1
|
Wang J, Deng J, Liu D. Deep prior embedding method for Electrical Impedance Tomography. Neural Netw 2025; 188:107419. [PMID: 40184867 DOI: 10.1016/j.neunet.2025.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/15/2025] [Accepted: 03/16/2025] [Indexed: 04/07/2025]
Abstract
This paper presents a novel deep learning-based approach for Electrical Impedance Tomography (EIT) reconstruction that effectively integrates image priors to enhance reconstruction quality. Traditional neural network methods often rely on random initialization, which may not fully exploit available prior information. Our method addresses this by using image priors to guide the initialization of the neural network, allowing for a more informed starting point and better utilization of prior knowledge throughout the reconstruction process. We explore three different strategies for embedding prior information: non-prior embedding, implicit prior embedding, and full prior embedding. Through simulations and experimental studies, we demonstrate that the incorporation of accurate image priors significantly improves the fidelity of the reconstructed conductivity distribution. The method is robust across varying levels of noise in the measurement data, and the quality of the reconstruction is notably higher when the prior closely resembles the true distribution. This work highlights the importance of leveraging prior information in EIT and provides a framework that could be extended to other inverse problems where prior knowledge is available.
Collapse
Affiliation(s)
- Junwu Wang
- School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jiansong Deng
- School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Dong Liu
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, 230026, Anhui, China; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, Anhui, China; School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
2
|
Yang L, Gao Z, Wang C, Wang H, Dai J, Liu Y, Qin Y, Dai M, Cao X, Zhao Z. Evaluation of adjacent and opposite current injection patterns for a wearable chest electrical impedance tomography system. Physiol Meas 2024; 45:025004. [PMID: 38266301 DOI: 10.1088/1361-6579/ad2215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Objective.Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the performance of current injection patterns with various low-amplitude currents in healthy volunteers.Approach.A total of 96 test sets of EIT measurement was recorded in 12 healthy subjects by employing adjacent and opposite current injection patterns with four amplitudes of small current (i.e. 1 mA, 500 uA, 250 uA and 125 uA). The performance of the two injection patterns with various currents was evaluated in terms of signal-to-noise ratio (SNR) of thorax impedance, EIT image metrics and EIT-based clinical parameters.Main results.Compared with adjacent injection, opposite injection had higher SNR (p< 0.01), less inverse artifacts (p< 0.01), and less boundary artifacts (p< 0.01) with the same current amplitude. In addition, opposite injection exhibited more stable EIT-based clinical parameters (p< 0.01) across the current range. For adjacent injection, significant differences were found for three EIT image metrics (p< 0.05) and four EIT-based clinical parameters (p< 0.01) between the group of 125 uA and the other groups.Significance.For better performance of wearable pulmonary EIT, currents greater than 250 uA should be used in opposite injection, 500 uA in adjacent one, to ensure a high level of SNR, a high quality of reconstructed image as well as a high reliability of clinical parameters.
Collapse
Affiliation(s)
- Lin Yang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Zhijun Gao
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Chunchen Wang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Hang Wang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Jing Dai
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Yang Liu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Yilong Qin
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Meng Dai
- Department of Biomedical Engineering, Air Force Medical University, Xi'an, People's Republic of China
| | - Xinsheng Cao
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Zhanqi Zhao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China
| |
Collapse
|
3
|
Liu X, Zhang T, Ye J, Tian X, Zhang W, Yang B, Dai M, Xu C, Fu F. Fast Iterative Shrinkage-Thresholding Algorithm with Continuation for Brain Injury Monitoring Imaging Based on Electrical Impedance Tomography. SENSORS (BASEL, SWITZERLAND) 2022; 22:9934. [PMID: 36560297 PMCID: PMC9783778 DOI: 10.3390/s22249934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However, brain injury monitoring by EIT imaging suffers from image noise (IN) and resolution problems, causing blurred reconstructions. To address these problems, a least absolute shrinkage and selection operator model is built, and a fast iterative shrinkage-thresholding algorithm with continuation (FISTA-C) is proposed. Results of numerical simulations and head phantom experiments indicate that FISTA-C reduces IN by 63.2%, 47.2%, and 29.9% and 54.4%, 44.7%, and 22.7%, respectively, when compared with the damped least-squares algorithm, the split Bergman, and the FISTA algorithms. When the signal-to-noise ratio of the measurements is 80-50 dB, FISTA-C can reduce IN by 83.3%, 72.3%, and 68.7% on average when compared with the three algorithms, respectively. Both simulation and phantom experiments suggest that FISTA-C produces the best image resolution and can identify the two closest targets. Moreover, FISTA-C is more practical for clinical application because it does not require excessive parameter adjustments. This technology can provide better reconstruction performance and significantly outperforms the traditional algorithms in terms of IN and resolution and is expected to offer a general algorithm for brain injury monitoring imaging via EIT.
