1
|
Joris Hubmann M, Orzada S, Kowal R, Anton Grimm J, Speck O, Maune H. Towards Large Diameter Transmit Coils for 7-T Head Imaging: A Detailed Comparison of a Set of Transmit Element Design Concepts. NMR IN BIOMEDICINE 2025; 38:e70030. [PMID: 40186518 PMCID: PMC11971727 DOI: 10.1002/nbm.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025]
Abstract
Many different transmit (Tx) coil concepts and designs for 7-T magnetic resonance imaging of the head have been proposed. Most of them are placed close to the head and in combination with the receive coils creating a helmet-like structure. This limits the space for additional equipment for external stimuli. A large diameter transmit coil can increase the ease using supplementary measurement devices. Therefore, this study systematically evaluated nine different Tx elements regarding their performance within a large diameter transmit coil with a diameter> $$ > $$ 350 mm. Each Tx element was examined regarding its power and specific absorption rate (SAR) efficiencies, its loading dependence, intrinsic decoupling, and its radio frequency (RF) shimming capability. Additionally, an experimental validation of| B 1 + | $$ \mid {B}_1^{+}\mid $$ -maps was performed. The loop-based Tx elements (circular and rectangular loop) provided the highest power and SAR efficiency with at least 15.5% and 21.2% higher efficiencies for a single channel and 22.1% and 18.0% for the eight-channel array, respectively. In terms of voxel-wise power efficiency, the circular loop was the superior Tx element type within most of the head. Looking at the voxel-wise SAR efficiency, the loop-based elements manifest themselves as the most efficient type within most of the central brain. The mutual coupling was lowest for the passively fed dipole (- $$ - $$ 31.23 dB). The highest RF shimming capability in terms of sum of normalized singular values was calculated for the rectangular (4.21) and the circular loop (4.36), whereby the L-curve results showed that the arrays have only minor| B 1 + | $$ \mid {B}_1^{+}\mid $$ shimming performance differences for the transversal slice. For the hippocampus, the meander element provided the highest overall homogeneity with a minimal coefficient of variation (CoV) of 5.1%. This work provides extensive and unique data for single and eight-channel Tx elements applying common performance benchmarks and enables further discourse on multi-channel evaluations towards large diameter Tx coils at 7-T head imaging. On the bases of the provided results, the preferable Tx element type for this specific application is loop-based.
Collapse
Affiliation(s)
- Max Joris Hubmann
- Siemens Healthineers AGErlangenGermany
- Faculty of Electrical Engineering and Information TechnologyOtto‐von‐Guericke UniversityMagdeburgGermany
| | | | - Robert Kowal
- Faculty of Electrical Engineering and Information TechnologyOtto‐von‐Guericke UniversityMagdeburgGermany
- Research Campus STIMULATEMagdeburgGermany
| | - Johannes Anton Grimm
- German Cancer Research CenterHeidelbergGermany
- Faculty of Physics and AstronomyHeidelberg UniversityHeidelbergGermany
| | - Oliver Speck
- Research Campus STIMULATEMagdeburgGermany
- Faculty of Natural SciencesOtto‐von‐Guericke UniversityMagdeburgGermany
| | - Holger Maune
- Faculty of Electrical Engineering and Information TechnologyOtto‐von‐Guericke UniversityMagdeburgGermany
| |
Collapse
|
2
|
Akram MSH, Fukunaga M, Nishikido F, Takyu S, Obata T, Yamaya T. Feasibility Study for a Microstrip Transmission Line RF Coil Integrated with a PET Detector Module in a 7T Human MR Imaging System. Magn Reson Med Sci 2025; 24:155-165. [PMID: 38346767 PMCID: PMC11996246 DOI: 10.2463/mrms.mp.2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/11/2023] [Indexed: 04/04/2025] Open
Abstract
PURPOSE The purpose of this study was to do a feasibility study on a microstrip transmission line (MS) RF coil for a positron emission tomography (PET) insert in a 7 Tesla human MRI system. The proposed MS coil integrated the RF shield of the PET detector as the ground conductor of the coil. We called the integrated module "MS PET coil." METHODS A single-channel MS PET coil was developed with an integrated RF-shielded PET detector module. For comparison, we also studied a conventional MS coil with a single-layer ground conductor. A lutetium fine silicate (LFS) scintillation crystal block (14 × 14 × 4-layer) with a silicon photomultiplier (Hamamatsu Photonics K.K., Shizuoka, Japan) and a front-end readout circuit board were mounted inside the shield cage of the MS PET coil. The MS PET coil was studied with and without PET detectors. All three coil configurations were studied with a homogeneous phantom in a 7T MRI system (Siemens Healthineers, Erlangen, Germany). PET data measurements were conducted using a Cesium-137 radiation point source. RESULTS The MR images were similar for the MS coil and the empty MS PET coil, as well as for the cases of MS PET coil with and without PET measurements. Compared to the empty MS PET coil (without PET detector and cable RF shield), decreases in SNR, increases in image noise and RF power, and a slight decrease in resonance frequency were seen for the case of the MS PET coil with the detector and cable shield. Differences in the PET energy histograms or in the crystal identification maps with and without MRI measurements were negligible. CONCLUSIONS Both the MRI and PET performances of the MS PET coil showed responses that matched the MS coil responses. The performance variations of MRI data with and without PET measurement and PET data with and without MR imaging were negligible.
