1
|
Zhang G, Zhang D, Cao Q, Yang S, Xiao Y, Liu Z. Clinically applicable semi-supervised learning framework for multiple organs at risk and tumor delineation in lung cancer brachytherapy. Phys Med 2025; 133:104968. [PMID: 40174514 DOI: 10.1016/j.ejmp.2025.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
PURPOSE The generalization ability of deep learning-based automatic segmentation techniques for lung cancer in practical clinical applications remains under-validated. We reported an investigation that validated a robust semi-supervised conditional nnU-Net (SSC-nnUNet) model in multiple organs at risk (OARs) and tumor segmentation in lung cancer brachytherapy, also explored its potential in robot-assisted puncture diagnosis and treatment. MATERIALS AND METHODS Six hundred seventy-four patients with CT data from four partially labeled datasets were divided into training and validation sets at a ratio of 4:1, 181 patients from multiple centers (private dataset) with fully annotated data provided by 3 experienced radiation experts were used for testing comparison. Six experienced experts from multiple centers were asked to correct model-generated contours, and 8 junior oncologists were assigned to delineate contours based on model supporting. To verify the feasibility of the contouring model in robot-assisted surgical operations, an equivalent human model experiment was designed specifically for lung cancer puncture treatment. RESULTS In model-based experienced expert assessment, the mean revision degree achieved a competitive score of 1.38 % by 6 multicenter experts. In model-based junior oncologist assessment, they acquired a mean revision degree and efficiency improvement of -1.82 % and 83.4 %, respectively. Guided by the segmentation results of OARs and tumors, an average puncture error of 0.78 mm was achieved across 10 puncture experiments. CONCLUSION The SSC-nnUNet model showed a significant improvement in the segmentation quality and efficiency especially in junior oncologist delineation. Specifically, robot-assisted experiments illustrated that the model has great application potential in clinical treatment.
Collapse
Affiliation(s)
- Guobin Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), China
| | - Daguang Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Qiang Cao
- Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shubin Yang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), China
| | - Yijun Xiao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), China
| | - Zhenzhong Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), China.
| |
Collapse
|
2
|
Reza MT, Alam MGR, Rahman R, Dipto SM. Domain affiliated distilled knowledge transfer for improved convergence of Ph-negative MPN identifier. PLoS One 2024; 19:e0303541. [PMID: 39331624 PMCID: PMC11433141 DOI: 10.1371/journal.pone.0303541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/26/2024] [Indexed: 09/29/2024] Open
Abstract
Ph-negative Myeloproliferative Neoplasm is a rare yet dangerous disease that can turn into more severe forms of disorders later on. Clinical diagnosis of the disease exists but often requires collecting multiple types of pathologies which can be tedious and time-consuming. Meanwhile, studies on deep learning-based research are rare and often need to rely on a small amount of pathological data due to the rarity of the disease. In addition, the existing research works do not address the data scarcity issue apart from using common techniques like data augmentation, which leaves room for performance improvement. To tackle the issue, the proposed research aims to utilize distilled knowledge learned from a larger dataset to boost the performance of a lightweight model trained on a small MPN dataset. Firstly, a 50-layer ResNet model is trained on a large lymph node image dataset of 3,27,680 images, followed by the trained knowledge being distilled to a small 4-layer CNN model. Afterward, the CNN model is initialized with the pre-trained weights to further train on a small MPN dataset of 300 images. Empirical analysis showcases that the CNN with distilled knowledge achieves 97% accuracy compared to 89.67% accuracy achieved by a clone CNN trained from scratch. The distilled knowledge transfer approach also proves to be more effective than more simple data scarcity handling approaches such as augmentation and manual feature extraction. Overall, the research affirms the effectiveness of transferring distilled knowledge to address the data scarcity issue and achieves better convergence when training on a Ph-Negative MPN image dataset with a lightweight model.