Collapse
Affiliation(s)
- Xuechao Liu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| | - Tao Zhang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Drug and Instrument Supervision and Inspection Station, Xining Joint Logistics Support Center, Lanzhou 730050, China
| | - Jian’an Ye
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Xiang Tian
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Weirui Zhang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Bin Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| | - Meng Dai
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| | - Canhua Xu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| | - Feng Fu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| |
Collapse
|
4
|
Zhang T, Tian X, Liu X, Ye J, Fu F, Shi X, Liu R, Xu C. Advances of deep learning in electrical impedance tomography image reconstruction. Front Bioeng Biotechnol 2022; 10:1019531. [PMID: 36588934 PMCID: PMC9794741 DOI: 10.3389/fbioe.2022.1019531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Electrical impedance tomography (EIT) has been widely used in biomedical research because of its advantages of real-time imaging and nature of being non-invasive and radiation-free. Additionally, it can reconstruct the distribution or changes in electrical properties in the sensing area. Recently, with the significant advancements in the use of deep learning in intelligent medical imaging, EIT image reconstruction based on deep learning has received considerable attention. This study introduces the basic principles of EIT and summarizes the application progress of deep learning in EIT image reconstruction with regards to three aspects: a single network reconstruction, deep learning combined with traditional algorithm reconstruction, and multiple network hybrid reconstruction. In future, optimizing the datasets may be the main challenge in applying deep learning for EIT image reconstruction. Adopting a better network structure, focusing on the joint reconstruction of EIT and traditional algorithms, and using multimodal deep learning-based EIT may be the solution to existing problems. In general, deep learning offers a fresh approach for improving the performance of EIT image reconstruction and could be the foundation for building an intelligent integrated EIT diagnostic system in the future.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China,Drug and Instrument Supervision and Inspection Station, Xining Joint Logistics Support Center, Lanzhou, China
| | - Xiang Tian
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - XueChao Liu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - JianAn Ye
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - Feng Fu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - XueTao Shi
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - RuiGang Liu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China
| | - CanHua Xu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China,Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an, China,*Correspondence: CanHua Xu,
| |
Collapse
|
5
|
Santos TBR, Nakanishi RM, de Camargo EDLB, Amato MBP, Kaipio JP, Lima RG, Mueller JL. Improved resolution of D-bar images of ventilation using a Schur complement property and an anatomical atlas. Med Phys 2022; 49:4653-4670. [PMID: 35411573 PMCID: PMC9544658 DOI: 10.1002/mp.15669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Electrical impedance tomography (EIT) is a nonionizing imaging technique for real-time imaging of ventilation of patients with respiratory distress. Cross-sectional dynamic images are formed by reconstructing the conductivity distribution from measured voltage data arising from applied alternating currents on electrodes placed circumferentially around the chest. Since the conductivity of lung tissue depends on air content, blood flow, and the presence of pathology, the dynamic images provide regional information about ventilation, pulsatile perfusion, and abnormalities. However, due to the ill-posedness of the inverse conductivity problem, EIT images have a coarse spatial resolution. One method of improving the resolution is to include prior information in the reconstruction. PURPOSE In this work, we propose a technique in which a statistical prior built from an anatomical atlas is used to postprocess EIT reconstructions of human chest data. The effectiveness of the method is demonstrated on data from two patients with cystic fibrosis. METHODS A direct reconstruction algorithm known as the D-bar method was used to compute a two-dimensional reconstruction of the conductivity distribution in the plane of the electrodes. Reconstructions using one step in an iterative (regularized) Newton's method were also computed for comparison. An anatomical atlas consisting of 1589 synthetic EIT images computed from X-ray computed tomography (CT) scans of 74 adult male subjects was computed for use as a statistical prior. The resolution of the D-bar images was then improved by maximizing the conditional probability density function of an image that is consistent with the a priori information and the statistical model. A new method to evaluate the accuracy of the EIT images using CT scans of the imaged patient as ground truth is presented. The novel approach is tested on data from two patients with cystic fibrosis. RESULTS AND CONCLUSIONS The D-bar images resulted in better structural similarity index measures (SSIM) and multiscale (MS) SSIM measures for both subjects using the mask or amplitude evaluation approach than the one-step (regularized) Newton's method. Further improvement was achieved using the Schur complement (SC) approach, with MS-SSIM values of 0.718 and 0.682 using SC evaluated with the mask and amplitude approach, respectively, for Patient 1, and MS-SSIM values of 0.726 and 0.692 using SC evaluated with the mask and amplitude approach, respectively, for Patient 2. The results from applying an anatomical atlas and statistical prior to EIT data from two patients with cystic fibrosis suggest that the spatial resolution of the EIT image can be improved to reveal pathology that may be difficult to discern in the original EIT image. The novel metric of evaluation is consistent with the appearance of improved spatial resolution and provides a new way to evaluate the accuracy of EIT reconstructions when a CT scan is available.