Collapse
Affiliation(s)
- Md Shahadat Hossain Akram
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Fumihiko Nishikido
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Sodai Takyu
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Takayuki Obata
- Department of Applied MRI Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Taiga Yamaya
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| |
Collapse
|
3
|
Wei Z, Zhang Z, Chen Q, Wang C, Fu S, Wang H, Zhang X, Liu X, Zheng H, Wu J, Li Y. Open-transmit and flexible receiver array for high resolution ultrahigh-field fMRI of the human sensorimotor cortex. Commun Biol 2025; 8:482. [PMID: 40121362 PMCID: PMC11929792 DOI: 10.1038/s42003-025-07866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 03/01/2025] [Indexed: 03/25/2025] Open
Abstract
In this study, we developed an open-transmit and 24-channel flexible receiver head coil assembly tailored for high-resolution ultrahigh-field functional magnetic resonance imaging (fMRI) of the human somatosensory and motor cortex. Leveraging the increased signal-to-noise ratio (SNR) and spatial resolution of ultrahigh field MRI, we address the technical challenges inherent in fMRI coil design. The open-birdcage transmit coil enhances patient comfort and enables visual task implementation, demonstrating superior performance in transmit efficiency and specific absorption rate distribution compared to conventional coils. Furthermore, the 24-channel flexible receiver head coil offers enhanced SNR and image quality, facilitating sub-millimeter vascular-space-occupancy imaging for precise functional mapping. These advancements provide valuable tools for unraveling the intricacies of somatosensory and motor cortex function. By enriching human brain functional studies, they contribute significantly to our understanding of the mechanisms underlying somatosensory and motor cortex function and may have valuable clinical applications in neurology and neuroscience research.
Collapse
Affiliation(s)
- Zidong Wei
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
- Shanghai United Imaging Healthcare, Shanghai, China
| | - Zhilin Zhang
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiaoyan Chen
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Cuiting Wang
- Shanghai United Imaging Healthcare, Shanghai, China
| | - Shuyue Fu
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haifeng Wang
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, University at Buffalo,the State University of New York, Buffalo, NY, USA
| | - Xin Liu
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Hairong Zheng
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Jinglong Wu
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Ye Li
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China.
| |
Collapse
|
4
|
Lu M, Yang Y, Chai S, Yan X. Float solenoid balun for MRI. NMR IN BIOMEDICINE 2025; 38:e5292. [PMID: 39520059 PMCID: PMC11617134 DOI: 10.1002/nbm.5292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Baluns are crucial in MRI RF coils, essential for minimizing common-mode currents, maintaining signal-to-noise ratio, and ensuring patient safety. This paper introduces the innovative float solenoid balun, based on the renowned solenoid cable trap, and conducts a comparative analysis with the widely used float bazooka balun. Leveraging robust inductive coupling between the cable shield and float resonator, the float solenoid balun offers compact dimensions and post-installation adjustability. Through electromagnetic simulations and bench testing across static fields (1.5, 3, and 7 T), the float solenoid balun demonstrates superior common-mode rejection ratios compared to the float bazooka balun. Notably, its float design facilitates easy post-installation adjustment and eliminates the need for soldering on the cable shield, enhancing usability and reducing risks. Furthermore, the solenoid balun's compact footprint addresses the increasing demand for smaller baluns in modern MRI scanners with denser coil arrays. The float solenoid balun offers a promising solution by conserving valuable space within the RF coil, simplifying practical hardware implementation and cable routing, and accommodating more elements in RF arrays, with great potential for enhancing MRI performance.
