1
|
Sun Z, Tang J, Wang L, Ma J, Zhou T, Li H, Liu X, Yu X, Zhang B. Advancing insights: a bibliometric analysis of evolutionary patterns and research frontiers in ultrasound-derived quantitative assessment of skeletal muscle. Quant Imaging Med Surg 2025; 15:1912-1926. [PMID: 40160621 PMCID: PMC11948402 DOI: 10.21037/qims-24-1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/15/2025] [Indexed: 04/02/2025]
Abstract
Background Quantitative ultrasound has emerged as a promising tool for measuring skeletal muscle mass and quality. Given the growing need for early detection of muscle dysfunction and sarcopenia, this study aims to provide a comprehensive bibliometric analysis of the current state of knowledge in this field, identifying key trends, gaps, and themes to guide future research and clinical applications. Methods A bibliometric analysis was performed on articles retrieved from the Science Citation Index-Expanded (SCI-EXPANDED) database within the Web of Science Core Collection up to April 28, 2024. The 'bibliometrix' R package was utilized to synthesize main findings, quantify the occurrences of top keywords, and visualize international collaboration networks. Keyword co-occurrence and co-authorship were analyzed utilizing VOSviewer. Additionally, CiteSpace facilitated the identification of cited references and keywords exhibiting highest citation bursts. Results A total of 3,379 publications were analyzed. The United States, Japan, and China emerged as the leading contributors to this field. The European Journal of Applied Physiology was identified as the most prolific journal, and Takashi Abe was distinguished for achieving the leading H-index. "Strength" and "reliability" topped the keyword frequency list. "Insulin resistance", "impact", "shear wave elastography", "risk", and "sarcopenia" were keywords that continued to burst as of 2024, which indicated the potential emerging research topics and future frontiers. Conclusions This bibliometric analysis, encompassing over forty years of literature on quantitative ultrasound assessment of skeletal muscle, delineated key contributions from countries, institutions, authors, and journals. The findings highlight the utility of quantitative ultrasound as a critical tool in assessing skeletal muscle mass and function, demonstrating its global impact and research trends.
Collapse
Affiliation(s)
- Zhe Sun
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
| | - Jiajia Tang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
| | - Liangkai Wang
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
| | - Jiaojiao Ma
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Ultrasound, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tongtong Zhou
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
| | - Huilin Li
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
| | - Xinyi Liu
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
- Capital Medical University, Beijing, China
| | - Xuejiao Yu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
| | - Bo Zhang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Ultrasound, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
2
|
Sabeti S, Larson NB, Boughey JC, Stan DL, Solanki MH, Fazzio RT, Fatemi M, Alizad A. Ultrasound-based quantitative microvasculature imaging for early prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Breast Cancer Res 2025; 27:24. [PMID: 39962614 PMCID: PMC11834208 DOI: 10.1186/s13058-025-01978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Angiogenic activity of cancerous breast tumors can be impacted by neoadjuvant chemotherapy (NAC), thus potentially serving as a marker for response monitoring. While different imaging modalities can aid in evaluation of tumoral vascular changes, ultrasound-based approaches are particularly suitable for clinical use due to their availability and noninvasiveness. In this paper, we make use of quantitative high-definition microvasculature imaging (qHDMI) based on contrast-free ultrasound for assessment of NAC response in breast cancer patients. METHODS Patients with invasive breast cancer recommended treatment with NAC were included in the study and ultrafast ultrasound data were acquired at pre-NAC, mid-NAC, and post-NAC time points. Data acquisitions also took place at two additional timepoints - at two and four weeks after NAC initiation in a subset of patients. Ultrasound data frames were processed within the qHDMI framework to visualize the microvasculature in and around the breast tumors. Morphological analyses on the microvasculature structure were performed to obtain 12 qHDMI biomarkers. Pathology from surgery classified response using residual cancer burden (RCB) and was used to designate patients as responders (RCB 0/I) and non-responders (RCB II/III). Distributions of imaging biomarkers across the two groups were analyzed using Wilcoxon rank-sum test. The trajectories of biomarker values over time were investigated and linear mixed effects models were used to evaluate interactions between time and group for each biomarker. RESULTS Of the 53 patients included in the study, 32 (60%) were responders based on their RCB status. The results of linear mixed effects model analysis showed statistically significant interactions between group and time in six out of the 12 qHDMI biomarkers, indicating differences in trends of microvascular morphological features by responder status. In particular, vessel density (p-value: 0.023), maximum tortuosity (p-value: 0.049), maximum diameter (p-value: 0.002), fractal dimension (p-value: 0.002), mean Murray's deviation (p-value: 0.034), and maximum Murray's deviation (p-value: 0.022) exhibited significantly different trends based on responder status. CONCLUSIONS We observed microvasculature changes in response to NAC in breast cancer patients using qHDMI as an objective and quantitative contrast-free ultrasound framework. These finding suggest qHDMI may be effective in identifying early response to NAC.
