1
|
He H, Banerjee A, Choudhury RP, Grau V. Deep learning based coronary vessels segmentation in X-ray angiography using temporal information. Med Image Anal 2025; 102:103496. [PMID: 40049029 DOI: 10.1016/j.media.2025.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/28/2024] [Accepted: 02/02/2025] [Indexed: 04/15/2025]
Abstract
Invasive coronary angiography (ICA) is the gold standard imaging modality during cardiac interventions. Accurate segmentation of coronary vessels in ICA is required for aiding diagnosis and creating treatment plans. Current automated algorithms for vessel segmentation face task-specific challenges, including motion artifacts and unevenly distributed contrast, as well as the general challenge inherent to X-ray imaging, which is the presence of shadows from overlapping organs in the background. To address these issues, we present Temporal Vessel Segmentation Network (TVS-Net) model that fuses sequential ICA information into a novel densely connected 3D encoder-2D decoder structure with a loss function based on elastic interaction. We develop our model using an ICA dataset comprising 323 samples, split into 173 for training, 82 for validation, and 68 for testing, with a relatively relaxed annotation protocol that produced coarse-grained samples, and achieve 83.4% Dice and 84.3% recall on the test dataset. We additionally perform an external evaluation over 60 images from a local hospital, achieving 78.5% Dice and 82.4% recall and outperforming the state-of-the-art approaches. We also conduct a detailed manual re-segmentation for evaluation only on a subset of the first dataset under strict annotation protocol, achieving a Dice score of 86.2% and recall of 86.3% and surpassing even the coarse-grained gold standard used in training. The results indicate our TVS-Net is effective for multi-frame ICA segmentation, highlights the network's generalizability and robustness across diverse settings, and showcases the feasibility of weak supervision in ICA segmentation.
Collapse
Affiliation(s)
- Haorui He
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Abhirup Banerjee
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom.
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Vicente Grau
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
2
|
Guo E, Wang Z, Zhao Z, Zhou L. Imbalanced Medical Image Segmentation With Pixel-Dependent Noisy Labels. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:2016-2027. [PMID: 40030766 DOI: 10.1109/tmi.2024.3524253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Accurate medical image segmentation is often hindered by noisy labels in training data, due to the challenges of annotating medical images. Prior research works addressing noisy labels tend to make class-dependent assumptions, overlooking the pixel-dependent nature of most noisy labels. Furthermore, existing methods typically apply fixed thresholds to filter out noisy labels, risking the removal of minority classes and consequently degrading segmentation performance. To bridge these gaps, our proposed framework, Collaborative Learning with Curriculum Selection (CLCS), addresses pixel-dependent noisy labels with class imbalance. CLCS advances the existing works by i) treating noisy labels as pixel-dependent and addressing them through a collaborative learning framework, and ii) employing a curriculum dynamic thresholding approach adapting to model learning progress to select clean data samples to mitigate the class imbalance issue, and iii) applying a noise balance loss to noisy data samples to improve data utilization instead of discarding them outright. Specifically, our CLCS contains two modules: Curriculum Noisy Label Sample Selection (CNS) and Noise Balance Loss (NBL). In the CNS module, we designed a two-branch network with discrepancy loss for collaborative learning so that different feature representations of the same instance could be extracted from distinct views and used to vote the class probabilities of pixels. Besides, a curriculum dynamic threshold is adopted to select clean-label samples through probability voting. In the NBL module, instead of directly dropping the suspiciously noisy labels, we further adopt a robust loss to leverage such instances to boost the performance. We verify our CLCS on two benchmarks with different types of segmentation noise. Our method can obtain new state-of-the-art performance in different settings, yielding more than 3% Dice and mIoU improvements. Our code is available at https://github.com/Erjian96/CLCS.git.
Collapse
|
3
|
Ye H, Zhang X, Hu Y, Fu H, Liu J. VSR-Net: Vessel-Like Structure Rehabilitation Network With Graph Clustering. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2025; 34:1090-1105. [PMID: 40031729 DOI: 10.1109/tip.2025.3526061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The morphologies of vessel-like structures, such as blood vessels and nerve fibres, play significant roles in disease diagnosis, e.g., Parkinson's disease. Although deep network-based refinement segmentation and topology-preserving segmentation methods recently have achieved promising results in segmenting vessel-like structures, they still face two challenges: 1) existing methods often have limitations in rehabilitating subsection ruptures in segmented vessel-like structures; 2) they are typically overconfident in predicted segmentation results. To tackle these two challenges, this paper attempts to leverage the potential of spatial interconnection relationships among subsection ruptures from the structure rehabilitation perspective. Based on this perspective, we propose a novel Vessel-like Structure Rehabilitation Network (VSR-Net) to both rehabilitate subsection ruptures and improve the model calibration based on coarse vessel-like structure segmentation results. VSR-Net first constructs subsection rupture clusters via a Curvilinear Clustering Module (CCM). Then, the well-designed Curvilinear Merging Module (CMM) is applied to rehabilitate the subsection ruptures to obtain the refined vessel-like structures. Extensive experiments on six 2D/3D medical image datasets show that VSR-Net significantly outperforms state-of-the-art (SOTA) refinement segmentation methods with lower calibration errors. Additionally, we provide quantitative analysis to explain the morphological difference between the VSR-Net's rehabilitation results and ground truth (GT), which are smaller compared to those between SOTA methods and GT, demonstrating that our method more effectively rehabilitates vessel-like structures.