Collapse
Affiliation(s)
- Ming Lu
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Yijin Yang
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Shuyang Chai
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
5
|
Sun Y, Wang M, Du J, Wang W, Yang G, Wang W, Ren Q. 16-channel sleeve antenna array based on passive decoupling method at 14 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 369:107796. [PMID: 39577232 DOI: 10.1016/j.jmr.2024.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
At ultra-high fields, especially at 14 T, head coil arrays face significant challenges with coupling between elements. Although passive decoupling methods can reduce this coupling, the decoupling elements can cause destructive interference to the RF field of the head array, thus reducing the B1+ efficiency. The B1+ loss due to this effect can be even higher than that due to inter-element coupling. In this study, we develop a novel passive decoupling method to improve the performance of head coil arrays at 14 T. Specifically, passive dipole antennas were utilized to decouple the 16-channel sleeve antenna array, with their positioning optimized to minimize destructive interference with the array's RF field by increasing their distance from the active antennas. We used electromagnetic simulations to optimize the position of the passive dipoles to obtain the best performance of the array. In addition, we introduced a 16-channel dipole antenna array to compare the array performance when evaluating the sleeve antenna array performance using a human body model. We also constructed the optimized sleeve antenna array and measured its S-parameters to verify the effectiveness of the decoupling strategy. Our results show that the improved passive decoupling method can well reduce the destructive interference of the decoupling elements to the RF field. The sleeve antenna array developed under this method exhibits higher B1+ efficiency and better transmission performance.
Collapse
Affiliation(s)
- Youheng Sun
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Miutian Wang
- School of Electronics, Peking University, Beijing, 100871, China.
| | - Jianjun Du
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Wentao Wang
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Gang Yang
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Weimin Wang
- School of Electronics, Peking University, Beijing, 100871, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Budé LMI, Steensma BR, Zivkovic I, Raaijmakers AJE. The coax monopole antenna: A flexible end-fed antenna for ultrahigh field transmit/receive arrays. Magn Reson Med 2024; 92:361-373. [PMID: 38376359 DOI: 10.1002/mrm.30036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject. METHODS Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1 + field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1 + efficiency and to find the S-parameters in straight and bent positions. Eight-channel simulations and measurements are performed for prostate imaging. RESULTS The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1 + levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1 + levels of 10-14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High-quality images and acceptable coupling levels were achieved. CONCLUSION The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one-sided feeding greatly simplifies cable routing.
Collapse
Affiliation(s)
- Lyanne M I Budé
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bart R Steensma
- Division of Imaging and Oncology, UMC Utrecht, Utrecht, The Netherlands
| | - Irena Zivkovic
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Alexander J E Raaijmakers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Division of Imaging and Oncology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Choi CH, Felder J, Lerche C, Shah NJ. MRI Coil Development Strategies for Hybrid MR-PET Systems: A Review. IEEE Rev Biomed Eng 2024; 17:342-350. [PMID: 37015609 DOI: 10.1109/rbme.2022.3227337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simultaneously operating MR-PET systems have the potential to provide synergetic multi-parametric information, and, as such, interest surrounding their use and development is increasing. However, despite the potential advantages offered by fully combined MR-PET systems, implementing this hybrid integration is technically laborious, and any factors degrading the quality of either modality must be circumvented to ensure optimal performance. In order to attain the best possible quality from both systems, most full MR-PET integrations tend to place the shielded PET system inside the MRI system, close to the target volume of the subject. The radiofrequency (RF) coil used in MRI systems is a key factor in determining the quality of the MR images, and, in simultaneous acquisition, it is generally positioned inside the PET system and PET imaging region, potentially resulting in attenuation and artefacts in the PET images. Therefore, when designing hybrid MR-PET systems, it is imperative that consideration be given to the RF coils inside the PET system. In this review, we present current state-of-the-art RF coil designs used for hybrid MR-PET experiments and discuss various design strategies for constructing PET transparent RF coils.
