1
|
Li B, She H. Improved motion correction in brain MRI using 3D radial trajectory and projection moment analysis. Magn Reson Med 2024; 92:1617-1631. [PMID: 38775235 DOI: 10.1002/mrm.30159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/07/2024] [Accepted: 05/02/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE To develop a generalized rigid body motion correction method in 3D radial brain MRI to deal with continuous motion pattern through projection moment analysis. METHODS An assumption was made that the multichannel coil moves with the head, which was achieved by using a flexible head coil. A two-step motion correction scheme was proposed to directly extract the motion parameters from the acquired k-space data using the analysis of center-of-mass with high noise robustness, which were used for retrospective motion correction. A recursive least-squares model was introduced to recursively estimate the motion parameters for every single spoke, which used the smoothness of motion and resulted in high temporal resolution and low computational cost. Five volunteers were scanned at 3 T using a 3D radial multidimensional golden-means trajectory with instructed motion patterns. The performance was tested through both simulation and in vivo experiments. Quantitative image quality metrics were calculated for comparison. RESULTS The proposed method showed good accuracy and precision in both translation and rotation estimation. A better result was achieved using the proposed two-step correction compared to traditional one-step correction without significantly increasing computation time. Retrospective correction showed substantial improvements in image quality among all scans, even for stationary scans. CONCLUSIONS The proposed method provides an easy, robust, and time-efficient tool for motion correction in brain MRI, which may benefit clinical diagnosis of uncooperative patients as well as scientific MRI researches.
Collapse
Affiliation(s)
- Bowen Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, China
| | - Huajun She
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Feng W, Ding Z, Chen Q, She H, Du YP. Whole brain multiparametric mapping in two minutes using a dual-flip-angle stack-of-stars blipped multi-gradient-echo acquisition. Neuroimage 2024; 297:120689. [PMID: 38880311 DOI: 10.1016/j.neuroimage.2024.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024] Open
Abstract
A new MRI technique is presented for three-dimensional fast simultaneous whole brain mapping of myelin water fraction (MWF), T1, proton density (PD), R2*, magnetic susceptibility (QSM), and B1 transmit field (B1+). Phantom and human (N = 9) datasets were acquired using a dual-flip-angle blipped multi-gradient-echo (DFA-mGRE) sequence with a stack-of-stars (SOS) trajectory. Images were reconstructed using a subspace-based algorithm with a locally low-rank constraint. A novel joint-sparsity-constrained multicomponent T2*-T1 spectrum estimation (JMSE) algorithm is proposed to correct for the T1 saturation effect and B1+/B1- inhomogeneities in the quantification of MWF. A tissue-prior-based B1+ estimation algorithm was adapted for B1 correction in the mapping of T1 and PD. In the phantom study, measurements obtained at an acceleration factor (R) of 12 using prospectively under-sampled SOS showed good consistency (R2 > 0.997) with Cartesian reference for R2*/T1app/M0app. In the in vivo study, results of retrospectively under-sampled SOS with R = 6, 12, 18, showed good quality (structure similarity index measure > 0.95) compared with those of fully-sampled SOS. Besides, results of prospectively under-sampled SOS with R = 12 showed good consistency (intraclass correlation coefficient > 0.91) with Cartesian reference for T1/PD/B1+/MWF/QSM/R2*, and good reproducibility (coefficient of variation < 7.0 %) in the test-retest analysis for T1/PD/B1+/MWF/R2*. This study has demonstrated the feasibility of simultaneous whole brain multiparametric mapping with a two-minute scan using the DFA-mGRE SOS sequence, which may overcome a major obstacle for neurological applications of multiparametric MRI.
Collapse
Affiliation(s)
- Wenlong Feng
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zekang Ding
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Quan Chen
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huajun She
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yiping P Du
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Lee JH, Kim JY, Ryu K, Al-Masni MA, Kim TH, Han D, Kim HG, Kim DH. JUST-Net: Jointly unrolled cross-domain optimization based spatio-temporal reconstruction network for accelerated 3D myelin water imaging. Magn Reson Med 2024; 91:2483-2497. [PMID: 38342983 DOI: 10.1002/mrm.30021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
PURPOSE We introduced a novel reconstruction network, jointly unrolled cross-domain optimization-based spatio-temporal reconstruction network (JUST-Net), aimed at accelerating 3D multi-echo gradient-echo (mGRE) data acquisition and improving the quality of resulting myelin water imaging (MWI) maps. METHOD An unrolled cross-domain spatio-temporal reconstruction network was designed. The main idea is to combine frequency and spatio-temporal image feature representations and to sequentially implement convolution layers in both domains. The k-space subnetwork utilizes shared information from adjacent frames, whereas the image subnetwork applies separate convolutions in both spatial and temporal dimensions. The proposed reconstruction network was evaluated for both retrospectively and prospectively accelerated acquisition. Furthermore, it was assessed in simulation studies and real-world cases with k-space corruptions to evaluate its potential for motion artifact reduction. RESULTS The proposed JUST-Net enabled highly reproducible and accelerated 3D mGRE acquisition for whole-brain MWI, reducing the acquisition time from fully sampled 15:23 to 2:22 min within a 3-min reconstruction time. The normalized root mean squared error of the reconstructed mGRE images increased by less than 4.0%, and the correlation coefficients for MWI showed a value of over 0.68 when compared to the fully sampled reference. Additionally, the proposed method demonstrated a mitigating effect on both simulated and clinical motion-corrupted cases. CONCLUSION The proposed JUST-Net has demonstrated the capability to achieve high acceleration factors for 3D mGRE-based MWI, which is expected to facilitate widespread clinical applications of MWI.