Collapse
|
4
|
Fu W, Hu H, Li X, Guo R, Chen T, Qian X. A Generalizable Causal-Invariance-Driven Segmentation Model for Peripancreatic Vessels. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3794-3806. [PMID: 38739508 DOI: 10.1109/tmi.2024.3400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Segmenting peripancreatic vessels in CT, including the superior mesenteric artery (SMA), the coeliac artery (CA), and the partial portal venous system (PPVS), is crucial for preoperative resectability analysis in pancreatic cancer. However, the clinical applicability of vessel segmentation methods is impeded by the low generalizability on multi-center data, mainly attributed to the wide variations in image appearance, namely the spurious correlation factor. Therefore, we propose a causal-invariance-driven generalizable segmentation model for peripancreatic vessels. It incorporates interventions at both image and feature levels to guide the model to capture causal information by enforcing consistency across datasets, thus enhancing the generalization performance. Specifically, firstly, a contrast-driven image intervention strategy is proposed to construct image-level interventions by generating images with various contrast-related appearances and seeking invariant causal features. Secondly, the feature intervention strategy is designed, where various patterns of feature bias across different centers are simulated to pursue invariant prediction. The proposed model achieved high DSC scores (79.69%, 82.62%, and 83.10%) for the three vessels on a cross-validation set containing 134 cases. Its generalizability was further confirmed on three independent test sets of 233 cases. Overall, the proposed method provides an accurate and generalizable segmentation model for peripancreatic vessels and offers a promising paradigm for increasing the generalizability of segmentation models from a causality perspective. Our source codes will be released at https://github.com/ SJTUBME-QianLab/PC_VesselSeg.
Collapse
|
5
|
Zhou W, Wang X, Yang X, Hu Y, Yi Y. Skeleton-guided multi-scale dual-coordinate attention aggregation network for retinal blood vessel segmentation. Comput Biol Med 2024; 181:109027. [PMID: 39178808 DOI: 10.1016/j.compbiomed.2024.109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Deep learning plays a pivotal role in retinal blood vessel segmentation for medical diagnosis. Despite their significant efficacy, these techniques face two major challenges. Firstly, they often neglect the severe class imbalance in fundus images, where thin vessels in the foreground are proportionally minimal. Secondly, they are susceptible to poor image quality and blurred vessel edges, resulting in discontinuities or breaks in vascular structures. In response, this paper proposes the Skeleton-guided Multi-scale Dual-coordinate Attention Aggregation (SMDAA) network for retinal vessel segmentation. SMDAA comprises three innovative modules: Dual-coordinate Attention (DCA), Unbalanced Pixel Amplifier (UPA), and Vessel Skeleton Guidance (VSG). DCA, integrating Multi-scale Coordinate Feature Aggregation (MCFA) and Scale Coordinate Attention Decoding (SCAD), meticulously analyzes vessel structures across various scales, adept at capturing intricate details, thereby significantly enhancing segmentation accuracy. To address class imbalance, we introduce UPA, dynamically allocating more attention to misclassified pixels, ensuring precise extraction of thin and small blood vessels. Moreover, to preserve vessel structure continuity, we integrate vessel anatomy and develop the VSG module to connect fragmented vessel segments. Additionally, a Feature-level Contrast (FCL) loss is introduced to capture subtle nuances within the same category, enhancing the fidelity of retinal blood vessel segmentation. Extensive experiments on three public datasets (DRIVE, STARE, and CHASE_DB1) demonstrate superior performance in comparison to current methods. The code is available at https://github.com/wangwxr/SMDAA_NET.
Collapse
Affiliation(s)
- Wei Zhou
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Xiaorui Wang
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Xuekun Yang
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Yangtao Hu
- Department of Ophthalmology, The 908th Hospital of Chinese People's Liberation Army Joint Logistic SupportForce, Nanchang, China.
| | - Yugen Yi
- School of Software, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
6
|
Qian G, Wang H, Wang Y, Chen X, Yu D, Luo S, Sun Y, Xu P, Ye J. Cascade spatial and channel-wise multifusion network with criss cross augmentation for corneal segmentation and reconstruction. Comput Biol Med 2024; 177:108602. [PMID: 38805809 DOI: 10.1016/j.compbiomed.2024.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
High-quality 3D corneal reconstruction from AS-OCT images has demonstrated significant potential in computer-aided diagnosis, enabling comprehensive observation of corneal thickness, precise assessment of morphological characteristics, as well as location and quantification of keratitis-affected regions. However, it faces two main challenges: (1) prevalent medical image segmentation networks often struggle to accurately process low-contrast corneal regions, which is a vital pre-processing step for 3D corneal reconstruction, and (2) there are no reconstruction methods that can be directly applied to AS-OCT sequences with 180-degree scanning. To combat these, we propose CSCM-CCA-Net, a simple yet efficient network for accurate corneal segmentation. This network incorporates two key techniques: cascade spatial and channel-wise multifusion (CSCM), which captures intricate contextual interdependencies and effectively extracts low-contrast and obscure corneal features; and criss cross augmentation (CCA), which enhances shape-preserved feature representation to improve segmentation accuracy. Based on the obtained corneal segmentation results, we reconstruct the 3D volume data and generate a topographic map of corneal thickness through corneal image alignment. Additionally, we design a transfer function based on the analysis of intensity histogram and gradient histogram to explore more internal cues for better visualization results. Experimental results on CORNEA benchmark demonstrate the impressive performance of our proposed method in terms of both corneal segmentation and 3D reconstruction. Furthermore, we compare CSCM-CCA-Net with state-of-the-art medical image segmentation approaches using three challenging medical fundus segmentation datasets (DRIVE, CHASEDB1, FIVES), highlighting its superiority in terms of segmentation accuracy. The code and models will be made available at https://github.com/qianguiping/CSCM-CCA-Net.