Collapse
|
8
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
9
|
Woo MK, DelaBarre L, Waks M, Lagore R, Kim J, Jungst S, Eryaman Y, Ugurbil K, Adriany G. A 32-Channel Sleeve Antenna Receiver Array for Human Head MRI Applications at 10.5 T. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2643-2652. [PMID: 37030782 DOI: 10.1109/tmi.2023.3261922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
For human brain magnetic resonance imaging (MRI), high channel count ( ≥ 32 ) radiofrequency receiver coil arrays are utilized to achieve maximum signal-to-noise ratio (SNR) and to accelerate parallel imaging techniques. With ultra-high field (UHF) MRI at 7 tesla (T) and higher, dipole antenna arrays have been shown to generate high SNR in the deep regions of the brain, however the array elements exhibit increased electromagnetic coupling with one another, making array construction more difficult with the increasing number of elements. Compared to a classical dipole antenna array, a sleeve antenna array incorporates the coaxial ground into the feed-point, resulting in a modified asymmetric antenna structure with improved intra-element decoupling. Here, we extended our previous 16-channel sleeve transceiver work and developed a 32-channel azimuthally arranged sleeve antenna receive-only array for 10.5 T human brain imaging. We experimentally compared the achievable SNR of the sleeve antenna array at 10.5 T to a more traditional 32-channel loop array bult onto a human head-shaped former. The results obtained with a head shaped phantom clearly demonstrated that peripheral intrinsic SNR can be significantly improved compared to a loop array with the same number of elements- except for the superior part of the phantom where sleeve antenna elements are not located.
Collapse
|
10
|
Pietrenko-Dabrowska A, Koziel S. Rapid antenna optimization with restricted sensitivity updates by automated dominant direction identification. Knowl Based Syst 2023. [DOI: 10.1016/j.knosys.2023.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
11
|
Mukhatov A, Le T, Pham TT, Do TD. A comprehensive review on magnetic imaging techniques for biomedical applications. NANO SELECT 2023. [DOI: 10.1002/nano.202200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Azamat Mukhatov
- Department of Robotics School of Engineering and Digital Sciences Nazarbayev University Astana Kazakhstan
| | - Tuan‐Anh Le
- Department of Physiology and Biomedical Engineering Mayo Clinic Scottsdale Arizona USA
| | - Tri T. Pham
- Department of Biology School of Sciences and Humanities Nazarbayev University Astana Kazakhstan
| | - Ton Duc Do
- Department of Robotics School of Engineering and Digital Sciences Nazarbayev University Astana Kazakhstan
| |
Collapse
|
12
|
Woo MK, DelaBarre L, Waks M, Lagore R, Radder J, Jungst S, Kang CK, Ugurbil K, Adriany G. A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 2022; 21:1857-1861. [PMID: 37020750 PMCID: PMC10072856 DOI: 10.1109/lawp.2022.3183206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this letter, we evaluate antenna designs for ultra-high frequency and field (UHF) human brain magnetic resonance imaging (MRI) at 10.5 tesla (T). Although MRI at such UHF is expected to provide major signal-to-noise gains, the frequency of interest, 447 MHz, presents us with challenges regarding improved B1 + efficiency, image homogeneity, specific absorption rate (SAR), and antenna element decoupling for array configurations. To address these challenges, we propose the use of both monopole and dipole antennas in a novel hybrid configuration, which we refer to as a mono-dipole hybrid antenna (MDH) array. Compared to an 8-channel dipole antenna array of the same dimensions, the 8-channel MDH array showed an improvement in decoupling between adjacent array channels, as well as ~18% higher B1 + and SAR efficiency near the central region of the phantom based on simulation and experiment. However, the performances of the MDH and dipole antenna arrays were overall similar when evaluating a human model in terms of peak B1 + efficiency, 10 g SAR, and SAR efficiency. Finally, the concept of an MDH array showed an advantage in improved decoupling, SAR, and B1 + near the superior region of the brain for human brain imaging.