Collapse
Affiliation(s)
- Soroosh Sabeti
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Nicholas B Larson
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Judy C Boughey
- Division of Breast and Melanoma Surgical Oncology, Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Daniela L Stan
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Malvika H Solanki
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Robert T Fazzio
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Saini M, Fatemi M, Alizad A. Fast inter-frame motion correction in contrast-free ultrasound quantitative microvasculature imaging using deep learning. Sci Rep 2024; 14:26161. [PMID: 39478021 PMCID: PMC11525680 DOI: 10.1038/s41598-024-77610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Contrast-free ultrasound quantitative microvasculature imaging shows promise in several applications, including the assessment of benign and malignant lesions. However, motion represents one of the major challenges in imaging tumor microvessels in organs that are prone to physiological motions. This study aims at addressing potential microvessel image degradation in in vivo human thyroid due to its proximity to carotid artery. The pulsation of the carotid artery induces inter-frame motion that significantly degrades microvasculature images, resulting in diagnostic errors. The main objective of this study is to reduce inter-frame motion artifacts in high-frame-rate ultrasound imaging to achieve a more accurate visualization of tumor microvessel features. We propose a low-complex deep learning network comprising depth-wise separable convolutional layers and hybrid adaptive and squeeze-and-excite attention mechanisms to correct inter-frame motion in high-frame-rate images. Rigorous validation using phantom and in-vivo data with simulated inter-frame motion indicates average improvements of 35% in Pearson correlation coefficients (PCCs) between motion corrected and reference data with respect to that of motion corrupted data. Further, reconstruction of microvasculature images using motion-corrected frames demonstrates PCC improvement from 31 to 35%. Another thorough validation using in-vivo thyroid data with physiological inter-frame motion demonstrates average improvement of 20% in PCC and 40% in mean inter-frame correlation. Finally, comparison with the conventional image registration method indicates the suitability of proposed network for real-time inter-frame motion correction with 5000 times reduction in motion corrected frame prediction latency.
Collapse
Affiliation(s)
- Manali Saini
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Adusei SA, Sabeti S, Larson NB, Dalvin LA, Fatemi M, Alizad A. Quantitative Biomarkers Derived from a Novel, Contrast-Free Ultrasound, High-Definition Microvessel Imaging for Differentiating Choroidal Tumors. Cancers (Basel) 2024; 16:395. [PMID: 38254884 PMCID: PMC10814019 DOI: 10.3390/cancers16020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Angiogenesis has an essential role in the de novo evolution of choroidal melanoma as well as choroidal nevus transformation into melanoma. Differentiating early-stage melanoma from nevus is of high clinical importance; thus, imaging techniques that provide objective information regarding tumor microvasculature structures could aid accurate early detection. Herein, we investigated the feasibility of quantitative high-definition microvessel imaging (qHDMI) for differentiation of choroidal tumors in humans. This new ultrasound-based technique encompasses a series of morphological filtering and vessel enhancement techniques, enabling the visualization of tumor microvessels as small as 150 microns and extracting vessel morphological features as new tumor biomarkers. Distributional differences between the malignant melanomas and benign nevi were tested on 37 patients with choroidal tumors using a non-parametric Wilcoxon rank-sum test, and statistical significance was declared for biomarkers with p-values < 0.05. The ocular oncology diagnosis was choroidal melanoma (malignant) in 21 and choroidal nevus (benign) in 15 patients. The mean thickness of benign and malignant masses was 1.70 ± 0.40 mm and 3.81 ± 2.63 mm, respectively. Six HDMI biomarkers, including number of vessel segments (p = 0.003), number of branch points (p = 0.003), vessel density (p = 0.03), maximum tortuosity (p = 0.001), microvessel fractal dimension (p = 0.002), and maximum diameter (p = 0.003) exhibited significant distributional differences between the two groups. Contrast-free HDMI provided noninvasive imaging and quantification of microvessels of choroidal tumors. The results of this pilot study indicate the potential use of qHDMI as a complementary tool for characterization of small ocular tumors and early detection of choroidal melanoma.
Collapse
Affiliation(s)
- Shaheeda A. Adusei
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 200 1st St. SW, Rochester, MN 55905, USA (M.F.)
| | - Soroosh Sabeti
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 200 1st St. SW, Rochester, MN 55905, USA (M.F.)
| | - Nicholas B. Larson
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, 200 1st St. SW, Rochester, MN 55905, USA
| | - Lauren A. Dalvin
- Department of Ophthalmology, Mayo Clinic College of Medicine and Science, 200 1st St. SW, Rochester, MN 55905, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 200 1st St. SW, Rochester, MN 55905, USA (M.F.)
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 200 1st St. SW, Rochester, MN 55905, USA (M.F.)