Collapse
Affiliation(s)
- Guiping Qian
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, 310018, China.
| | - Huaqiong Wang
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, 310018, China
| | - Yaqi Wang
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, 310018, China
| | - Xiaodiao Chen
- School of Computer, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Dingguo Yu
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, 310018, China
| | - Shan Luo
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, 310018, China
| | - Yiming Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310005, China
| | - Peifang Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310005, China
| | - Juan Ye
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310005, China
| |
Collapse
|
7
|
Guo Z, Tan Z, Feng J, Zhou J. 3D Vascular Segmentation Supervised by 2D Annotation of Maximum Intensity Projection. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2241-2253. [PMID: 38319757 DOI: 10.1109/tmi.2024.3362847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Vascular structure segmentation plays a crucial role in medical analysis and clinical applications. The practical adoption of fully supervised segmentation models is impeded by the intricacy and time-consuming nature of annotating vessels in the 3D space. This has spurred the exploration of weakly-supervised approaches that reduce reliance on expensive segmentation annotations. Despite this, existing weakly supervised methods employed in organ segmentation, which encompass points, bounding boxes, or graffiti, have exhibited suboptimal performance when handling sparse vascular structure. To alleviate this issue, we employ maximum intensity projection (MIP) to decrease the dimensionality of 3D volume to 2D image for efficient annotation, and the 2D labels are utilized to provide guidance and oversight for training 3D vessel segmentation model. Initially, we generate pseudo-labels for 3D blood vessels using the annotations of 2D projections. Subsequently, taking into account the acquisition method of the 2D labels, we introduce a weakly-supervised network that fuses 2D-3D deep features via MIP to further improve segmentation performance. Furthermore, we integrate confidence learning and uncertainty estimation to refine the generated pseudo-labels, followed by fine-tuning the segmentation network. Our method is validated on five datasets (including cerebral vessel, aorta and coronary artery), demonstrating highly competitive performance in segmenting vessels and the potential to significantly reduce the time and effort required for vessel annotation. Our code is available at: https://github.com/gzq17/Weakly-Supervised-by-MIP.
Collapse
|
8
|
Liu X, Tan H, Wang W, Chen Z. Deep learning based retinal vessel segmentation and hypertensive retinopathy quantification using heterogeneous features cross-attention neural network. Front Med (Lausanne) 2024; 11:1377479. [PMID: 38841586 PMCID: PMC11150614 DOI: 10.3389/fmed.2024.1377479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Retinal vessels play a pivotal role as biomarkers in the detection of retinal diseases, including hypertensive retinopathy. The manual identification of these retinal vessels is both resource-intensive and time-consuming. The fidelity of vessel segmentation in automated methods directly depends on the fundus images' quality. In instances of sub-optimal image quality, applying deep learning-based methodologies emerges as a more effective approach for precise segmentation. We propose a heterogeneous neural network combining the benefit of local semantic information extraction of convolutional neural network and long-range spatial features mining of transformer network structures. Such cross-attention network structure boosts the model's ability to tackle vessel structures in the retinal images. Experiments on four publicly available datasets demonstrate our model's superior performance on vessel segmentation and the big potential of hypertensive retinopathy quantification.
Collapse
Affiliation(s)
- Xinghui Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Cardiovascular Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hongwen Tan
- Department of Cardiovascular Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Wu Wang
- Electrical Engineering College, Guizhou University, Guiyang, China
| | - Zhangrong Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Li A, Sun M, Wang Z. TD Swin-UNet: Texture-Driven Swin-UNet with Enhanced Boundary-Wise Perception for Retinal Vessel Segmentation. Bioengineering (Basel) 2024; 11:488. [PMID: 38790355 PMCID: PMC11118088 DOI: 10.3390/bioengineering11050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Retinal vessel segmentation plays a crucial role in medical image analysis, aiding ophthalmologists in disease diagnosis, monitoring, and treatment guidance. However, due to the complex boundary structure and rich texture features in retinal blood vessel images, existing methods have challenges in the accurate segmentation of blood vessel boundaries. In this study, we propose the texture-driven Swin-UNet with enhanced boundary-wise perception. Firstly, we designed a Cross-level Texture Complementary Module (CTCM) to fuse feature maps at different scales during the encoding stage, thereby recovering detailed features lost in the downsampling process. Additionally, we introduced a Pixel-wise Texture Swin Block (PT Swin Block) to improve the model's ability to localize vessel boundary and contour information. Finally, we introduced an improved Hausdorff distance loss function to further enhance the accuracy of vessel boundary segmentation. The proposed method was evaluated on the DRIVE and CHASEDB1 datasets, and the experimental results demonstrate that our model obtained superior performance in terms of Accuracy (ACC), Sensitivity (SE), Specificity (SP), and F1 score (F1), and the accuracy of vessel boundary segmentation was significantly improved.
Collapse
Affiliation(s)
- Angran Li
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; (M.S.); (Z.W.)
| | | | | |
Collapse
|
10
|
Pan X, Wang P, Jia S, Wang Y, Liu Y, Zhang Y, Jiang C. Multi-contrast learning-guided lightweight few-shot learning scheme for predicting breast cancer molecular subtypes. Med Biol Eng Comput 2024; 62:1601-1613. [PMID: 38316663 DOI: 10.1007/s11517-024-03031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
Invasive gene expression profiling studies have exposed prognostically significant breast cancer subtypes: normal-like, luminal, HER-2 enriched, and basal-like, which is defined in large part by human epidermal growth factor receptor 2 (HER-2), progesterone receptor (PR), and estrogen receptor (ER). However, while dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been generally employed in the screening and therapy of breast cancer, there is a challenging problem to noninvasively predict breast cancer molecular subtypes, which have extremely low-data regimes. In this paper, a novel few-shot learning scheme, which combines lightweight contrastive convolutional neural network (LC-CNN) and multi-contrast learning strategy (MCLS), is worthwhile to be developed for predicting molecular subtype of breast cancer in DCE-MRI. Moreover, MCLS is designed to construct One-vs-Rest and One-vs-One classification tasks, which addresses inter-class similarity among normal-like, luminal, HER-2 enriched, and basal-like. Extensive experiments demonstrate the superiority of our proposed scheme over state-of-the-art methods. Furthermore, our scheme is able to achieve competitive results on few samples due to joint LC-CNN and MCLS for excavating contrastive correlations of a pair of DCE-MRI.