Collapse
Affiliation(s)
- Jae-Hun Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
- Artificial Intelligence and Robotics Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jae-Yoon Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kanghyun Ryu
- Artificial Intelligence and Robotics Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Mohammed A Al-Masni
- Department of Artificial Intelligence, Sejong University, Seoul, Republic of Korea
| | - Tae Hyung Kim
- Department of Computer Engineering, Hongik University, Seoul, Republic of Korea
| | - Dongyeob Han
- Siemens Healthineers Ltd, Seoul, Republic of Korea
| | - Hyun Gi Kim
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Chen X, Wu J, Yang Y, Chen H, Zhou Y, Lin L, Wei Z, Xu J, Chen Z, Chen L. Boosting quantification accuracy of chemical exchange saturation transfer MRI with a spatial-spectral redundancy-based denoising method. NMR IN BIOMEDICINE 2024; 37:e5027. [PMID: 37644611 DOI: 10.1002/nbm.5027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a versatile technique that enables noninvasive detections of endogenous metabolites present in low concentrations in living tissue. However, CEST imaging suffers from an inherently low signal-to-noise ratio (SNR) due to the decreased water signal caused by the transfer of saturated spins. This limitation challenges the accuracy and reliability of quantification in CEST imaging. In this study, a novel spatial-spectral denoising method, called BOOST (suBspace denoising with nOnlocal lOw-rank constraint and Spectral local-smooThness regularization), was proposed to enhance the SNR of CEST images and boost quantification accuracy. More precisely, our method initially decomposes the noisy CEST images into a low-dimensional subspace by leveraging the global spectral low-rank prior. Subsequently, a spatial nonlocal self-similarity prior is applied to the subspace-based images. Simultaneously, the spectral local-smoothness property of Z-spectra is incorporated by imposing a weighted spectral total variation constraint. The efficiency and robustness of BOOST were validated in various scenarios, including numerical simulations and preclinical and clinical conditions, spanning magnetic field strengths from 3.0 to 11.7 T. The results demonstrated that BOOST outperforms state-of-the-art algorithms in terms of noise elimination. As a cost-effective and widely available post-processing method, BOOST can be easily integrated into existing CEST protocols, consequently promoting accuracy and reliability in detecting subtle CEST effects.
Collapse
Affiliation(s)
- Xinran Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Jian Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Yu Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Huan Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, Beijing, China
| | - Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Zhou Z, Li Q, Liao C, Cao X, Liang H, Chen Q, Pu R, Ye H, Tong Q, He H, Zhong J. Optimized three-dimensional ultrashort echo time: Magnetic resonance fingerprinting for myelin tissue fraction mapping. Hum Brain Mapp 2023; 44:2209-2223. [PMID: 36629336 PMCID: PMC10028641 DOI: 10.1002/hbm.26203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/12/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
Quantitative assessment of brain myelination has gained attention for both research and diagnosis of neurological diseases. However, conventional pulse sequences cannot directly acquire the myelin-proton signals due to its extremely short T2 and T2* values. To obtain the myelin-proton signals, dedicated short T2 acquisition techniques, such as ultrashort echo time (UTE) imaging, have been introduced. However, it remains challenging to isolate the myelin-proton signals from tissues with longer T2. In this article, we extended our previous two-dimensional ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) with dual-echo acquisition to three dimensional (3D). Given a relatively low proton density (PD) of myelin-proton, we utilized Cramér-Rao Lower Bound to encode myelin-proton with the maximal SNR efficiency for optimizing the MR fingerprinting design, in order to improve the sensitivity of the sequence to myelin-proton. In addition, with a second echo of approximately 3 ms, myelin-water component can be also captured. A myelin-tissue (myelin-proton and myelin-water) fraction mapping can be thus calculated. The optimized 3D UTE-MRF with dual-echo acquisition is tested in simulations, physical phantom and in vivo studies of both healthy subjects and multiple sclerosis patients. The results suggest that the rapidly decayed myelin-proton and myelin-water signal can be depicted with UTE signals of our method at clinically relevant resolution (1.8 mm isotropic) in 15 min. With its good sensitivity to myelin loss in multiple sclerosis patients demonstrated, our method for the whole brain myelin-tissue fraction mapping in clinical friendly scan time has the potential for routine clinical imaging.