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 1st St. SW, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Luo R, Zhang Y, Jiang W, Wang Y, Luo Y. Value of micro-flow imaging and high-definition micro-flow imaging in differentiating malignant and benign breast lesions. Clin Radiol 2024; 79:e48-e56. [PMID: 37932209 DOI: 10.1016/j.crad.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/03/2023] [Accepted: 10/08/2023] [Indexed: 11/08/2023]
Abstract
AIM To evaluate the value of non-contrast micro-flow imaging (MFI) and high-definition micro-flow imaging (HD-MFI) in differentiating malignant and benign breast lesions. MATERIALS AND METHODS One hundred and thirty-three patients with 138 breast lesions (80 benign and 58 malignant lesions) were examined using colour Doppler flow imaging (CDFI), MFI, and HD-MFI before biopsy, with blood flow signals graded into four types (grade 0, 1, 2, and 3) and penetrating vessels evaluated. The micro-vascular patterns of MFI and HD-MFI were evaluated and classified into five patterns: avascular, line-like, tree-like, root hair-like, and crab claw-like pattern. The diagnostic efficiency of micro-vascular patterns was analysed. Moreover, ultrasound Breast Imaging Reporting and Data System (BI-RADS) 4A lesions were also re-assessed according to the micro-vascular patterns of MFI or HD-MFI. RESULTS The capability of detecting blood flow and penetrating vessels from high to low was HD-MFI, MFI, and CDFI, respectively (p<0.05). Rich blood flow signals, penetrating vessels, and root hair-like or crab claw-like pattern were more likely in malignant breast lesions, while few blood flow signals, tree-like pattern were mostly in benign lesions (p<0.05). The diagnostic efficiency of HD-MFI and MFI were higher than CDFI (p>0.05). MFI could reduce unnecessary biopsy of 52 US BI-RADS 4A lesions but with two malignancies missed, while 56 ultrasound BI-RADS 4A lesions could be downgraded by HD-MFI with none malignancies missed. CONCLUSIONS MFI and HD-MFI can detect more blood flow in breast lesions than CDFI, and could help distinguish benign and malignant breast lesions. HD-MFI could reduce the unnecessary biopsy of US BI-RADS 4A lesions without missed malignancy.
Collapse
Affiliation(s)
- R Luo
- Medical College, Yangzhou University, Yangzhou, Jiangsu, China; Department of Ultrasound, Division of First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Y Zhang
- Department of Ultrasound, Division of First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - W Jiang
- Department of Ultrasound, Division of First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Y Wang
- Department of Ultrasound, Division of First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Y Luo
- Department of Ultrasound, Division of First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Fu N, Li J, Wang B, Jiang Y, Li S, Niu R, Wang Z. Diagnostic performance of contrast-enhanced ultrasound in breast lesions: what diagnostic models could be used for lesions of different sizes? Gland Surg 2023; 12:1654-1667. [PMID: 38229844 PMCID: PMC10788570 DOI: 10.21037/gs-23-223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024]
Abstract
Background Previous studies show the size of lesions could affect the diagnostic accuracy of contrast-enhanced ultrasound (CEUS). It is unclear whether CEUS has good diagnostic performance for lesions ≤2.0 and ≤1.0 cm. It is beneficial for the early diagnosis to explore the application of CEUS in breast lesions of different sizes. This study aims to analyze the diagnostic performance of CEUS and explore diagnostic models better suited to breast lesions of different sizes. Methods A total of 1,059 lesions (656 benign and 403 malignant) examined by ultrasound and CEUS with definite pathological results were included in this retrospective study and divided into training (n=847) and validation (n=212) sets. All lesions were divided into three groups according to size. Diagnostic models (M0: all lesions; M1: ≤1.0 cm, M2: >1.0-2.0 cm, and M3: >2.0 cm) were developed through logistic regression analyses of CEUS features from the training set. Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUC) and validated in the validation set. Results The median age of patients was 45±11 years (range, 18-80 years). The AUC values of M0 combined with the Breast Imaging Reporting and Data System (BI-RADS) in the training and validation sets were 0.921 and 0.922, respectively (P=0.893). The AUC values of M0 combined with BI-RADS in the three groups were 0.844, 0.936 and 0.928 respectively. M0 was less effective in diagnosing lesions ≤1.0 cm (0.844 vs. 0.921, P=0.029). The AUC of M1 combined with BI-RADS for lesions ≤1.0 cm was higher than that of M0 (0.893 vs. 0.844, P=0.047), and M2 and M3 had no statistical difference in diagnostic performance when compared with M0 (P=0.243; P=0.246). Conclusions The diagnostic performance of CEUS was closely related to lesion size. Establishing a new diagnostic model for lesions ≤1.0 cm can improve the CEUS diagnostic performance for breast lesions ≤1.0 cm.