Collapse
|
3
|
Li S, Wang H, Meng Y, Zhang C, Song Z. Multi-organ segmentation: a progressive exploration of learning paradigms under scarce annotation. Phys Med Biol 2024; 69:11TR01. [PMID: 38479023 DOI: 10.1088/1361-6560/ad33b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/13/2024] [Indexed: 05/21/2024]
Abstract
Precise delineation of multiple organs or abnormal regions in the human body from medical images plays an essential role in computer-aided diagnosis, surgical simulation, image-guided interventions, and especially in radiotherapy treatment planning. Thus, it is of great significance to explore automatic segmentation approaches, among which deep learning-based approaches have evolved rapidly and witnessed remarkable progress in multi-organ segmentation. However, obtaining an appropriately sized and fine-grained annotated dataset of multiple organs is extremely hard and expensive. Such scarce annotation limits the development of high-performance multi-organ segmentation models but promotes many annotation-efficient learning paradigms. Among these, studies on transfer learning leveraging external datasets, semi-supervised learning including unannotated datasets and partially-supervised learning integrating partially-labeled datasets have led the dominant way to break such dilemmas in multi-organ segmentation. We first review the fully supervised method, then present a comprehensive and systematic elaboration of the 3 abovementioned learning paradigms in the context of multi-organ segmentation from both technical and methodological perspectives, and finally summarize their challenges and future trends.
Collapse
Affiliation(s)
- Shiman Li
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| | - Haoran Wang
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| | - Yucong Meng
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| | - Chenxi Zhang
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| | - Zhijian Song
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| |
Collapse
|
4
|
Paudyal R, Jiang J, Han J, Diplas BH, Riaz N, Hatzoglou V, Lee N, Deasy JO, Veeraraghavan H, Shukla-Dave A. Auto-segmentation of neck nodal metastases using self-distilled masked image transformer on longitudinal MR images. BJR ARTIFICIAL INTELLIGENCE 2024; 1:ubae004. [PMID: 38476956 PMCID: PMC10928808 DOI: 10.1093/bjrai/ubae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/14/2024]
Abstract
Objectives Auto-segmentation promises greater speed and lower inter-reader variability than manual segmentations in radiation oncology clinical practice. This study aims to implement and evaluate the accuracy of the auto-segmentation algorithm, "Masked Image modeling using the vision Transformers (SMIT)," for neck nodal metastases on longitudinal T2-weighted (T2w) MR images in oropharyngeal squamous cell carcinoma (OPSCC) patients. Methods This prospective clinical trial study included 123 human papillomaviruses (HPV-positive [+]) related OSPCC patients who received concurrent chemoradiotherapy. T2w MR images were acquired on 3 T at pre-treatment (Tx), week 0, and intra-Tx weeks (1-3). Manual delineations of metastatic neck nodes from 123 OPSCC patients were used for the SMIT auto-segmentation, and total tumor volumes were calculated. Standard statistical analyses compared contour volumes from SMIT vs manual segmentation (Wilcoxon signed-rank test [WSRT]), and Spearman's rank correlation coefficients (ρ) were computed. Segmentation accuracy was evaluated on the test data set using the dice similarity coefficient (DSC) metric value. P-values <0.05 were considered significant. Results No significant difference in manual and SMIT delineated tumor volume at pre-Tx (8.68 ± 7.15 vs 8.38 ± 7.01 cm3, P = 0.26 [WSRT]), and the Bland-Altman method established the limits of agreement as -1.71 to 2.31 cm3, with a mean difference of 0.30 cm3. SMIT model and manually delineated tumor volume estimates were highly correlated (ρ = 0.84-0.96, P < 0.001). The mean DSC metric values were 0.86, 0.85, 0.77, and 0.79 at the pre-Tx and intra-Tx weeks (1-3), respectively. Conclusions The SMIT algorithm provides sufficient segmentation accuracy for oncological applications in HPV+ OPSCC. Advances in knowledge First evaluation of auto-segmentation with SMIT using longitudinal T2w MRI in HPV+ OPSCC.
Collapse
Affiliation(s)
- Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Jue Jiang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - James Han
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Bill H Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| |
Collapse
|
5
|
Song G, Xie Z, Wang H, Li S, Yao D, Chen S, Shi Y. Segmentation of Portal Vein in Multiphase CTA Image Based on Unsupervised Domain Transfer and Pseudo Label. Diagnostics (Basel) 2023; 13:2250. [PMID: 37443644 DOI: 10.3390/diagnostics13132250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Clinically, physicians diagnose portal vein diseases on abdominal CT angiography (CTA) images scanned in the hepatic arterial phase (H-phase), portal vein phase (P-phase) and equilibrium phase (E-phase) simultaneously. However, existing studies typically segment the portal vein on P-phase images without considering other phase images. METHOD We propose a method for segmenting portal veins on multiphase images based on unsupervised domain transfer and pseudo labels by using annotated P-phase images. Firstly, unsupervised domain transfer is performed to make the H-phase and E-phase images of the same patient approach the P-phase image in style, reducing the image differences caused by contrast media. Secondly, the H-phase (or E-phase) image and its style transferred image are input into the segmentation module together with the P-phase image. Under the constraints of pseudo labels, accurate prediction results are obtained. RESULTS This method was evaluated on the multiphase CTA images of 169 patients. The portal vein segmented from the H-phase and E-phase images achieved DSC values of 0.76 and 0.86 and Jaccard values of 0.61 and 0.76, respectively. CONCLUSION The method can automatically segment the portal vein on H-phase and E-phase images when only the portal vein on the P-phase CTA image is annotated, which greatly assists in clinical diagnosis.