Collapse
Affiliation(s)
- Myung Kyun Woo
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan 44005, South Korea
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Matt Waks
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Russell Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Jerahmie Radder
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Chang-Ki Kang
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 1342, South Korea
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
13
|
Sadeghi-Tarakameh A, Jungst S, Lanagan M, DelaBarre L, Wu X, Adriany G, Metzger GJ, Van de Moortele PF, Ugurbil K, Atalar E, Eryaman Y. A nine-channel transmit/receive array for spine imaging at 10.5 T: Introduction to a nonuniform dielectric substrate antenna. Magn Reson Med 2021; 87:2074-2088. [PMID: 34825735 DOI: 10.1002/mrm.29096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this study is to introduce a new antenna element with improved transmit performance, named the nonuniform dielectric substrate (NODES) antenna, for building transmit arrays at ultrahigh-field. METHODS We optimized a dipole antenna at 10.5 Tesla by maximizing the B 1 + -SAR efficiency in a phantom for a human spine target. The optimization parameters included permittivity variation in the substrate, substrate thickness, antenna length, and conductor geometry. We conducted electromagnetic simulations as well as phantom experiments to compare the transmit/receive performance of the proposed NODES antenna design with existing coil elements from the literature. RESULTS Single NODES element showed up to 18% and 30% higher B 1 + -SAR efficiency than the fractionated dipole and loop elements, respectively. The new element is substantially shorter than a commonly used dipole, which enables z-stacked array formation; it is additionally capable of providing a relatively uniform current distribution along its conductors. The nine-channel transmit/receive NODES array achieved 7.5% higher B 1 + homogeneity than a loop array with the same number of elements. Excitation with the NODES array resulted in 33% lower peak 10g-averaged SAR and required 34% lower input power than the loop array for the target anatomy of the spine. CONCLUSION In this study, we introduced a new RF coil element: the NODES antenna. NODES antenna outperformed the widely used loop and dipole elements and may provide improved transmit/receive performance for future ultrahigh field MRI applications.
Collapse
Affiliation(s)
- Alireza Sadeghi-Tarakameh
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Mike Lanagan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
A 16-Channel Dipole Antenna Array for Human Head Magnetic Resonance Imaging at 10.5 Tesla. SENSORS 2021; 21:s21217250. [PMID: 34770558 PMCID: PMC8587099 DOI: 10.3390/s21217250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/26/2023]
Abstract
For ultra-high field and frequency (UHF) magnetic resonance imaging (MRI), the associated short wavelengths in biological tissues leads to penetration and homogeneity issues at 10.5 tesla (T) and require antenna transmit arrays for efficiently generated 447 MHz B1+ fields (defined as the transmit radiofrequency (RF) magnetic field generated by RF coils). Previously, we evaluated a 16-channel combined loop + dipole antenna (LD) 10.5 T head array. While the LD array configuration did not achieve the desired B1+ efficiency, it showed an improvement of the specific absorption rate (SAR) efficiency compared to the separate 8-channel loop and separate 8-channel dipole antenna arrays at 10.5 T. Here we compare a 16-channel dipole antenna array with a 16-channel LD array of the same dimensions to evaluate B1+ efficiency, 10 g SAR, and SAR efficiency. The 16-channel dipole antenna array achieved a 24% increase in B1+ efficiency in the electromagnetic simulation and MR experiment compared to the LD array, as measured in the central region of a phantom. Based on the simulation results with a human model, we estimate that a 16-channel dipole antenna array for human brain imaging can increase B1+ efficiency by 15% with similar SAR efficiency compared to a 16-channel LD head array.
Collapse
|
15
|
Evaluation of 8-Channel Radiative Antenna Arrays for Human Head Imaging at 10.5 Tesla. SENSORS 2021; 21:s21186000. [PMID: 34577210 PMCID: PMC8469352 DOI: 10.3390/s21186000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
For human head magnetic resonance imaging at 10.5 tesla (T), we built an 8-channel transceiver dipole antenna array and evaluated the influence of coaxial feed cables. The influence of coaxial feed cables was evaluated in simulation and compared against a physically constructed array in terms of transmit magnetic field (B1+) and specific absorption rate (SAR) efficiency. A substantial drop (23.1% in simulation and 20.7% in experiment) in B1+ efficiency was observed with a tight coaxial feed cable setup. For the investigation of the feed location, the center-fed dipole antenna array was compared to two 8-channel end-fed arrays: monopole and sleeve antenna arrays. The simulation results with a phantom indicate that these arrays achieved ~24% higher SAR efficiency compared to the dipole antenna array. For a human head model, we observed 30.8% lower SAR efficiency with the 8-channel monopole antenna array compared to the phantom. Importantly, our simulation with the human model indicates that the sleeve antenna arrays can achieve 23.8% and 21% higher SAR efficiency compared to the dipole and monopole antenna arrays, respectively. Finally, we obtained high-resolution human cadaver images at 10.5 T with the 8-channel sleeve antenna array.
Collapse
|