Collapse
Affiliation(s)
- Naiqin Fu
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junkang Li
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Ultrasound, Chinese PLA 63820 Hospital, Mianyang, China
| | - Bo Wang
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Jiang
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shiyu Li
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ruilan Niu
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhili Wang
- Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Adusei S, Ternifi R, Fatemi M, Alizad A. Custom-made flow phantoms for quantitative ultrasound microvessel imaging. ULTRASONICS 2023; 134:107092. [PMID: 37364357 PMCID: PMC10530522 DOI: 10.1016/j.ultras.2023.107092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Morphologically realistic flow phantoms are essential experimental tools for quantitative ultrasound-based microvessel imaging. As new quantitative flow imaging tools are developed, the need for more complex vessel-mimicking phantoms is indisputable. In this article, we propose a method for fabricating phantoms with sub-millimeter channels consisting of branches and curvatures in various shapes and sizes suitable for quantifying vessel morphological features. We used different tissue-mimicking materials (TMMs) compatible with ultrasound imaging as the base and metal wires of different diameters (0.15-1.25 mm) to create wall-less channels. The TMMs used are silicone rubber, plastisol, conventional gelatin, and medical gelatin. Mother channels in these phantoms were made in diameters of 1.25 mm or 0.3 mm and the daughter channels in diameters 0.3 mm or 0.15 mm. Bifurcations were created by soldering wires together at branch points. Quantitative parameters were assessed, and accuracy of measurements from the ground truth were determined. Channel diameters were seen to have increased (76-270%) compared to the initial state in the power Doppler images, partly due to blood mimicking fluid pressure. Amongst the microflow phantoms made from the different TMMs, the medical gelatin phantom was selected as the best option for microflow imaging, fulfilling the objective of being easy to fabricate with high transmittance while having a speed of sound and acoustic attenuation close to human tissue. A flow velocity of 0.85 ± 0.01 mm/s, comparable to physiological flow velocity was observed in the smallest diameter phantom (medical gelatin branch) presented here. We successfully constructed more complex geometries, including tortuous and multibranch channels using the medical gelatin as the TMM. We anticipate this will create new avenues for validating quantitative ultrasound microvessel imaging techniques.
Collapse
Affiliation(s)
- Shaheeda Adusei
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Redouane Ternifi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
8
|
Sabeti S, Nayak R, McBane RD, Fatemi M, Alizad A. Contrast-free ultrasound imaging for blood flow assessment of the lower limb in patients with peripheral arterial disease: a feasibility study. Sci Rep 2023; 13:11321. [PMID: 37443250 PMCID: PMC10345143 DOI: 10.1038/s41598-023-38576-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023] Open
Abstract
While being a relatively prevalent condition particularly among aging patients, peripheral arterial disease (PAD) of lower extremities commonly goes undetected or misdiagnosed due to its symptoms being nonspecific. Additionally, progression of PAD in the absence of timely intervention can lead to dire consequences. Therefore, development of non-invasive and affordable diagnostic approaches can be highly beneficial in detection and treatment planning for PAD patients. In this study, we present a contrast-free ultrasound-based quantitative blood flow imaging technique for PAD diagnosis. The method involves monitoring the variations of blood flow in the calf muscle in response to thigh-pressure-cuff-induced occlusion. Four quantitative metrics are introduced for analysis of these variations. These metrics include post-occlusion to baseline flow intensity variation (PBFIV), total response region (TRR), Lag0 response region (L0RR), and Lag4 (and more) response region (L4 + RR). We examine the feasibility of this method through an in vivo study consisting of 14 PAD patients with abnormal ankle-brachial index (ABI) and 8 healthy volunteers. Ultrasound data acquired from 13 legs in the patient group and 13 legs in the healthy group are analyzed. Out of the four utilized metrics, three exhibited significantly different distributions between the two groups (p-value < 0.05). More specifically, p-values of 0.0015 for PBFIV, 0.0183 for TRR, and 0.0048 for L0RR were obtained. The results of this feasibility study indicate the diagnostic potential of the proposed method for the detection of PAD.
Collapse
Affiliation(s)
- Soroosh Sabeti
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Rohit Nayak
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Robert D McBane
- Department of Cardiovascular, Division of Vascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Ferroni G, Sabeti S, Abdus-Shakur T, Scalise L, Carter JM, Fazzio RT, Larson NB, Fatemi M, Alizad A. Noninvasive prediction of axillary lymph node breast cancer metastasis using morphometric analysis of nodal tumor microvessels in a contrast-free ultrasound approach. Breast Cancer Res 2023; 25:65. [PMID: 37296471 PMCID: PMC10257266 DOI: 10.1186/s13058-023-01670-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE Changes in microcirculation of axillary lymph nodes (ALNs) may indicate metastasis. Reliable noninvasive imaging technique to quantify such variations is lacking. We aim to develop and investigate a contrast-free ultrasound quantitative microvasculature imaging technique for detection of metastatic ALN in vivo. EXPERIMENTAL DESIGN The proposed ultrasound-based technique, high-definition microvasculature imaging (HDMI) provides superb images of tumor microvasculature at sub-millimeter size scales and enables quantitative analysis of microvessels structures. We evaluated the new HDMI technique on 68 breast cancer patients with ultrasound-identified suspicious ipsilateral axillary lymph nodes recommended for fine needle aspiration biopsy (FNAB). HDMI was conducted before the FNAB and vessel morphological features were extracted, analyzed, and the results were correlated with the histopathology. RESULTS Out of 15 evaluated quantitative HDMI biomarkers, 11 were significantly different in metastatic and reactive ALNs (10 with P << 0.01 and one with 0.01 < P < 0.05). We further showed that through analysis of these biomarkers, a predictive model trained on HDMI biomarkers combined with clinical information (i.e., age, node size, cortical thickness, and BI-RADS score) could identify metastatic lymph nodes with an area under the curve of 0.9 (95% CI [0.82,0.98]), sensitivity of 90%, and specificity of 88%. CONCLUSIONS The promising results of our morphometric analysis of HDMI on ALNs offer a new means of detecting lymph node metastasis when used as a complementary imaging tool to conventional ultrasound. The fact that it does not require injection of contrast agents simplifies its use in routine clinical practice.