Collapse
Affiliation(s)
- Zihan Zhou
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qing Li
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- MR Collaborations, Siemens Healthineers Ltd, Shanghai, China
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Hui Liang
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Quan Chen
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Run Pu
- Neusoft Medical Systems, Shanghai, China
| | - Huihui Ye
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| |
Collapse
|
6
|
Wang Z, She H, Zhang Y, Du YP. Parallel non-Cartesian spatial-temporal dictionary learning neural networks (stDLNN) for accelerating 4D-MRI. Med Image Anal 2023; 84:102701. [PMID: 36470148 DOI: 10.1016/j.media.2022.102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Dynamic magnetic resonance imaging (MRI) acquisitions are relatively slow due to physical and physiological limitations. The spatial-temporal dictionary learning (DL) approach accelerates dynamic MRI by learning spatial-temporal correlations, but the regularization parameters need to be manually adjusted, the performance at high acceleration rate is limited, and the reconstruction can be time-consuming. Deep learning techniques have shown good performance in accelerating MRI due to the powerful representational capabilities of neural networks. In this work, we propose a parallel non-Cartesian spatial-temporal dictionary learning neural networks (stDLNN) framework that combines dictionary learning with deep learning algorithms and utilizes the spatial-temporal prior information of dynamic MRI data to achieve better reconstruction quality and efficiency. The coefficient estimation modules (CEM) are designed in the framework to adaptively adjust the regularization coefficients. Experimental results show that combining dictionary learning with deep neural networks and using spatial-temporal dictionaries can obviously improve the image quality and computational efficiency compared with the state-of-the-art non-Cartesian imaging methods for accelerating the 4D-MRI especially at high acceleration rate.
Collapse
Affiliation(s)
- Zhijun Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huajun She
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yufei Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yiping P Du
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
7
|
Lee JH, Yi J, Kim JH, Ryu K, Han D, Kim S, Lee S, Kim DY, Kim DH. Accelerated 3D myelin water imaging using joint spatio-temporal reconstruction. Med Phys 2022; 49:5929-5942. [PMID: 35678751 DOI: 10.1002/mp.15788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/31/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To enable acceleration in 3D multi-echo gradient echo (mGRE) acquisition for myelin water imaging (MWI) by combining joint parallel imaging (JPI) and joint deep learning (JDL). METHODS We implemented a multistep reconstruction process using both advanced parallel imaging and deep learning network which can utilize joint spatiotemporal components between the multi-echo images to further accelerate 3D mGRE acquisition for MWI. In the first step, JPI was performed to estimate missing k-space lines. Next, JDL was implemented to reduce residual artifacts and produce high-fidelity reconstruction by using variable splitting optimization consisting of spatiotemporal denoiser block, data consistency block, and weighted average block. The proposed method was evaluated for MWI with 2D Cartesian uniform under-sampling for each echo, enabling scan times of up to approximately 2 min for 2 mm × 2 mm × 2 mm $2\ {\rm mm} \times 2\ {\rm mm} \times 2\ {\rm mm}$ 3D coverage. RESULTS The proposed method showed acceptable MWI quality with improved quantitative values compared to both JPI and JDL methods individually. The improved performance of the proposed method was demonstrated by the low normalized mean-square error and high-frequency error norm values of the reconstruction with high similarity to the fully sampled MWI. CONCLUSION Joint spatiotemporal reconstruction approach by combining JPI and JDL can achieve high acceleration factors for 3D mGRE-based MWI.
