine the spatiotemporal distributions of cavitation activities to maximize stone fragmentation while minimizing tissue injury. Traditional cavitation detection methods include high-speed optical imaging, active cavitation mapping (ACM), and passive cavitation mapping (PCM). While each of the three methods provides unique information about the dynamics of the bubbles, PCM has most practical applications in biological tissues. To image the dynamics of cavitation bubble collapse, we previously developed a sliding-window PCM (SW-PCM) method to identify each bubble collapse with high temporal and spatial resolution. In this work, to further validate and optimize the SW-PCM method, we have developed tri-modality cavitation imaging that includes three-dimensional high-speed optical imaging, ACM, and PCM seamlessly integrated in a single system. Using the tri-modality system, we imaged and analyzed laser-induced single cavitation bubbles in both free field and constricted space and shock wave-induced cavitation clusters. Collectively, our results have demonstrated the high reliability and spatial-temporal accuracy of the SW-PCM approach, which paves the way for the future in vivo applications on large animals and humans in SWL.
Collapse
Affiliation(s)
- Mucong Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Georgy Sankin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Pei Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
11
|
Li M, Nyayapathi N, Kilian HI, Xia J, Lovell JF, Yao J. Sound Out the Deep Colors: Photoacoustic Molecular Imaging at New Depths. Mol Imaging 2020; 19:1536012120981518. [PMID: 33336621 PMCID: PMC7750763 DOI: 10.1177/1536012120981518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoacoustic tomography (PAT) has become increasingly popular for molecular imaging due to its unique optical absorption contrast, high spatial resolution, deep imaging depth, and high imaging speed. Yet, the strong optical attenuation of biological tissues has traditionally prevented PAT from penetrating more than a few centimeters and limited its application for studying deeply seated targets. A variety of PAT technologies have been developed to extend the imaging depth, including employing deep-penetrating microwaves and X-ray photons as excitation sources, delivering the light to the inside of the organ, reshaping the light wavefront to better focus into scattering medium, as well as improving the sensitivity of ultrasonic transducers. At the same time, novel optical fluence mapping algorithms and image reconstruction methods have been developed to improve the quantitative accuracy of PAT, which is crucial to recover weak molecular signals at larger depths. The development of highly-absorbing near-infrared PA molecular probes has also flourished to provide high sensitivity and specificity in studying cellular processes. This review aims to introduce the recent developments in deep PA molecular imaging, including novel imaging systems, image processing methods and molecular probes, as well as their representative biomedical applications. Existing challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Mucong Li
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| | - Nikhila Nyayapathi
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Hailey I Kilian
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jun Xia
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Junjie Yao
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| |
Collapse
|