Collapse
Affiliation(s)
- Giulia Ferroni
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Soroosh Sabeti
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Tasneem Abdus-Shakur
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 1st. St. SW, Rochester, MN, 55905, USA
| | - Lorenzo Scalise
- Department of Industrial Engineering and Mathematical Science, Marche Polytechnic University, 60131, Ancona, Italy
| | - Jodi M Carter
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Robert T Fazzio
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 1st. St. SW, Rochester, MN, 55905, USA
| | - Nicholas B Larson
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 1st. St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Huang L, Wang Y, Wang R, Wei X, He Q, Zheng C, Peng H, Luo J. High-Quality Ultrafast Power Doppler Imaging Based on Spatial Angular Coherence Factor. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:378-392. [PMID: 37028058 DOI: 10.1109/tuffc.2023.3253257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The morphological and hemodynamic changes of microvessels are demonstrated to be related to the diseased conditions in tissues. Ultrafast power Doppler imaging (uPDI) is a novel modality with a significantly increased Doppler sensitivity, benefiting from the ultrahigh frame rate plane-wave imaging (PWI) and advanced clutter filtering. However, unfocused plane-wave transmission often leads to a low imaging quality, which degrades the subsequent microvascular visualization in power Doppler imaging. Coherence factor (CF)-based adaptive beamformers have been widely studied in conventional B-mode imaging. In this study, we propose a spatial and angular coherence factor (SACF) beamformer for improved uPDI (SACF-uPDI) by calculating the spatial CF across apertures and the angular CF across transmit angles, respectively. To identify the superiority of SACF-uPDI, simulations, in vivo contrast-enhanced rat kidney, and in vivo contrast-free human neonatal brain studies were conducted. Results demonstrate that SACF-uPDI can effectively enhance contrast and resolution and suppress background noise simultaneously, compared with conventional uPDI methods based on delay-and-sum (DAS) (DAS-uPDI) and CF (CF-uPDI). In the simulations, SACF-uPDI can improve the lateral and axial resolutions compared with those of DAS-uPDI, from 176 to [Formula: see text] of lateral resolution, and from 111 to [Formula: see text] of axial resolution. In the in vivo contrast-enhanced experiments, SACF achieves 15.14- and 5.6-dB higher contrast-to-noise ratio (CNR), 15.25- and 3.68-dB lower noise power, and 240- and 15- [Formula: see text] narrower full-width at half-maximum (FWHM) than DAS-uPDI and CF-uPDI, respectively. In the in vivo contrast-free experiments, SACF achieves 6.11- and 1.09-dB higher CNR, 11.93- and 4.01-dB lower noise power, and 528- and 160- [Formula: see text] narrower FWHM than DAS-uPDI and CF-uPDI, respectively. In conclusion, the proposed SACF-uPDI method can efficiently improve the microvascular imaging quality and has the potential to facilitate clinical applications.
Collapse
|
11
|
Kurti M, Sabeti S, Robinson KA, Scalise L, Larson NB, Fatemi M, Alizad A. Quantitative Biomarkers Derived from a Novel Contrast-Free Ultrasound High-Definition Microvessel Imaging for Distinguishing Thyroid Nodules. Cancers (Basel) 2023; 15:cancers15061888. [PMID: 36980774 PMCID: PMC10046818 DOI: 10.3390/cancers15061888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Low specificity in current ultrasound modalities for thyroid cancer detection necessitates the development of new imaging modalities for optimal characterization of thyroid nodules. Herein, the quantitative biomarkers of a new high-definition microvessel imaging (HDMI) were evaluated for discrimination of benign from malignant thyroid nodules. Without the help of contrast agents, this new ultrasound-based quantitative technique utilizes processing methods including clutter filtering, denoising, vessel enhancement filtering, morphological filtering, and vessel segmentation to resolve tumor microvessels at size scales of a few hundred microns and enables the extraction of vessel morphological features as new tumor biomarkers. We evaluated quantitative HDMI on 92 patients with 92 thyroid nodules identified in ultrasound. A total of 12 biomarkers derived from vessel morphological parameters were associated with pathology results. Using the Wilcoxon rank-sum test, six of the twelve biomarkers were significantly different in distribution between the malignant and benign nodules (all p < 0.01). A support vector machine (SVM)-based classification model was trained on these six biomarkers, and the receiver operating characteristic curve (ROC) showed an area under the curve (AUC) of 0.9005 (95% CI: [0.8279,0.9732]) with sensitivity, specificity, and accuracy of 0.7778, 0.9474, and 0.8929, respectively. When additional clinical data, namely TI-RADS, age, and nodule size were added to the features, model performance reached an AUC of 0.9044 (95% CI: [0.8331,0.9757]) with sensitivity, specificity, and accuracy of 0.8750, 0.8235, and 0.8400, respectively. Our findings suggest that tumor vessel morphological features may improve the characterization of thyroid nodules.