Collapse
Affiliation(s)
- Genshen Song
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Ziyue Xie
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Haoran Wang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Shiman Li
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Demin Yao
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Shiyao Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yonghong Shi
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai 200032, China
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Paudyal R, Shah AD, Akin O, Do RKG, Konar AS, Hatzoglou V, Mahmood U, Lee N, Wong RJ, Banerjee S, Shin J, Veeraraghavan H, Shukla-Dave A. Artificial Intelligence in CT and MR Imaging for Oncological Applications. Cancers (Basel) 2023; 15:cancers15092573. [PMID: 37174039 PMCID: PMC10177423 DOI: 10.3390/cancers15092573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer care increasingly relies on imaging for patient management. The two most common cross-sectional imaging modalities in oncology are computed tomography (CT) and magnetic resonance imaging (MRI), which provide high-resolution anatomic and physiological imaging. Herewith is a summary of recent applications of rapidly advancing artificial intelligence (AI) in CT and MRI oncological imaging that addresses the benefits and challenges of the resultant opportunities with examples. Major challenges remain, such as how best to integrate AI developments into clinical radiology practice, the vigorous assessment of quantitative CT and MR imaging data accuracy, and reliability for clinical utility and research integrity in oncology. Such challenges necessitate an evaluation of the robustness of imaging biomarkers to be included in AI developments, a culture of data sharing, and the cooperation of knowledgeable academics with vendor scientists and companies operating in radiology and oncology fields. Herein, we will illustrate a few challenges and solutions of these efforts using novel methods for synthesizing different contrast modality images, auto-segmentation, and image reconstruction with examples from lung CT as well as abdome, pelvis, and head and neck MRI. The imaging community must embrace the need for quantitative CT and MRI metrics beyond lesion size measurement. AI methods for the extraction and longitudinal tracking of imaging metrics from registered lesions and understanding the tumor environment will be invaluable for interpreting disease status and treatment efficacy. This is an exciting time to work together to move the imaging field forward with narrow AI-specific tasks. New AI developments using CT and MRI datasets will be used to improve the personalized management of cancer patients.
Collapse
Affiliation(s)
- Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Akash D Shah
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Richard K G Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Amaresha Shridhar Konar
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Usman Mahmood
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Richard J Wong
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | | | | | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| |
Collapse
|
7
|
Wang J, Tang Y, Wu Z, Du Q, Yao L, Yang X, Li M, Zheng J. A self-supervised guided knowledge distillation framework for unpaired low-dose CT image denoising. Comput Med Imaging Graph 2023; 107:102237. [PMID: 37116340 DOI: 10.1016/j.compmedimag.2023.102237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
Low-dose computed tomography (LDCT) can significantly reduce the damage of X-ray to the human body, but the reduction of CT dose will produce images with severe noise and artifacts, which will affect the diagnosis of doctors. Recently, deep learning has attracted more and more attention from researchers. However, most of the denoising networks applied to deep learning-based LDCT imaging are supervised methods, which require paired data for network training. In a realistic imaging scenario, obtaining well-aligned image pairs is challenging due to the error in the table re-positioning and the patient's physiological movement during data acquisition. In contrast, the unpaired learning method can overcome the drawbacks of supervised learning, making it more feasible to collect unpaired training data in most real-world imaging applications. In this study, we develop a novel unpaired learning framework, Self-Supervised Guided Knowledge Distillation (SGKD), which enables the guidance of supervised learning using the results generated by self-supervised learning. The proposed SGKD scheme contains two stages of network training. First, we can achieve the LDCT image quality improvement by the designed self-supervised cycle network. Meanwhile, it can also produce two complementary training datasets from the unpaired LDCT and NDCT images. Second, a knowledge distillation strategy with the above two datasets is exploited to further improve the LDCT image denoising performance. To evaluate the effectiveness and feasibility of the proposed method, extensive experiments were performed on the simulated AAPM challenging and real-world clinical LDCT datasets. The qualitative and quantitative results show that the proposed SGKD achieves better performance in terms of noise suppression and detail preservation compared with some state-of-the-art network models.