Collapse
Affiliation(s)
| | - Rafael Mikio Nakanishi
- Mechanical Engineering DepartmentPolytechnic School of the University of São PauloSão PauloSPBrazil
| | | | | | - Jari P. Kaipio
- Department of MathematicsUniversity of AucklandNew Zealand
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Raul Gonzalez Lima
- Mechanical Engineering DepartmentPolytechnic School of the University of São PauloSão PauloSPBrazil
| | - Jennifer L. Mueller
- Department of Mathematics and School of Biomedical Engineering and the Department of Electrical and Computer EngineeringColorado State UniversityColoradoUSA
| |
Collapse
|
6
|
Calderón's Method with a Spatial Prior for 2-D EIT Imaging of Ventilation and Perfusion. SENSORS 2021; 21:s21165635. [PMID: 34451077 PMCID: PMC8402350 DOI: 10.3390/s21165635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Bedside imaging of ventilation and perfusion is a leading application of 2-D medical electrical impedance tomography (EIT), in which dynamic cross-sectional images of the torso are created by numerically solving the inverse problem of computing the conductivity from voltage measurements arising on electrodes due to currents applied on electrodes on the surface. Methods of reconstruction may be direct or iterative. Calderón’s method is a direct reconstruction method based on complex geometrical optics solutions to Laplace’s equation capable of providing real-time reconstructions in a region of interest. In this paper, the importance of accurate modeling of the electrode location on the body is demonstrated on simulated and experimental data, and a method of including a priori spatial information in dynamic human subject data is presented. The results of accurate electrode modeling and a spatial prior are shown to improve detection of inhomogeneities not included in the prior and to improve the resolution of ventilation and perfusion images in a human subject.
Collapse
|
7
|
Dimas C, Uzunoglu N, Sotiriadis PP. An efficient Point-Matching Method-of-Moments for 2D and 3D Electrical Impedance Tomography Using Radial Basis functions. IEEE Trans Biomed Eng 2021; 69:783-794. [PMID: 34398750 DOI: 10.1109/tbme.2021.3105056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractObjective: The inverse problem of computing conductivity distributions in 2D and 3D objects interrogated by low frequency electrical signals, which is called Electrical Impedance Tomography (EIT), is treated using a Method-of-Moment technique. METHODS A Point-Matching-Method-of-Moment technique is used to formulate a global integral equation solver. Radial Basis Functions are adopted to express the conductivity distribution. Single-step quadratic-norm (L2) and iterative total variation (L1) regularization techniques are exploited to solve the inverse problem. RESULTS Simulation and experimental tests on a circular reconstruction domain show satisfactory performance in deriving conductivity distribution, achieving a Correlation Coefficient (CC) up to 0:863 for 70 dB voltage SNR and 0:842 for 40 dB voltage SNR. The proposed methodology with L2-norm regularization provided better results than traditional iterative Gauss-Newtons approach, whereas with L1-norm regularization it showed promising performance. Moreover, 3D reconstructions on a cylindrical cavity demonstrated superior results near the electrodes planes compared to those of the conventional linearized approach. Finally, application to EIT medical data for dynamic lung imaging successfully revealed the breath-cycle conductivity changes. CONCLUSION The results show that the proposed method can be effective for both 2D and 3D EIT and applicable to many applications. SIGNIFICANCE Strong conductivity variations are successfully tackled with a very good Correlation Coefficient. In contrast to conventional EIT solutions based on weak-form and linearization on small conductivity changes, the proposed method requires only one step to converge with L2-norm regularization. The proposed method with L1-norm regularization also achieves good reconstruction quality with a low number of iterations.
Collapse
|