Collapse
Affiliation(s)
- Melisa Kurti
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Soroosh Sabeti
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Kathryn A Robinson
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lorenzo Scalise
- Department of Industrial Engineering and Mathematical Science, Polytechnic University of Marchedelle Marche, 60131 Ancona, Italy
| | - Nicholas B Larson
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Sabeti S, Ternifi R, Larson NB, Olson MC, Atwell TD, Fatemi M, Alizad A. Morphometric analysis of tumor microvessels for detection of hepatocellular carcinoma using contrast-free ultrasound imaging: A feasibility study. Front Oncol 2023; 13:1121664. [PMID: 37124492 PMCID: PMC10134399 DOI: 10.3389/fonc.2023.1121664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction A contrast-free ultrasound microvasculature imaging technique was evaluated in this study to determine whether extracting morphological features of the vascular networks in hepatic lesions can be beneficial in differentiating benign and malignant tumors (hepatocellular carcinoma (HCC) in particular). Methods A total of 29 lesions from 22 patients were included in this work. A post-processing algorithm consisting of clutter filtering, denoising, and vessel enhancement steps was implemented on ultrasound data to visualize microvessel structures. These structures were then further characterized and quantified through additional image processing. A total of nine morphological metrics were examined to compare different groups of lesions. A two-sided Wilcoxon rank sum test was used for statistical analysis. Results In the malignant versus benign comparison, six of the metrics manifested statistical significance. Comparing only HCC cases with the benign, only three of the metrics were significantly different. No statistically significant distinction was observed between different malignancies (HCC versus cholangiocarcinoma and metastatic adenocarcinoma) for any of the metrics. Discussion Obtained results suggest that designing predictive models based on such morphological characteristics on a larger sample size may prove helpful in differentiating benign from malignant liver masses.
Collapse
Affiliation(s)
- Soroosh Sabeti
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Redouane Ternifi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Nicholas B. Larson
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Michael C. Olson
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Thomas D. Atwell
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- *Correspondence: Azra Alizad,
| |
Collapse
|
13
|
Ternifi R, Wang Y, Gu J, Polley EC, Carter JM, Pruthi S, Boughey JC, Fazzio RT, Fatemi M, Alizad A. Ultrasound high-definition microvasculature imaging with novel quantitative biomarkers improves breast cancer detection accuracy. Eur Radiol 2022; 32:7448-7462. [PMID: 35486168 PMCID: PMC9616967 DOI: 10.1007/s00330-022-08815-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To overcome the limitations of power Doppler in imaging angiogenesis, we sought to develop and investigate new quantitative biomarkers of a contrast-free ultrasound microvasculature imaging technique for differentiation of benign from malignant pathologies of breast lesion. METHODS In this prospective study, a new high-definition microvasculature imaging (HDMI) was tested on 521 patients with 527 ultrasound-identified suspicious breast masses indicated for biopsy. Four new morphological features of tumor microvessels, microvessel fractal dimension (mvFD), Murray's deviation (MD), bifurcation angle (BA), and spatial vascularity pattern (SVP) as well as initial biomarkers were extracted and analyzed, and the results correlated with pathology. Multivariable logistic regression analysis was used to study the performance of different prediction models, initial biomarkers, new biomarkers, and combined new and initial biomarkers in differentiating benign from malignant lesions. RESULTS The new HDMI biomarkers, mvFD, BA, MD, and SVP, were statistically significantly different in malignant and benign lesions, regardless of tumor size. Sensitivity and specificity of the new biomarkers in lesions > 20 mm were 95.6% and 100%, respectively. Combining the new and initial biomarkers together showed an AUC, sensitivity, and specificity of 97% (95% CI: 95-98%), 93.8%, and 89.2%, respectively, for all lesions regardless of mass size. The classification was further improved by adding the Breast Imaging Reporting and Data System (BI-RADS) score to the prediction model, showing an AUC, sensitivity, and specificity of 97% (95% CI: 95-98%), 93.8%, and 89.2%, respectively. CONCLUSION The addition of new quantitative HDMI biomarkers significantly improved the accuracy in breast lesion characterization when used as a complementary imaging tool to the conventional ultrasound. KEY POINTS • Novel quantitative biomarkers extracted from tumor microvessel images increase the sensitivity and specificity in discriminating malignant from benign breast masses. • New HDMI biomarkers Murray's deviation, bifurcation angles, microvessel fractal dimension, and spatial vascularity pattern outperformed the initial biomarkers. • The addition of BI-RADS scores based on US descriptors to the multivariable analysis using all biomarkers remarkably increased the sensitivity, specificity, and AUC in all size groups.