Collapse
Affiliation(s)
- Xiang Pan
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Pei Wang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Shunyuan Jia
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Yihang Wang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Yuan Liu
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Jiangnan University, Wuxi, China.
| | - Chunjuan Jiang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
11
|
Kang N, Wang M, Pang C, Lan R, Li B, Guan J, Wang H. Cross-patch feature interactive net with edge refinement for retinal vessel segmentation. Comput Biol Med 2024; 174:108443. [PMID: 38608328 DOI: 10.1016/j.compbiomed.2024.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Retinal vessel segmentation based on deep learning is an important auxiliary method for assisting clinical doctors in diagnosing retinal diseases. However, existing methods often produce mis-segmentation when dealing with low contrast images and thin blood vessels, which affects the continuity and integrity of the vessel skeleton. In addition, existing deep learning methods tend to lose a lot of detailed information during training, which affects the accuracy of segmentation. To address these issues, we propose a novel dual-decoder based Cross-patch Feature Interactive Net with Edge Refinement (CFI-Net) for end-to-end retinal vessel segmentation. In the encoder part, a joint refinement down-sampling method (JRDM) is proposed to compress feature information in the process of reducing image size, so as to reduce the loss of thin vessels and vessel edge information during the encoding process. In the decoder part, we adopt a dual-path model based on edge detection, and propose a Cross-patch Interactive Attention Mechanism (CIAM) in the main path to enhancing multi-scale spatial channel features and transferring cross-spatial information. Consequently, it improve the network's ability to segment complete and continuous vessel skeletons, reducing vessel segmentation fractures. Finally, the Adaptive Spatial Context Guide Method (ASCGM) is proposed to fuse the prediction results of the two decoder paths, which enhances segmentation details while removing part of the background noise. We evaluated our model on two retinal image datasets and one coronary angiography dataset, achieving outstanding performance in segmentation comprehensive assessment metrics such as AUC and CAL. The experimental results showed that the proposed CFI-Net has superior segmentation performance compared with other existing methods, especially for thin vessels and vessel edges. The code is available at https://github.com/kita0420/CFI-Net.
Collapse
Affiliation(s)
- Ning Kang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Maofa Wang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Cheng Pang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin, 541004, China
| | - Rushi Lan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin, 541004, China
| | - Bingbing Li
- Department of Pathology, Ganzhou Municipal Hospital, Ganzhou, 341000, China
| | - Junlin Guan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Huadeng Wang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin, 541004, China
| |
Collapse
|
12
|
Zhang H, Liu J, Liu W, Chen H, Yu Z, Yuan Y, Wang P, Qin J. MHD-Net: Memory-Aware Hetero-Modal Distillation Network for Thymic Epithelial Tumor Typing With Missing Pathology Modality. IEEE J Biomed Health Inform 2024; 28:3003-3014. [PMID: 38470599 DOI: 10.1109/jbhi.2024.3376462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Fusing multi-modal radiology and pathology data with complementary information can improve the accuracy of tumor typing. However, collecting pathology data is difficult since it is high-cost and sometimes only obtainable after the surgery, which limits the application of multi-modal methods in diagnosis. To address this problem, we propose comprehensively learning multi-modal radiology-pathology data in training, and only using uni-modal radiology data in testing. Concretely, a Memory-aware Hetero-modal Distillation Network (MHD-Net) is proposed, which can distill well-learned multi-modal knowledge with the assistance of memory from the teacher to the student. In the teacher, to tackle the challenge in hetero-modal feature fusion, we propose a novel spatial-differentiated hetero-modal fusion module (SHFM) that models spatial-specific tumor information correlations across modalities. As only radiology data is accessible to the student, we store pathology features in the proposed contrast-boosted typing memory module (CTMM) that achieves type-wise memory updating and stage-wise contrastive memory boosting to ensure the effectiveness and generalization of memory items. In the student, to improve the cross-modal distillation, we propose a multi-stage memory-aware distillation (MMD) scheme that reads memory-aware pathology features from CTMM to remedy missing modal-specific information. Furthermore, we construct a Radiology-Pathology Thymic Epithelial Tumor (RPTET) dataset containing paired CT and WSI images with annotations. Experiments on the RPTET and CPTAC-LUAD datasets demonstrate that MHD-Net significantly improves tumor typing and outperforms existing multi-modal methods on missing modality situations.