Collapse
Affiliation(s)
- Jae-Hun Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jaeuk Yi
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jun-Hyeong Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kanghyun Ryu
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Dongyeob Han
- Siemens Healthineers Ltd, Seoul, Republic of Korea
| | - Sewook Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Seul Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Deog Young Kim
- Department of Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Li S, Shen C, Ding Z, She H, Du YP. Accelerating multi-echo chemical shift encoded water-fat MRI using model-guided deep learning. Magn Reson Med 2022; 88:1851-1866. [PMID: 35649172 DOI: 10.1002/mrm.29307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE To accelerate chemical shift encoded (CSE) water-fat imaging by applying a model-guided deep learning water-fat separation (MGDL-WF) framework to the undersampled k-space data. METHODS A model-guided deep learning water-fat separation framework is proposed for the acceleration using Cartesian/radial undersampling data. The proposed MGDL-WF combines the power of CSE water-fat imaging model and data-driven deep learning by jointly using a multi-peak fat model and a modified residual U-net network. The model is used to guide the image reconstruction, and the network is used to capture the artifacts induced by the undersampling. A data consistency layer is used in MGDL-WF to ensure the output images to be consistent with the k-space measurements. A Gauss-Newton iteration algorithm is adapted for the gradient updating of the networks. RESULTS Compared with the compressed sensing water-fat separation (CS-WF) algorithm/2-step procedure algorithm, the MGDL-WF increased peak signal-to-noise ratio (PSNR) by 5.31/5.23, 6.11/4.54, and 4.75 dB/1.88 dB with Cartesian sampling, and by 4.13/6.53, 2.90/4.68, and 1.68 dB/3.48 dB with radial sampling, at acceleration rates (R) of 4, 6, and 8, respectively. By using MGDL-WF, radial sampling increased the PSNR by 2.07 dB at R = 8, compared with Cartesian sampling. CONCLUSIONS The proposed MGDL-WF enables exploiting features of the water images and fat images from the undersampled multi-echo data, leading to improved performance in the accelerated CSE water-fat imaging. By using MGDL-WF, radial sampling can further improve the image quality with comparable scan time in comparison with Cartesian sampling.
Collapse
Affiliation(s)
- Shuo Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chenfei Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zekang Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huajun She
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yiping P Du
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Song JE, Kim DH. Improved Multi-Echo Gradient-Echo-Based Myelin Water Fraction Mapping Using Dimensionality Reduction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:27-38. [PMID: 34357864 DOI: 10.1109/tmi.2021.3102977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multi-echo gradient-echo (mGRE)-based myelin water fraction (MWF) mapping is a promising myelin water imaging (MWI) modality but is vulnerable to noise and artifact corruption. The linear dimensionality reduction (LDR) method has recently shown improvements with regard to these challenges. However, the magnitude value based low rank operators have been shown to misestimate the MWF for regions with [Formula: see text] anisotropy. This paper presents a nonlinear dimensionality reduction (NLDR) method to estimate the MWF map better by encouraging nonlinear low dimensionality of mGRE signal sources. Specifically, we implemented a fully connected deep autoencoder to extract the low-dimensional features of complex-valued signals and incorporated a sparse regularization to separate the anomaly sources that do not reside in the low-dimensional manifold. Simulations and in vivo experiments were performed to evaluate the accuracy of the MWF map under various situations. The proposed NLDR-based MWF improves the accuracy of the MWF map over the conventional nonlinear least-squares method and the LDR-based MWF and maintains robustness against noise and artifact corruption.
Collapse
|
10
|
Li Y, Xiong J, Guo R, Zhao Y, Li Y, Liang ZP. Improved estimation of myelin water fractions with learned parameter distributions. Magn Reson Med 2021; 86:2795-2809. [PMID: 34216050 DOI: 10.1002/mrm.28889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE To improve estimation of myelin water fraction (MWF) in the brain from multi-echo gradient-echo imaging data. METHODS A systematic sensitivity analysis was first conducted to characterize the conventional exponential models used for MWF estimation. A new estimation method was then proposed for improved estimation of MWF from practical gradient-echo imaging data. The proposed method uses an extended signal model that includes a finite impulse response filter to compensate for practical signal variations. This new model also enables the use of prelearned parameter distributions as well as low-rank signal structures to improve parameter estimation. The resulting parameter estimation problem was solved optimally in the Bayesian sense. RESULTS Our sensitivity analysis results showed that the conventional exponential models were very sensitive to measurement noise and modeling errors. Our simulation and experimental results showed that our proposed method provided a substantial improvement in reliability, reproducibility, and robustness of MWF estimates over the conventional methods. Clinical results obtained from stroke patients indicated that the proposed method, with its improved capability, could reveal the loss of myelin in lesions, demonstrating its translational potentials. CONCLUSION This paper addressed the problem of robust MWF estimation from gradient-echo imaging data. A new method was proposed to provide improved MWF estimation in the presence of significant noise and modeling errors. The performance of the proposed method has been evaluated using both simulated and experimental data, showing significantly improved robustness over the existing methods. The proposed method may prove useful for quantitative myelin imaging in clinical applications.
Collapse
Affiliation(s)
- Yudu Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jiahui Xiong
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rong Guo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yibo Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Pei Liang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|