Collapse
Affiliation(s)
- Redouane Ternifi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Yinong Wang
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Juanjuan Gu
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Eric C Polley
- Department of Health Science, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jodi M Carter
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Sandhya Pruthi
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Judy C Boughey
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Robert T Fazzio
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Zhang Y, Li J, Liu C, Zheng K, Zhang B, Zhou Y, Dai C, Fan S, Yao Y, Zhuang R, Guo D, Huang Z, Mao J, Liang J, Yang H, Wang L, Liu G, Chen X, Zhao Q. Development of a multi-scene universal multiple wavelet-FFT algorithm (MW-FFTA) for denoising motion artifacts in OCT-angiography in vivo imaging. OPTICS EXPRESS 2022; 30:35854-35870. [PMID: 36258527 DOI: 10.1364/oe.465255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Optical coherence tomography angiography (OCTA) images suffer from inevitable micromotion (breathing, heartbeat, and blinking) noise. These image artifacts can severely disturb the visibility of results and reduce accuracy of vessel morphological and functional metrics quantization. Herein, we propose a multiple wavelet-FFT algorithm (MW-FFTA) comprising multiple integrated processes combined with wavelet-FFT and minimum reconstruction that can be used to effectively attenuate motion artifacts and significantly improve the precision of quantitative information. We verified the fidelity of image information and reliability of MW-FFTA by the image quality evaluation. The efficiency and robustness of MW-FFTA was validated by the vessel parameters on multi-scene in vivo OCTA imaging. Compared with previous algorithms, our method provides better visual and quantitative results. Therefore, the MW-FFTA possesses the potential capacity to improve the diagnosis of clinical diseases with OCTA.
Collapse
|
15
|
Xu Q, Sun H, Yi Q. Association Between Retinal Microvascular Metrics Using Optical Coherence Tomography Angiography and Carotid Artery Stenosis in a Chinese Cohort. Front Physiol 2022; 13:824646. [PMID: 35721537 PMCID: PMC9204184 DOI: 10.3389/fphys.2022.824646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: The main aim was to investigate the association between retinal microvascular metrics using optical coherence tomography angiography (OCTA) and carotid artery stenosis (CAS) in an aging Chinese cohort.Methods: In this cross-sectional and observational study, 138 eyes of 138 participants were examined. Indices of the microcirculation measured by OCTA included mean vessel density (VD), skeleton density (SD), vessel diameter index (VDI), fractal dimension (FD) and foveal avascular zone (FAZ) of the superficial retinal layer (SRL) and deep retinal layer (DRL), and peripapillary vessel caliber. The correlation of these indices with the carotid atherosclerotic lesions including carotid intima media thickness (CIMT) and common carotid artery (CCA) plaque was assessed.Results: A total of 72 of 138 eyes demonstrated an increased (≥1 mm) CIMT, and 32 of the eyes presented common carotid plaques. Macular VD, SD, and FD were decreased with the increasing CCA caliber diameter (p < 0.05, respectively). Superficial and deep macular FDs were negatively associated with CIMT as well as the existence of CCA plaques (p < 0.05, respectively).Conclusion: Changes in retinal microvasculature accessed by OCTA may be used as one of the non-invasive early indicators to monitor asymptomatic CAS.
Collapse
Affiliation(s)
- Qian Xu
- Qilu Hospital, Shandong University, Jinan, China
- Tai’an City Central Hospital, Tai’an, China
| | - Hongyi Sun
- Qilu Hospital, Shandong University, Jinan, China
| | - Qu Yi
- Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Qu Yi,
| |
Collapse
|
16
|
Gu J, Ternifi R, Sabeti S, Larson NB, Carter JM, Fazzio RT, Fatemi M, Alizad A. Volumetric imaging and morphometric analysis of breast tumor angiogenesis using a new contrast-free ultrasound technique: a feasibility study. Breast Cancer Res 2022; 24:85. [PMID: 36451243 PMCID: PMC9710093 DOI: 10.1186/s13058-022-01583-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND There is a strong correlation between the morphological features of new tumor vessels and malignancy. However, angiogenic heterogeneity necessitates 3D microvascular data of tumor microvessels for more reliable quantification. To provide more accurate information regarding vessel morphological features and improve breast lesion characterization, we introduced a quantitative 3D high-definition microvasculature imaging (q3D-HDMI) as a new easily applicable and robust tool to morphologically characterize microvasculature networks in breast tumors using a contrast-free ultrasound-based imaging approach. METHODS In this prospective study, from January 2020 through December 2021, a newly developed q3D-HDMI technique was evaluated on participants with ultrasound-identified suspicious breast lesions recommended for core needle biopsy. The morphological features of breast tumor microvessels were extracted from the q3D-HDMI. Leave-one-out cross-validation (LOOCV) was applied to test the combined diagnostic performance of multiple morphological parameters of breast tumor microvessels. Receiver operating characteristic (ROC) curves were used to evaluate the prediction performance of the generated pooled model. RESULTS Ninety-three participants (mean age 52 ± 17 years, 91 women) with 93 breast lesions were studied. The area under the ROC curve (AUC) generated with q3D-HDMI was 95.8% (95% CI 0.901-1.000), yielding a sensitivity of 91.7% and a specificity of 98.2%, that was significantly higher than the AUC generated with the q2D-HDMI (p = 0.02). When compared to q2D-HDMI, the tumor microvessel morphological parameters obtained from q3D-HDMI provides distinctive information that increases accuracy in differentiating breast tumors. CONCLUSIONS The proposed quantitative volumetric imaging technique augments conventional breast ultrasound evaluation by increasing specificity in differentiating malignant from benign breast masses.