Collapse
|
13
|
Liu P, Huang G, Jing J, Bian S, Cheng L, Lu XY, Rao C, Liu Y, Hua Y, Wang Y, He K. An Energy Matching Vessel Segmentation Framework in 3-D Medical Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1476-1488. [PMID: 38048240 DOI: 10.1109/tmi.2023.3339204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Accurate vascular segmentation from High Resolution 3-Dimensional (HR3D) medical scans is crucial for clinicians to visualize complex vasculature and diagnose related vascular diseases. However, a reliable and scalable vessel segmentation framework for HR3D scans remains a challenge. In this work, we propose a High-resolution Energy-matching Segmentation (HrEmS) framework that utilizes deep learning to directly process the entire HR3D scan and segment the vasculature to the finest level. The HrEmS framework introduces two novel components. Firstly, it uses the real-order total variation operator to construct a new loss function that guides the segmentation network to obtain the correct topology structure by matching the energy of the predicted segment to the energy of the manual label. This is different from traditional loss functions such as dice loss, which matches the pixels between predicted segment and manual label. Secondly, a curvature-based weight-correction module is developed, which directs the network to focus on crucial and complex structural parts of the vasculature instead of the easy parts. The proposed HrEmS framework was tested on three in-house multi-center datasets and three public datasets, and demonstrated improved results in comparison with the state-of-the-art methods using both topology-relevant and volumetric-relevant metrics. Furthermore, a double-blind assessment by three experienced radiologists on the critical points of the clinical diagnostic processes provided additional evidence of the superiority of the HrEmS framework.
Collapse
|
14
|
Jiang M, Zhu Y, Zhang X. CoVi-Net: A hybrid convolutional and vision transformer neural network for retinal vessel segmentation. Comput Biol Med 2024; 170:108047. [PMID: 38295476 DOI: 10.1016/j.compbiomed.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
Retinal vessel segmentation plays a crucial role in the diagnosis and treatment of ocular pathologies. Current methods have limitations in feature fusion and face challenges in simultaneously capturing global and local features from fundus images. To address these issues, this study introduces a hybrid network named CoVi-Net, which combines convolutional neural networks and vision transformer. In our proposed model, we have integrated a novel module for local and global feature aggregation (LGFA). This module facilitates remote information interaction while retaining the capability to effectively gather local information. In addition, we introduce a bidirectional weighted feature fusion module (BWF). Recognizing the variations in semantic information across layers, we allocate adjustable weights to different feature layers for adaptive feature fusion. BWF employs a bidirectional fusion strategy to mitigate the decay of effective information. We also incorporate horizontal and vertical connections to enhance feature fusion and utilization across various scales, thereby improving the segmentation of multiscale vessel images. Furthermore, we introduce an adaptive lateral feature fusion (ALFF) module that refines the final vessel segmentation map by enriching it with more semantic information from the network. In the evaluation of our model, we employed three well-established retinal image databases (DRIVE, CHASEDB1, and STARE). Our experimental results demonstrate that CoVi-Net outperforms other state-of-the-art techniques, achieving a global accuracy of 0.9698, 0.9756, and 0.9761 and an area under the curve of 0.9880, 0.9903, and 0.9915 on DRIVE, CHASEDB1, and STARE, respectively. We conducted ablation studies to assess the individual effectiveness of the three modules. In addition, we examined the adaptability of our CoVi-Net model for segmenting lesion images. Our experiments indicate that our proposed model holds promise in aiding the diagnosis of retinal vascular disorders.
Collapse
Affiliation(s)
- Minshan Jiang
- Shanghai Key Laboratory of Contemporary Optics System, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yongfei Zhu
- Shanghai Key Laboratory of Contemporary Optics System, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xuedian Zhang
- Shanghai Key Laboratory of Contemporary Optics System, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
15
|
Xu W, Yang H, Shi Y, Tan T, Liu W, Pan X, Deng Y, Gao F, Su R. ERNet: Edge Regularization Network for Cerebral Vessel Segmentation in Digital Subtraction Angiography Images. IEEE J Biomed Health Inform 2024; 28:1472-1483. [PMID: 38090824 DOI: 10.1109/jbhi.2023.3342195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Stroke is a leading cause of disability and fatality in the world, with ischemic stroke being the most common type. Digital Subtraction Angiography images, the gold standard in the operation process, can accurately show the contours and blood flow of cerebral vessels. The segmentation of cerebral vessels in DSA images can effectively help physicians assess the lesions. However, due to the disturbances in imaging parameters and changes in imaging scale, accurate cerebral vessel segmentation in DSA images is still a challenging task. In this paper, we propose a novel Edge Regularization Network (ERNet) to segment cerebral vessels in DSA images. Specifically, ERNet employs the erosion and dilation processes on the original binary vessel annotation to generate pseudo-ground truths of False Negative and False Positive, which serve as constraints to refine the coarse predictions based on their mapping relationship with the original vessels. In addition, we exploit a Hybrid Fusion Module based on convolution and transformers to extract local features and build long-range dependencies. Moreover, to support and advance the open research in the field of ischemic stroke, we introduce FPDSA, the first pixel-level semantic segmentation dataset for cerebral vessels. Extensive experiments on FPDSA illustrate the leading performance of our ERNet.
Collapse
|
16
|
Tan Y, Shen WD, Wu MY, Liu GN, Zhao SX, Chen Y, Yang KF, Li YJ. Retinal Layer Segmentation in OCT Images With Boundary Regression and Feature Polarization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:686-700. [PMID: 37725718 DOI: 10.1109/tmi.2023.3317072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The geometry of retinal layers is an important imaging feature for the diagnosis of some ophthalmic diseases. In recent years, retinal layer segmentation methods for optical coherence tomography (OCT) images have emerged one after another, and huge progress has been achieved. However, challenges due to interference factors such as noise, blurring, fundus effusion, and tissue artifacts remain in existing methods, primarily manifesting as intra-layer false positives and inter-layer boundary deviation. To solve these problems, we propose a method called Tightly combined Cross-Convolution and Transformer with Boundary regression and feature Polarization (TCCT-BP). This method uses a hybrid architecture of CNN and lightweight Transformer to improve the perception of retinal layers. In addition, a feature grouping and sampling method and the corresponding polarization loss function are designed to maximize the differentiation of the feature vectors of different retinal layers, and a boundary regression loss function is devised to constrain the retinal boundary distribution for a better fit to the ground truth. Extensive experiments on four benchmark datasets demonstrate that the proposed method achieves state-of-the-art performance in dealing with problems of false positives and boundary distortion. The proposed method ranked first in the OCT Layer Segmentation task of GOALS challenge held by MICCAI 2022. The source code is available at https://www.github.com/tyb311/TCCT.