Collapse
Affiliation(s)
- Jiping Wang
- Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yufei Tang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhongyi Wu
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Du
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Libing Yao
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Yang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Ming Li
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Jian Zheng
- Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
8
|
Chen J, Chen S, Wee L, Dekker A, Bermejo I. Deep learning based unpaired image-to-image translation applications for medical physics: a systematic review. Phys Med Biol 2023; 68. [PMID: 36753766 DOI: 10.1088/1361-6560/acba74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Purpose. There is a growing number of publications on the application of unpaired image-to-image (I2I) translation in medical imaging. However, a systematic review covering the current state of this topic for medical physicists is lacking. The aim of this article is to provide a comprehensive review of current challenges and opportunities for medical physicists and engineers to apply I2I translation in practice.Methods and materials. The PubMed electronic database was searched using terms referring to unpaired (unsupervised), I2I translation, and medical imaging. This review has been reported in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. From each full-text article, we extracted information extracted regarding technical and clinical applications of methods, Transparent Reporting for Individual Prognosis Or Diagnosis (TRIPOD) study type, performance of algorithm and accessibility of source code and pre-trained models.Results. Among 461 unique records, 55 full-text articles were included in the review. The major technical applications described in the selected literature are segmentation (26 studies), unpaired domain adaptation (18 studies), and denoising (8 studies). In terms of clinical applications, unpaired I2I translation has been used for automatic contouring of regions of interest in MRI, CT, x-ray and ultrasound images, fast MRI or low dose CT imaging, CT or MRI only based radiotherapy planning, etc Only 5 studies validated their models using an independent test set and none were externally validated by independent researchers. Finally, 12 articles published their source code and only one study published their pre-trained models.Conclusion. I2I translation of medical images offers a range of valuable applications for medical physicists. However, the scarcity of external validation studies of I2I models and the shortage of publicly available pre-trained models limits the immediate applicability of the proposed methods in practice.
Collapse
Affiliation(s)
- Junhua Chen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Shenlun Chen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Leonard Wee
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Inigo Bermejo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| |
Collapse
|
9
|
Jiang J, Tyagi N, Tringale K, Crane C, Veeraraghavan H. Self-supervised 3D anatomy segmentation using self-distilled masked image transformer (SMIT). MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2022; 13434:556-566. [PMID: 36468915 PMCID: PMC9714226 DOI: 10.1007/978-3-031-16440-8_53] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Vision transformers efficiently model long-range context and thus have demonstrated impressive accuracy gains in several image analysis tasks including segmentation. However, such methods need large labeled datasets for training, which is hard to obtain for medical image analysis. Self-supervised learning (SSL) has demonstrated success in medical image segmentation using convolutional networks. In this work, we developed a self-distillation learning with masked image modeling method to perform SSL for vision transformers (SMIT) applied to 3D multi-organ segmentation from CT and MRI. Our contribution combines a dense pixel-wise regression pretext task performed within masked patches called masked image prediction with masked patch token distillation to pre-train vision transformers. Our approach is more accurate and requires fewer fine tuning datasets than other pretext tasks. Unlike prior methods, which typically used image sets arising from disease sites and imaging modalities corresponding to the target tasks, we used 3,643 CT scans (602,708 images) arising from head and neck, lung, and kidney cancers as well as COVID-19 for pre-training and applied it to abdominal organs segmentation from MRI pancreatic cancer patients as well as publicly available 13 different abdominal organs segmentation from CT. Our method showed clear accuracy improvement (average DSC of 0.875 from MRI and 0.878 from CT) with reduced requirement for fine-tuning datasets over commonly used pretext tasks. Extensive comparisons against multiple current SSL methods were done. Our code is available at: https://github.com/harveerar/SMIT.git.
Collapse
Affiliation(s)
- Jue Jiang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center
| | - Kathryn Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center
| | - Christopher Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|