Collapse
Affiliation(s)
- Juanjuan Gu
- grid.66875.3a0000 0004 0459 167XDepartment of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN USA
| | - Redouane Ternifi
- grid.66875.3a0000 0004 0459 167XDepartment of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN USA
| | - Soroosh Sabeti
- grid.66875.3a0000 0004 0459 167XDepartment of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN USA
| | - Nicholas B. Larson
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN USA
| | - Jodi M. Carter
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN USA
| | - Robert T. Fazzio
- grid.66875.3a0000 0004 0459 167XDepartment of Radiology, Mayo Clinic College of Medicine and Science, 200 1St Street SW, Rochester, MN 55905 USA
| | - Mostafa Fatemi
- grid.66875.3a0000 0004 0459 167XDepartment of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN USA
| | - Azra Alizad
- grid.66875.3a0000 0004 0459 167XDepartment of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN USA ,grid.66875.3a0000 0004 0459 167XDepartment of Radiology, Mayo Clinic College of Medicine and Science, 200 1St Street SW, Rochester, MN 55905 USA
| |
Collapse
|
17
|
Gu J, Ternifi R, Larson NB, Carter JM, Boughey JC, Stan DL, Fazzio RT, Fatemi M, Alizad A. Hybrid high-definition microvessel imaging/shear wave elastography improves breast lesion characterization. Breast Cancer Res 2022; 24:16. [PMID: 35248115 PMCID: PMC8898476 DOI: 10.1186/s13058-022-01511-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Low specificity in current breast imaging modalities leads to increased unnecessary follow-ups and biopsies. The purpose of this study is to evaluate the efficacy of combining the quantitative parameters of high-definition microvasculature imaging (HDMI) and 2D shear wave elastography (SWE) with clinical factors (lesion depth and age) for improving breast lesion differentiation. METHODS In this prospective study, from June 2016 through April 2021, patients with breast lesions identified on diagnostic ultrasound and recommended for core needle biopsy were recruited. HDMI and SWE were conducted prior to biopsies. Two new HDMI parameters, Murray's deviation and bifurcation angle, and a new SWE parameter, mass characteristic frequency, were included for quantitative analysis. Lesion malignancy prediction models based on HDMI only, SWE only, the combination of HDMI and SWE, and the combination of HDMI, SWE and clinical factors were trained via elastic net logistic regression with 70% (360/514) randomly selected data and validated with the remaining 30% (154/514) data. Prediction performances in the validation test set were compared across models with respect to area under the ROC curve as well as sensitivity and specificity based on optimized threshold selection. RESULTS A total of 508 participants (mean age, 54 years ± 15), including 507 female participants and 1 male participant, with 514 suspicious breast lesions (range, 4-72 mm, median size, 13 mm) were included. Of the lesions, 204 were malignant. The SWE-HDMI prediction model, combining quantitative parameters from SWE and HDMI, with AUC of 0.973 (95% CI 0.95-0.99), was significantly higher than the result predicted with the SWE model or HDMI model alone. With an optimal cutoff of 0.25 for the malignancy probability, the sensitivity and specificity were 95.5% and 89.7%, respectively. The specificity was further improved with the addition of clinical factors. The corresponding model defined as the SWE-HDMI-C prediction model had an AUC of 0.981 (95% CI 0.96-1.00). CONCLUSIONS The SWE-HDMI-C detection model, a combination of SWE estimates, HDMI quantitative biomarkers and clinical factors, greatly improved the accuracy in breast lesion characterization.
Collapse
Affiliation(s)
- Juanjuan Gu
- grid.66875.3a0000 0004 0459 167XDepartment of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905 USA
| | - Redouane Ternifi
- grid.66875.3a0000 0004 0459 167XDepartment of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905 USA
| | - Nicholas B. Larson
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN 55905 USA
| | - Jodi M. Carter
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905 USA
| | - Judy C. Boughey
- grid.66875.3a0000 0004 0459 167XDepartment of Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN 55905 USA
| | - Daniela L. Stan
- grid.66875.3a0000 0004 0459 167XDepartment of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Robert T. Fazzio
- grid.66875.3a0000 0004 0459 167XDepartment of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905 USA
| | - Mostafa Fatemi
- grid.66875.3a0000 0004 0459 167XDepartment of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905 USA
| | - Azra Alizad
- grid.66875.3a0000 0004 0459 167XDepartment of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905 USA
| |
Collapse
|