Collapse
|
17
|
Qiu Z, Hu Y, Chen X, Zeng D, Hu Q, Liu J. Rethinking Dual-Stream Super-Resolution Semantic Learning in Medical Image Segmentation. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:451-464. [PMID: 37812562 DOI: 10.1109/tpami.2023.3322735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Image segmentation is fundamental task for medical image analysis, whose accuracy is improved by the development of neural networks. However, the existing algorithms that achieve high-resolution performance require high-resolution input, resulting in substantial computational expenses and limiting their applicability in the medical field. Several studies have proposed dual-stream learning frameworks incorporating a super-resolution task as auxiliary. In this paper, we rethink these frameworks and reveal that the feature similarity between tasks is insufficient to constrain vessels or lesion segmentation in the medical field, due to their small proportion in the image. To address this issue, we propose a DS2F (Dual-Stream Shared Feature) framework, including a Shared Feature Extraction Module (SFEM). Specifically, we present Multi-Scale Cross Gate (MSCG) utilizing multi-scale features as a novel example of SFEM. Then we define a proxy task and proxy loss to enable the features focus on the targets based on the assumption that a limited set of shared features between tasks is helpful for their performance. Extensive experiments on six publicly available datasets across three different scenarios are conducted to verify the effectiveness of our framework. Furthermore, various ablation studies are conducted to demonstrate the significance of our DS2F.
Collapse
|
18
|
Liu F, Huang W. ESDiff: a joint model for low-quality retinal image enhancement and vessel segmentation using a diffusion model. BIOMEDICAL OPTICS EXPRESS 2023; 14:6563-6578. [PMID: 38420298 PMCID: PMC10898574 DOI: 10.1364/boe.506205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 03/02/2024]
Abstract
In clinical screening, accurate diagnosis of various diseases relies on the extraction of blood vessels from fundus images. However, clinical fundus images often suffer from uneven illumination, blur, and artifacts caused by equipment or environmental factors. In this paper, we propose a unified framework called ESDiff to address these challenges by integrating retinal image enhancement and vessel segmentation. Specifically, we introduce a novel diffusion model-based framework for image enhancement, incorporating mask refinement as an auxiliary task via a vessel mask-aware diffusion model. Furthermore, we utilize low-quality retinal fundus images and their corresponding illumination maps as inputs to the modified UNet to obtain degradation factors that effectively preserve pathological features and pertinent information. This approach enhances the intermediate results within the iterative process of the diffusion model. Extensive experiments on publicly available fundus retinal datasets (i.e. DRIVE, STARE, CHASE_DB1 and EyeQ) demonstrate the effectiveness of ESDiff compared to state-of-the-art methods.
Collapse
Affiliation(s)
- Fengting Liu
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250300, China
| | - Wenhui Huang
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250300, China
| |
Collapse
|
19
|
Huang Y, Deng T. Multi-level spatial-temporal and attentional information deep fusion network for retinal vessel segmentation. Phys Med Biol 2023; 68:195026. [PMID: 37567227 DOI: 10.1088/1361-6560/acefa0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/11/2023] [Indexed: 08/13/2023]
Abstract
Objective.Automatic segmentation of fundus vessels has the potential to enhance the judgment ability of intelligent disease diagnosis systems. Even though various methods have been proposed, it is still a demanding task to accurately segment the fundus vessels. The purpose of our study is to develop a robust and effective method to segment the vessels in human color retinal fundus images.Approach.We present a novel multi-level spatial-temporal and attentional information deep fusion network for the segmentation of retinal vessels, called MSAFNet, which enhances segmentation performance and robustness. Our method utilizes the multi-level spatial-temporal encoding module to obtain spatial-temporal information and the Self-Attention module to capture feature correlations in different levels of our network. Based on the encoder and decoder structure, we combine these features to get the final segmentation results.Main results.Through abundant experiments on four public datasets, our method achieves preferable performance compared with other SOTA retinal vessel segmentation methods. Our Accuracy and Area Under Curve achieve the highest scores of 96.96%, 96.57%, 96.48% and 98.78%, 98.54%, 98.27% on DRIVE, CHASE_DB1, and HRF datasets. Our Specificity achieves the highest score of 98.58% and 99.08% on DRIVE and STARE datasets.Significance.The experimental results demonstrate that our method has strong learning and representation capabilities and can accurately detect retinal blood vessels, thereby serving as a potential tool for assisting in diagnosis.
Collapse
Affiliation(s)
- Yi Huang
- School of Information Science and Technology, Southwest Jiaotong University, 611756, Chengdu, People's Republic of China
| | - Tao Deng
- School of Information Science and Technology, Southwest Jiaotong University, 611756, Chengdu, People's Republic of China
| |
Collapse
|
20
|
Irfan M, Malik KM, Ahmad J, Malik G. StrokeNet: An automated approach for segmentation and rupture risk prediction of intracranial aneurysm. Comput Med Imaging Graph 2023; 108:102271. [PMID: 37556901 DOI: 10.1016/j.compmedimag.2023.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
Intracranial Aneurysms (IA) present a complex challenge for neurosurgeons as the risks associated with surgical intervention, such as Subarachnoid Hemorrhage (SAH) mortality and morbidity, may outweigh the benefits of aneurysmal occlusion in some cases. Hence, there is a critical need for developing techniques that assist physicians in assessing the risk of aneurysm rupture to determine which aneurysms require treatment. However, a reliable IA rupture risk prediction technique is currently unavailable. To address this issue, this study proposes a novel approach for aneurysm segmentation and multidisciplinary rupture prediction using 2D Digital Subtraction Angiography (DSA) images. The proposed method involves training a fully connected convolutional neural network (CNN) to segment aneurysm regions in DSA images, followed by extracting and fusing different features using a multidisciplinary approach, including deep features, geometrical features, Fourier descriptor, and shear pressure on the aneurysm wall. The proposed method also adopts a fast correlation-based filter approach to drop highly correlated features from the set of fused features. Finally, the selected fused features are passed through a Decision Tree classifier to predict the rupture severity of the associated aneurysm into four classes: Mild, Moderate, Severe, and Critical. The proposed method is evaluated on a newly developed DSA image dataset and on public datasets to assess its generalizability. The system's performance is also evaluated on DSA images annotated by expert neurosurgeons for the rupture risk assessment of the segmented aneurysm. The proposed system outperforms existing state-of-the-art segmentation methods, achieving an 85 % accuracy against annotated DSA images for the risk assessment of aneurysmal rupture.
Collapse
Affiliation(s)
- Muhammad Irfan
- SMILES LAB, Department of Computer Science and Engineering, Oakland University, Rochester, MI, 48309, USA
| | - Khalid Mahmood Malik
- SMILES LAB, Department of Computer Science and Engineering, Oakland University, Rochester, MI, 48309, USA.
| | - Jamil Ahmad
- Department of Computer Vision, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, United Arab Emirates
| | - Ghaus Malik
- Executive Vice-Chair at Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
21
|
Shen N, Xu T, Bian Z, Huang S, Mu F, Huang B, Xiao Y, Li J. SCANet: A Unified Semi-Supervised Learning Framework for Vessel Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2476-2489. [PMID: 35862338 DOI: 10.1109/tmi.2022.3193150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Automatic subcutaneous vessel imaging with near-infrared (NIR) optical apparatus can promote the accuracy of locating blood vessels, thus significantly contributing to clinical venipuncture research. Though deep learning models have achieved remarkable success in medical image segmentation, they still struggle in the subfield of subcutaneous vessel segmentation due to the scarcity and low-quality of annotated data. To relieve it, this work presents a novel semi-supervised learning framework, SCANet, that achieves accurate vessel segmentation through an alternate training strategy. The SCANet is composed of a multi-scale recurrent neural network that embeds coarse-to-fine features and two auxiliary branches, a consistency decoder and an adversarial learning branch, responsible for strengthening fine-grained details and eliminating differences between ground-truths and predictions, respectively. Equipped with a novel semi-supervised alternate training strategy, the three components work collaboratively, enabling SCANet to accurately segment vessel regions with only a handful of labeled data and abounding unlabeled data. Moreover, to mitigate the shortage of annotated data in this field, we provide a new subcutaneous vessel dataset, VESSEL-NIR. Extensive experiments on a wide variety of tasks, including the segmentation of subcutaneous vessels, retinal vessels, and skin lesions, well demonstrate the superiority and generality of our approach.
Collapse
|
22
|
Shi T, Ding X, Zhou W, Pan F, Yan Z, Bai X, Yang X. Affinity Feature Strengthening for Accurate, Complete and Robust Vessel Segmentation. IEEE J Biomed Health Inform 2023; 27:4006-4017. [PMID: 37163397 DOI: 10.1109/jbhi.2023.3274789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms. However, achieving high pixel-wise accuracy, complete topology structure and robustness to various contrast variations are critical and challenging, and most existing methods focus only on achieving one or two of these aspects. In this paper, we present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach. Specifically, we compute a multiscale affinity field for each pixel, capturing its semantic relationships with neighboring pixels in the predicted mask image. This field represents the local geometry of vessel segments of different sizes, allowing us to learn spatial- and scale-aware adaptive weights to strengthen vessel features. We evaluate our AFN on four different types of vascular datasets: X-ray angiography coronary vessel dataset (XCAD), portal vein dataset (PV), digital subtraction angiography cerebrovascular vessel dataset (DSA) and retinal vessel dataset (DRIVE). Extensive experimental results demonstrate that our AFN outperforms the state-of-the-art methods in terms of both higher accuracy and topological metrics, while also being more robust to various contrast changes.
Collapse
|
23
|
Yi J, Chen C. Multi-Task Segmentation and Classification Network for Artery/Vein Classification in Retina Fundus. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1148. [PMID: 37628178 PMCID: PMC10453284 DOI: 10.3390/e25081148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Automatic classification of arteries and veins (A/V) in fundus images has gained considerable attention from researchers due to its potential to detect vascular abnormalities and facilitate the diagnosis of some systemic diseases. However, the variability in vessel structures and the marginal distinction between arteries and veins poses challenges to accurate A/V classification. This paper proposes a novel Multi-task Segmentation and Classification Network (MSC-Net) that utilizes the vessel features extracted by a specific module to improve A/V classification and alleviate the aforementioned limitations. The proposed method introduces three modules to enhance the performance of A/V classification: a Multi-scale Vessel Extraction (MVE) module, which distinguishes between vessel pixels and background using semantics of vessels, a Multi-structure A/V Extraction (MAE) module that classifies arteries and veins by combining the original image with the vessel features produced by the MVE module, and a Multi-source Feature Integration (MFI) module that merges the outputs from the former two modules to obtain the final A/V classification results. Extensive empirical experiments verify the high performance of the proposed MSC-Net for retinal A/V classification over state-of-the-art methods on several public datasets.
Collapse
Affiliation(s)
| | - Chouyu Chen
- Department of Computer Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
| |
Collapse
|
24
|
Transformer and convolutional based dual branch network for retinal vessel segmentation in OCTA images. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Tan Y, Zhao SX, Yang KF, Li YJ. A lightweight network guided with differential matched filtering for retinal vessel segmentation. Comput Biol Med 2023; 160:106924. [PMID: 37146492 DOI: 10.1016/j.compbiomed.2023.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
The geometric morphology of retinal vessels reflects the state of cardiovascular health, and fundus images are important reference materials for ophthalmologists. Great progress has been made in automated vessel segmentation, but few studies have focused on thin vessel breakage and false-positives in areas with lesions or low contrast. In this work, we propose a new network, differential matched filtering guided attention UNet (DMF-AU), to address these issues, incorporating a differential matched filtering layer, feature anisotropic attention, and a multiscale consistency constrained backbone to perform thin vessel segmentation. The differential matched filtering is used for the early identification of locally linear vessels, and the resulting rough vessel map guides the backbone to learn vascular details. Feature anisotropic attention reinforces the vessel features of spatial linearity at each stage of the model. Multiscale constraints reduce the loss of vessel information while pooling within large receptive fields. In tests on multiple classical datasets, the proposed model performed well compared with other algorithms on several specially designed criteria for vessel segmentation. DMF-AU is a high-performance, lightweight vessel segmentation model. The source code is at https://github.com/tyb311/DMF-AU.
Collapse
Affiliation(s)
- Yubo Tan
- The MOE Key Laboratory for Neuroinformation, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, China.
| | - Shi-Xuan Zhao
- The MOE Key Laboratory for Neuroinformation, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, China.
| | - Kai-Fu Yang
- The MOE Key Laboratory for Neuroinformation, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, China.
| | - Yong-Jie Li
- The MOE Key Laboratory for Neuroinformation, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, China.
| |
Collapse
|
26
|
Qu Z, Zhuo L, Cao J, Li X, Yin H, Wang Z. TP-Net: Two-Path Network for Retinal Vessel Segmentation. IEEE J Biomed Health Inform 2023; 27:1979-1990. [PMID: 37021912 DOI: 10.1109/jbhi.2023.3237704] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Refined and automatic retinal vessel segmentation is crucial for computer-aided early diagnosis of retinopathy. However, existing methods often suffer from mis-segmentation when dealing with thin and low-contrast vessels. In this paper, a two-path retinal vessel segmentation network is proposed, namely TP-Net, which consists of three core parts, i.e., main-path, sub-path, and multi-scale feature aggregation module (MFAM). Main-path is to detect the trunk area of the retinal vessels, and the sub-path to effectively capture edge information of the retinal vessels. The prediction results of the two paths are combined by MFAM, obtaining refined segmentation of retinal vessels. In the main-path, a three-layer lightweight backbone network is elaborately designed according to the characteristics of retinal vessels, and then a global feature selection mechanism (GFSM) is proposed, which can autonomously select features that are more important for the segmentation task from the features at different layers of the network, thereby, enhancing the segmentation capability for low-contrast vessels. In the sub-path, an edge feature extraction method and an edge loss function are proposed, which can enhance the ability of the network to capture edge information and reduce the mis-segmentation of thin vessels. Finally, MFAM is proposed to fuse the prediction results of main-path and sub-path, which can remove background noises while preserving edge details, and thus, obtaining refined segmentation of retinal vessels. The proposed TP-Net has been evaluated on three public retinal vessel datasets, namely DRIVE, STARE, and CHASE DB1. The experimental results show that the TP-Net achieved a superior performance and generalization ability with fewer model parameters compared with the state-of-the-art methods.
Collapse
|
27
|
Jiang Y, Liang J, Cheng T, Lin X, Zhang Y, Dong J. MTPA_Unet: Multi-Scale Transformer-Position Attention Retinal Vessel Segmentation Network Joint Transformer and CNN. SENSORS 2022; 22:s22124592. [PMID: 35746372 PMCID: PMC9229851 DOI: 10.3390/s22124592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023]
Abstract
Retinal vessel segmentation is extremely important for risk prediction and treatment of many major diseases. Therefore, accurate segmentation of blood vessel features from retinal images can help assist physicians in diagnosis and treatment. Convolutional neural networks are good at extracting local feature information, but the convolutional block receptive field is limited. Transformer, on the other hand, performs well in modeling long-distance dependencies. Therefore, in this paper, a new network model MTPA_Unet is designed from the perspective of extracting connections between local detailed features and making complements using long-distance dependency information, which is applied to the retinal vessel segmentation task. MTPA_Unet uses multi-resolution image input to enable the network to extract information at different levels. The proposed TPA module not only captures long-distance dependencies, but also focuses on the location information of the vessel pixels to facilitate capillary segmentation. The Transformer is combined with the convolutional neural network in a serial approach, and the original MSA module is replaced by the TPA module to achieve finer segmentation. Finally, the network model is evaluated and analyzed on three recognized retinal image datasets DRIVE, CHASE DB1, and STARE. The evaluation metrics were 0.9718, 0.9762, and 0.9773 for accuracy; 0.8410, 0.8437, and 0.8938 for sensitivity; and 0.8318, 0.8164, and 0.8557 for Dice coefficient. Compared with existing retinal image segmentation methods, the proposed method in this paper achieved better vessel segmentation in all of the publicly available fundus datasets tested performance and results.
Collapse
|